[bca7a0]: / pytorch / dataloader.py

Download this file

141 lines (116 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import absolute_import, division, print_function
import re
from os import getcwd
from os.path import join
import numpy as np
import pandas as pd
import torch.utils.data as data
from PIL import Image
from torchvision.datasets.utils import check_integrity, download_url
class MuraDataset(data.Dataset):
"""`MURA <https://stanfordmlgroup.github.io/projects/mura/>`_ Dataset :
Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs.
"""
url = "https://cs.stanford.edu/group/mlgroup/mura-v1.0.zip"
filename = "mura-v1.0.zip"
md5_checksum = '4c36feddb7f5698c8bf291b912c438b1'
_patient_re = re.compile(r'patient(\d+)')
_study_re = re.compile(r'study(\d+)')
_image_re = re.compile(r'image(\d+)')
_study_type_re = re.compile(r'XR_(\w+)')
def __init__(self, csv_f, transform=None, download=False):
self.df = pd.read_csv(csv_f, names=['img', 'label'], header=None)
self.imgs = self.df.img.values.tolist()
self.labels = self.df.label.values.tolist()
# following datasets/folder.py's weird convention here...
self.samples = [tuple(x) for x in self.df.values]
# number of unique classes
self.classes = np.unique(self.labels)
self.balanced_weights = self.balance_class_weights()
self.transform = transform
def __len__(self):
return len(self.imgs)
def _parse_patient(self, img_filename):
return int(self._patient_re.search(img_filename).group(1))
def _parse_study(self, img_filename):
return int(self._study_re.search(img_filename).group(1))
def _parse_image(self, img_filename):
return int(self._image_re.search(img_filename).group(1))
def _parse_study_type(self, img_filename):
return self._study_type_re.search(img_filename).group(1)
def download_and_uncompress_tarball(tarball_url, dataset_dir):
"""Downloads the `tarball_url` and uncompresses it locally.
Args:
tarball_url: The URL of a tarball file.
dataset_dir: The directory where the temporary files are stored.
"""
filename = tarball_url.split('/')[-1]
filepath = os.path.join(dataset_dir, filename)
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(tarball_url, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
if ".zip" in filename:
print("zipfile:{}".format(filepath))
with zipfile.ZipFile(filepath, "r") as zip_ref:
zip_ref.extractall(dataset_dir)
else:
tarfile.open(filepath, 'r:gz').extractall(dataset_dir)
def balance_class_weights(self):
count = [0] * len(self.classes)
for item in self.samples:
count[item[1]] += 1
weight_per_class = [0.] * len(self.classes)
N = float(sum(count))
for i in range(len(self.classes)):
weight_per_class[i] = N / float(count[i])
weight = [0] * len(self.samples)
for idx, val in enumerate(self.samples):
weight[idx] = weight_per_class[val[1]]
return weight
def __getitem__(self, idx):
img_filename = join(self.imgs[idx])
patient = self._parse_patient(img_filename)
study = self._parse_study(img_filename)
image_num = self._parse_image(img_filename)
study_type = self._parse_study_type(img_filename)
# todo(bdd) : inconsistent right now, need param for grayscale / RGB
# todo(bdd) : 'L' -> gray, 'RGB' -> Colors
image = Image.open(img_filename).convert('RGB')
label = self.labels[idx]
if self.transform is not None:
image = self.transform(image)
meta_data = {
'y_true': label,
'img_filename': img_filename,
'patient': patient,
'study': study,
'study_type': study_type,
'image_num': image_num,
'encounter': "{}_{}_{}".format(study_type, patient, study)
}
return image, label, meta_data
if __name__ == '__main__':
import torchvision.transforms as transforms
import pprint
data_dir = join(getcwd(), 'MURA-v1.0')
val_csv = join(data_dir, 'valid.csv')
val_loader = data.DataLoader(
MuraDataset(val_csv,
transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
])),
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=False)
for i, (image, label, meta_data) in enumerate(val_loader):
pprint.pprint(meta_data.cpu())
if i == 40:
break