3386 lines (3358 with data), 171.5 kB
<?xml version="1.0" encoding="UTF-8" ?>
<OpenSimDocument Version="30000">
<Model name="Lower Limb 2009 Arnold et al v2S">
<defaults>
<ControlLinear name="default">
<is_model_control>true</is_model_control>
<extrapolate>true</extrapolate>
<default_min>-1</default_min>
<default_max>1</default_max>
<filter_on>false</filter_on>
<use_steps>false</use_steps>
<x_nodes />
<min_nodes />
<max_nodes />
<kp>100</kp>
<kv>20</kv>
</ControlLinear>
<CoordinateActuator name="default">
<!--Name of the generalized coordinate to which the actuator applies.-->
<coordinate>Unassigned</coordinate>
<!--The maximum generalized force produced by this actuator.-->
<optimal_force>300</optimal_force>
</CoordinateActuator>
<PointActuator name="default">
<!--Name of Body to which this actuator is applied.-->
<body></body>
<!--Location of application point; in body frame unless point_is_global=true-->
<point>0 0 0</point>
<!--Interpret point in Ground frame if true; otherwise, body frame.-->
<point_is_global>false</point_is_global>
<!--Force application direction; in body frame unless force_is_global=true.-->
<direction>-1 -0 -0</direction>
<!--Interpret direction in Ground frame if true; otherwise, body frame.-->
<force_is_global>true</force_is_global>
<!--The maximum force produced by this actuator when fully activated.-->
<optimal_force>1000</optimal_force>
</PointActuator>
<TorqueActuator name="default">
<!--Name of Body to which the torque actuator is applied.-->
<bodyA>Unassigned</bodyA>
<!--Name of Body to which the equal and opposite torque is applied.-->
<bodyB>Unassigned</bodyB>
<!--Interpret axis in Ground frame if true; otherwise, body A's frame.-->
<torque_is_global>true</torque_is_global>
<!--Fixed direction about which torque is applied, in Ground or body A frame depending on 'torque_is_global' property.-->
<axis>-1 -0 -0</axis>
<!--The maximum torque produced by this actuator when fully activated.-->
<optimal_force>1</optimal_force>
</TorqueActuator>
<Thelen2003Muscle name="default">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects />
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects />
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--transform relative to owner specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>546</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0535</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.078</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0</pennation_angle_at_optimal>
<!--time constant for ramping up muscle activation-->
<activation_time_constant>0.01</activation_time_constant>
<!--time constant for ramping down of muscle activation-->
<deactivation_time_constant>0.04</deactivation_time_constant>
<!--tendon strain at maximum isometric muscle force-->
<FmaxTendonStrain>0.033</FmaxTendonStrain>
<!--passive muscle strain at maximum isometric muscle force-->
<FmaxMuscleStrain>0.6</FmaxMuscleStrain>
<!--shape factor for Gaussian active muscle force-length relationship-->
<KshapeActive>0.5</KshapeActive>
<!--exponential shape factor for passive force-length relationship-->
<KshapePassive>4</KshapePassive>
<!--force-velocity shape factor-->
<Af>0.3</Af>
<!--maximum normalized lengthening force-->
<Flen>1.8</Flen>
</Thelen2003Muscle>
<CMC_Joint name="default">
<!--Flag (true or false) indicating whether or not a task is enabled.-->
<on>false</on>
<!--Weight with which a task is tracked relative to other tasks. To track a task more tightly, make the weight larger.-->
<weight> 1 1 1</weight>
<!--Name of body frame with respect to which a tracking objective is specified. The special name 'center_of_mass' refers to the system center of mass. This property is not used for tracking joint angles.-->
<wrt_body>-1</wrt_body>
<!--Name of body frame in which the tracking objectives are expressed. This property is not used for tracking joint angles.-->
<express_body>-1</express_body>
<!--Array of 3 flags (each true or false) specifying whether a component of a task is active. For example, tracking the trajectory of a point in space could have three components (x,y,z). This allows each of those to be made active (true) or inactive (false). A task for tracking a joint coordinate only has one component.-->
<active>false false false </active>
<!--Position error feedback gain (stiffness). To achieve critical damping of errors, choose kv = 2*sqrt(kp).-->
<kp> 1 1 1</kp>
<!--Velocity error feedback gain (damping). To achieve critical damping of errors, choose kv = 2*sqrt(kp).-->
<kv> 1 1 1</kv>
<!--Feedforward acceleration gain. This is normally set to 1.0, so no gain.-->
<ka> 1 1 1</ka>
<!--Direction vector[3] for component 0 of a task. Joint tasks do not use this propery.-->
<r0> 0 0 0</r0>
<!--Direction vector[3] for component 1 of a task. Joint tasks do not use this property.-->
<r1> 0 0 0</r1>
<!--Direction vector[3] for component 2 of a task. Joint tasks do not use this property.-->
<r2> 0 0 0</r2>
<!--Name of the coordinate to be tracked.-->
<coordinate />
<!--Error limit on the tracking accuracy for this coordinate. If the tracking errors approach this limit, the weighting for this coordinate is increased. -->
<limit>0</limit>
</CMC_Joint>
</defaults>
<credits>Arnold, E.M., Ward, S.R., Lieber, R. L., and Delp, S.L.</credits>
<publications>Arnold, E.M., Ward, S.R., Lieber, R. L., and Delp, S.L., A model of the lower limb for analysis of human movement, Annals of Biomedical Engineering, 2009, DOI: 10.1007/s10439-009-9852-5 DETAILED COMMENTS AND REFERENCES FOR USE WITH THE 7 SEGMENT KINEMATIC MODEL OF THE LOWER LIMB CREATED BY EDITH M. ARNOLD: Arnoldetal2009OneLeg_v2S.osim Changes from Arnoldetal2009OneLeg.osim: 05/07/10: Updated to OpenSimDocument Version 20001 05/07/10: Added alternate tendon slack length to semimem. 0.348 is representative of the experimental joint angle-fiber length relationship, but results in unrealistic passive forces at high hip flexion. This value may be more appropriate depending on the application 0.378 is gives more realistic passive behavior in high hip flexion angles, but fibers become very short in less extreme positions. This is default value included in the paper of reference. Comment out the one you don't want to use. 05/07/10: Changed all muscles from Delp1990 to Schutte1993. This file contains three options for muscle models: Thelen2003Muscle Schutte1993Muscle Delp1990Muscle This musculoskeletal model uses the Schutte1993Muscle The definition of each muscle contains a list of coordinates that describe its line of action and the parameters (peak isometric force, optimal fiber length, tendon slack length, and pennation angle) needed to compute isometric muscle force. Additional parameters can be added to create a dynamics-based muscle model. The joint definitions describe the kinematics of a 7 segment, 7 degree-of-freedom model of the pelvis, femur, patella, tibia, calcaneus, talus, and toes. The model is a right leg. The model represents a nominal adult male, and is based on the lower limb models developed by Delp et al. (1990) and A.S. Arnold (1999). It includes the following modifications, relative to the Delp et al. model: 1. Expanded architecture data This architecture of these muscles is based on a study of 21 cadavers by Ward et al. (2009), an improvement over the data by Wickiewicz (1983) Friederich and Brand (1990)which included only 5 total. 2. Fiber length-joint angle relationship Ward et al. explicitly linked measured fiber lengths to joint angles. This allows examination of the fiber length operating range in relation to joint angle. 3. Experimentally based tendon lengths In the Delp model tendon lengths were set so that resultant passive moments matched experimental results. In this model they were set using an experimentally measured relationship between fiber length and joint angle. 4. Longer plantarflexor fibers In the Delp model the fiber lengths of soleus and the gastrocnemii were lengthened beyond the data reported by Wickiewicz et al. This was necessary to achieve physiolgically reasonable results. The plantarflexor fiber lengths measured by Ward et al. were longer and thus lengthening was not necessary. 5. Walker knee In this model, 3D tibiofemoral kinematics are based on experimental data published by Walker et al. (1988) and adapted from a SIMM model by A.S. Arnold et al. (2000) Knee flexion is positive and full extension is 0 degrees. Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21:965-974, 1988. 6. Altered wrapping and attachment points Wrapping surfaces were added and some attachment points were modified to refine muscle paths and moment arms. Additions are a combination of surfaces adapted from A.S. Arnold et al. (2000) and new surfaces. 7. Right and left hemipelves and sacrum were re-oriented. Adapted from A.S. Arnold et al. (2000) In this model, spatial relationships between the hemipelves and sacrum are more consistent with pelves constructed from MR images. 8. Femur was re-digitized. Adapted from A.S. Arnold et al. (2000) The femur from Delp's model (Specimen A55, Stanford University) was digitized at higher resolution. 9. Tibia was replaced. Adapted from A.S. Arnold et al. (2000) The tibia in Delp's model did not match the Specimen A55 femur. The tibia from Specimen A55 was digitized and used in place of the tibia in Delp's model. 10. Fibula was scaled by 97% and re-oriented. Adapted from A.S. Arnold et al. (2000) 11. Pelvis coordinate system was revised. Adapted from A.S. Arnold et al. (2000) In this model, the "neutral position" was defined such that the ASISs and pubic tubercle lie in the frontal plane. In Delp's model, the "neutral position" was defined to be coincident with the anatomical position. This difference corresponds to an offset in pelvic tilt and hip flexion angle of about 5 degrees. This may also differ from a gait lab convention and care should be taken to ensure appropriate interpretations according to the convention used. JOURNAL ARTICLE REFERENCES The model of the lower limb is defined as an input file for OpenSim. An overview of this software and its input file structure is given in: Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54(11):1940-50, 2007. The details of the lower limb model are described in the follow publications: Arnold, E.M., Ward, S.R., Lieber, R. L., and Delp, S.L., A model of the lower limb for analysis of human movement, Annals of Biomedical Engineering, 2009, DOI: 10.1007/s10439-009-9852-5 Arnold, A.S., Asakawa, D.J., and Delp, S.L., Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? Gait Posture 11:181-90, 2000. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp E.L., Rosen, J.M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures, IEEE Transactions on Biomedical Engineering, vol. 37, pp. 757-767, 1990. Delp, Surgery Simulation: A computer graphics system to analyze and design musculoskeletal reconstructions of the lower extremity, Ph.D. Dissertation, Stanford University, 1990. Ward, S. R., Eng, C.M., Smallwood, L.H., Lieber, R.L.: Are Current Measurements of Lower Extremity Muscle Architecture Accurate? Clin Orthop Relat Res 467:1074-82, 2009. Additional information on the model of the lower limb can be obtained by contacting Scott L. Delp. Bioengineering Department, Stanford University, Clark Center, Room S321 Stanford, California 94305 http://www.stanford.edu/group/nmbl/ Additional information on the musculoskeletal modeling software (OpenSim) can be obtained from simtk.org at https://simtk.org/home/opensim The muscle model used with the lower limb model is described in the following publications: Zajac, Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control, in CRC reviews in biomedical engineering vol.17, issue 4, pp. 359-411, 1989. Delp, S.L. and Loan, J.P.: A software system to develop and analyze models of musculoskeletal structures, Computers in Biology and Medicine, vol. 25, pp. 21-34, 1995. Buchanan and Lloyd Passive Curve Schutte LM Passive Curve REFERENCES FOR THE MUSCLE-TENDON PARAMETERS References are given for each musculotendon parameter in Table 1 of Arnold, E.M., Ward, S.R., Lieber, R. L., and Delp, S.L., A model of the lower limb for analysis of human movement, Annals of Biomedical Engineering, 2009, DOI: 10.1007/s10439-009-9852-5 LOCATION OF REFERENCE FRAMES Each musculotendon path is defined as series of three-dimensional coordinates. Each coordinate is fixed in a body-segmental reference frame. In the anatomical position, the X-axes point anteriorly, the Y-axes point superiorly, and the Z-axes point laterally. The location of these frames is as follows. PELVIS: The pelvic reference frame is fixed at the midpoint of the line connecting the two ASIS. FEMUR: The femoral frame is fixed at the center of the femoral head TIBIA: The tibial segment is located at the midpoint of the line between the medial and lateral femoral epicondyles. PATELLA: The patellar frame is located at the most distal point of the patella. TALUS: The talar frame is located at the midpoint of the line between the apeces of the medial and lateral maleoli. CALCANUS: The calcaneal frame is located at the most distal, inferior point on the posterior surface of the calcaneus. TOES: The toe frame is located at the base of the second metatarsal Walker et al. used a different convention for the femur and tibia frame when describing the knee joint. In the anatomical position the X-axis points medially (left), Y-axis points superiorly, Z-axis points anteriorly. These frames are translated to the FEMUR and TIBIA frame via fixed joints. FEMUR_WLKR: Located at the midpoint of the line between the medial and lateral femoral epicondyles. TIBIA_WLKR: Coincident with FEMUR_WLKR at knee_angle = 0 SHAFT_AXIS: A fixed reference frame oriented along the line of the femur shaft used to simplify the placement of wrapping surfaces during model development.</publications>
<length_units>meters</length_units>
<force_units>N</force_units>
<!--Acceleration due to gravity.-->
<gravity> 0 -9.80665 0</gravity>
<!--Bodies in the model.-->
<BodySet>
<objects>
<Body name="ground">
<mass>0</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0</inertia_xx>
<inertia_yy>0</inertia_yy>
<inertia_zz>0</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint />
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="pelvis">
<mass>11.777</mass>
<mass_center> -0.0707 0 0</mass_center>
<inertia_xx>0.1028</inertia_xx>
<inertia_yy>0.0871</inertia_yy>
<inertia_zz>0.0579</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<WeldJoint name="base">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>ground</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>0 0 0</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects />
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
</WeldJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>pelvis.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>pelvflip.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>sacrum.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects>
<WrapEllipsoid name="PS_at_brim">
<xyz_body_rotation> 0 0 0</xyz_body_rotation>
<translation> -0.0798 -0.0654 0.0656</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.052 0.0492 0.071</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="IL_at_brim">
<xyz_body_rotation> 0 0 0</xyz_body_rotation>
<translation> -0.0685 -0.0557 0.0756</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0549 0.0665 0.071</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="Gmax_at_pelvis">
<xyz_body_rotation> -0.637045 0.383623 -0.684867</xyz_body_rotation>
<translation> -0.0795 -0.0825 0.0665</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.04 0.04 0.06</dimensions>
</WrapEllipsoid>
</objects>
<groups />
</WrapObjectSet>
</Body>
<Body name="femur">
<mass>9.3014</mass>
<mass_center> 0 -0.17 0</mass_center>
<inertia_xx>0.1339</inertia_xx>
<inertia_yy>0.0351</inertia_yy>
<inertia_zz>0.1412</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="hip">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>pelvis</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.056276 -0.07849 0.07726</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="hip_flexion">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.34906585 0.7854</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
<Coordinate name="hip_adduction">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.34906585 0.34906585</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
<Coordinate name="hip_rotation">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.34906585 0.34906585</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>hip_flexion</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>hip_adduction</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>hip_rotation</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>femur.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects>
<WrapEllipsoid name="Gastroc_at_Condyles">
<xyz_body_rotation> 0.0589921 -0.0937242 0.0232129</xyz_body_rotation>
<translation> 0.0048 -0.4075 0.0003</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.03 0.025 0.05</dimensions>
</WrapEllipsoid>
</objects>
<groups />
</WrapObjectSet>
</Body>
<Body name="femur_wlkr">
<mass>0</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0</inertia_xx>
<inertia_yy>0</inertia_yy>
<inertia_zz>0</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<WeldJoint name="femur_coord">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>femur</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.00809 -0.40796 -0.00275</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>-1.64156849 1.4461808 1.57079633</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects />
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
</WeldJoint>
</Joint>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="tibia_wlkr">
<mass>0</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0</inertia_xx>
<inertia_yy>0</inertia_yy>
<inertia_zz>0</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="walker_knee">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>femur_wlkr</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>0 0 0</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="knee_angle">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>3.07800003112669e-005</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>0 1.74532925</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>true</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>knee_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>knee_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<SimmSpline>
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0 0.0126809 0.0226969 0.0296054 0.0332049 0.0335354 0.0308779 0.0257548 0.0189295 0.011407 0.00443314 -0.00050475 -0.0016782</y>
</SimmSpline>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>knee_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<SimmSpline>
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0 0.059461 0.109399 0.150618 0.18392 0.210107 0.229983 0.24435 0.254012 0.25977 0.262428 0.262788 0.261654</y>
</SimmSpline>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>knee_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<SimmSpline>
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0 0.000479 0.000835 0.001086 0.001251 0.001346 0.001391 0.001403 0.0014 0.0014 0.001421 0.001481 0.001599</y>
</SimmSpline>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>knee_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<SimmSpline>
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0 0.000988 0.001899 0.002734 0.003492 0.004173 0.004777 0.005305 0.005756 0.00613 0.006427 0.006648 0.006792</y>
</SimmSpline>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="tibia">
<mass>3.7075</mass>
<mass_center> 0 -0.1867 0</mass_center>
<inertia_xx>0.0504</inertia_xx>
<inertia_yy>0.0051</inertia_yy>
<inertia_zz>0.0511</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<WeldJoint name="tibia_coord">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>tibia_wlkr</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.001731 0.002389 0.008452</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>1.69541186 -1.50002417 1.57079633</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects />
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
</WeldJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>tibia.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>fibula.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects>
<WrapEllipsoid name="GR_at_condyles">
<xyz_body_rotation> 0 0 -0.18326</xyz_body_rotation>
<translation> 0 0 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.036 0.0635 0.0533</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="SM_at_condyles">
<xyz_body_rotation> 0 0 -0.296706</xyz_body_rotation>
<translation> 0 0 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0352 0.0602 0.0489</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="ST_at_condyles">
<xyz_body_rotation> 0 0 -0.270526</xyz_body_rotation>
<translation> 0 0 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0425 0.069 0.0572</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="BFLH_at_gastroc">
<xyz_body_rotation> 0 0 0.270526</xyz_body_rotation>
<translation> -0.0619 -0.05 0.0007</translation>
<active>true</active>
<quadrant>y</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0335 0.02 0.0833</dimensions>
</WrapEllipsoid>
<WrapCylinder name="Gastroc_at_Shank">
<xyz_body_rotation> 2.96723 0.0289725 -1.47812</xyz_body_rotation>
<translation> -0.0074 -0.074 -0.0033</translation>
<active>true</active>
<quadrant>-y</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<radius>0.055</radius>
<length>0.1</length>
</WrapCylinder>
</objects>
<groups />
</WrapObjectSet>
</Body>
<Body name="shaft_axis">
<mass>0</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0</inertia_xx>
<inertia_yy>0</inertia_yy>
<inertia_zz>0</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<WeldJoint name="femoral_shaft">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>femur</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.01527 -0.03442 0.03475</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0.11170107 0 0.03665191</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects />
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
</WeldJoint>
</Joint>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects>
<WrapEllipsoid name="AB_at_femshaft">
<xyz_body_rotation> 0 0 0.139626</xyz_body_rotation>
<translation> 0.0268 -0.0843 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0165 0.07 0.021</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="AL_at_femshaft">
<xyz_body_rotation> 0 0 0.0174533</xyz_body_rotation>
<translation> 0.0386 -0.2064 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0201 0.1 0.018</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="AMprox_at_femshaft">
<xyz_body_rotation> 0 0 0.174533</xyz_body_rotation>
<translation> 0.0197 -0.0442 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0211 0.07 0.032</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="AMmid_at_femshaft">
<xyz_body_rotation> 0 0 0.0872665</xyz_body_rotation>
<translation> 0.0336 -0.1284 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0214 0.12 0.031</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="AMdist_at_femshaft">
<xyz_body_rotation> 0 0 0.139626</xyz_body_rotation>
<translation> 0.0376 -0.2293 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0218 0.2 0.0215</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="AMisch_at_condyles">
<xyz_body_rotation> 0 0 -0.471239</xyz_body_rotation>
<translation> -0.026 -0.344 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.05 0.24 0.0402</dimensions>
</WrapEllipsoid>
<WrapEllipsoid name="PECT_at_femshaft">
<xyz_body_rotation> 0 0 0.174533</xyz_body_rotation>
<translation> 0.021 -0.052 0</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<dimensions> 0.0166 0.05 0.0131</dimensions>
</WrapEllipsoid>
<WrapCylinder name="KnExt_at_fem">
<xyz_body_rotation> -0.172089 0.0570723 -0.92869</xyz_body_rotation>
<translation> 0.0053 -0.3701 0.0086</translation>
<active>true</active>
<quadrant>all</quadrant>
<VisibleObject>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>0</display_preference>
</VisibleObject>
<radius>0.025</radius>
<length>0.1</length>
</WrapCylinder>
</objects>
<groups />
</WrapObjectSet>
</Body>
<Body name="patella">
<mass>0</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0</inertia_xx>
<inertia_yy>0</inertia_yy>
<inertia_zz>0</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="patellofemoral">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>femur</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>0 0 0</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="patellofemoral_r3">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0.00113686</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-99999.9 99999.9</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>false</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
<Coordinate name="patellofemoral_tx">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>translational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0.04435</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-99999.9 99999.9</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>false</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
<Coordinate name="patellofemoral_ty">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>translational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>-0.418712</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-99999.9 99999.9</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>false</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>false</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>patellofemoral_r3</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>patellofemoral_tx</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>patellofemoral_ty</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>pat.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="talus">
<mass>0.1</mass>
<mass_center> 0 0 0</mass_center>
<inertia_xx>0.001</inertia_xx>
<inertia_yy>0.001</inertia_yy>
<inertia_zz>0.001</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="ankle">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>tibia</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.01 -0.4 0</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="ankle_angle">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>-1.08337021290423e-009</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.52359878 0.34906585</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>true</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>ankle_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>-0.10501404 -0.17402206 0.97912633</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0.97912633 -0 0.10501404</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>talus.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="calcn">
<mass>1.25</mass>
<mass_center> 0.1 0.03 0</mass_center>
<inertia_xx>0.0014</inertia_xx>
<inertia_yy>0.0039</inertia_yy>
<inertia_zz>0.0041</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="subtalar">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>talus</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>-0.04877 -0.04195 0.00792</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="subtalar_angle">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.34906585 0.34906585</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>true</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>subtalar_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0.78718002 0.60474702 -0.120949</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>-0.120949 0 -0.78718002</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>foot.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
<Body name="toes">
<mass>0.2166</mass>
<mass_center> 0.0346 0.006 -0.0175</mass_center>
<inertia_xx>0.0001</inertia_xx>
<inertia_yy>0.0002</inertia_yy>
<inertia_zz>0.001</inertia_zz>
<inertia_xy>0</inertia_xy>
<inertia_xz>0</inertia_xz>
<inertia_yz>0</inertia_yz>
<!--Joint that connects this body with the parent body.-->
<Joint>
<CustomJoint name="mtp">
<!--Name of the parent body to which this joint connects its owner body.-->
<parent_body>calcn</parent_body>
<!--Location of the joint in the parent body specified in the parent reference frame. Default is (0,0,0).-->
<location_in_parent>0.1788 -0.002 0.00108</location_in_parent>
<!--Orientation of the joint in the parent body specified in the parent reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. Default is (0,0,0).-->
<orientation_in_parent>0 0 0</orientation_in_parent>
<!--Location of the joint in the child body specified in the child reference frame. For SIMM models, this vector is always the zero vector (i.e., the body reference frame coincides with the joint). -->
<location>0 0 0</location>
<!--Orientation of the joint in the owing body specified in the owning body reference frame. Euler XYZ body-fixed rotation angles are used to express the orientation. -->
<orientation>0 0 0</orientation>
<!--Set holding the generalized coordinates (q's) that parmeterize this joint.-->
<CoordinateSet>
<objects>
<Coordinate name="mtp_angle">
<!--Coordinate can describe rotational, translational, or coupled motion. Defaults to rotational.-->
<motion_type>rotational</motion_type>
<!--The value of this coordinate before any value has been set. Rotational coordinate value is in radians and Translational in meters.-->
<default_value>0</default_value>
<!--The speed value of this coordinate before any value has been set. Rotational coordinate value is in rad/s and Translational in m/s.-->
<default_speed_value>0</default_speed_value>
<!--The minimum and maximum values that the coordinate can range between. Rotational coordinate range in radians and Translational in meters.-->
<range>-0.52359878 0.52359878</range>
<!--Flag indicating whether or not the values of the coordinates should be limited to the range, above.-->
<clamped>true</clamped>
<!--Flag indicating whether or not the values of the coordinates should be constrained to the current (e.g. default) value, above.-->
<locked>true</locked>
<!--If specified, the coordinate can be prescribed by a function of time. It can be any OpenSim Function with valid second order derivatives.-->
<prescribed_function />
<!--Flag indicating whether or not the values of the coordinates should be prescribed according to the function above. It is ignored if the no prescribed function is specified.-->
<prescribed>false</prescribed>
</Coordinate>
</objects>
<groups />
</CoordinateSet>
<!--Whether the joint transform defines parent->child or child->parent.-->
<reverse>false</reverse>
<!--Defines how the child body moves with respect to the parent as a function of the generalized coordinates.-->
<SpatialTransform>
<!--3 Axes for rotations are listed first.-->
<TransformAxis name="rotation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates>mtp_angle</coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0.58095419 0 -0.81393626</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<LinearFunction>
<coefficients> 1 0</coefficients>
</LinearFunction>
</function>
</TransformAxis>
<TransformAxis name="rotation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="rotation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>-0.81393626 0 -0.58095419</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<!--3 Axes for translations are listed next.-->
<TransformAxis name="translation1">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>1 0 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation2">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 1 0</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
<TransformAxis name="translation3">
<!--Names of the coordinates that serve as the independent variables of the transform function.-->
<coordinates></coordinates>
<!--Rotation or translation axis for the transform.-->
<axis>0 0 1</axis>
<!--Transform function of the generalized coordinates used to represent the amount of transformation along a specified axis.-->
<function>
<Constant>
<value>0</value>
</Constant>
</function>
</TransformAxis>
</SpatialTransform>
</CustomJoint>
</Joint>
<VisibleObject>
<!--Set of geometry files and associated attributes, allow .vtp, .stl, .obj-->
<GeometrySet>
<objects>
<DisplayGeometry>
<!--Name of geometry file .vtp, .stl, .obj-->
<geometry_file>bofoot.vtp</geometry_file>
<!--Color used to display the geometry when visible-->
<color> 1 1 1</color>
<!--Name of texture file .jpg, .bmp-->
<texture_file />
<!--in body transform specified as 3 rotations (rad) followed by 3 translations rX rY rZ tx ty tz-->
<transform> -0 0 -0 0 0 0</transform>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded-->
<display_preference>4</display_preference>
<!--Display opacity between 0.0 and 1.0-->
<opacity>1</opacity>
</DisplayGeometry>
</objects>
<groups />
</GeometrySet>
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
<WrapObjectSet>
<objects />
<groups />
</WrapObjectSet>
</Body>
</objects>
<groups />
</BodySet>
<!--Constraints in the model.-->
<ConstraintSet>
<objects>
<CoordinateCouplerConstraint name="patellofemoral_r3_con">
<!--Flag indicating whether the constraint is disabled or not. Disabled means that the constraint is not active in subsequent dynamics realization-->
<isDisabled>false</isDisabled>
<!--Constraint function of generalized coordinates (to be specified) used to evaluate the constraint errors and their derivatives, and must valid to at least 2nd order. Constraint function must evaluate to zero when coordinates satisfy constraint-->
<coupled_coordinates_function>
<SimmSpline name="f11">
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0.00113686 -0.00629212 -0.105582 -0.253683 -0.414245 -0.579047 -0.747244 -0.91799 -1.09044 -1.26379 -1.43763 -1.61186 -1.78634</y>
</SimmSpline>
</coupled_coordinates_function>
<!--List of names of the independent coordinates (restricted to 1 for now).-->
<independent_coordinate_names>knee_angle</independent_coordinate_names>
<!--Name of the dependent coordinate.-->
<dependent_coordinate_name>patellofemoral_r3</dependent_coordinate_name>
<!--Scale factor for the function.-->
<scale_factor>1</scale_factor>
</CoordinateCouplerConstraint>
<CoordinateCouplerConstraint name="patellofemoral_tx_con">
<!--Flag indicating whether the constraint is disabled or not. Disabled means that the constraint is not active in subsequent dynamics realization-->
<isDisabled>false</isDisabled>
<!--Constraint function of generalized coordinates (to be specified) used to evaluate the constraint errors and their derivatives, and must valid to at least 2nd order. Constraint function must evaluate to zero when coordinates satisfy constraint-->
<coupled_coordinates_function>
<SimmSpline name="f9">
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> 0.04435 0.040692 0.035581 0.029012 0.021473 0.013523 0.005483 -0.002412 -0.009959 -0.016903 -0.022926 -0.027739 -0.030815</y>
</SimmSpline>
</coupled_coordinates_function>
<!--List of names of the independent coordinates (restricted to 1 for now).-->
<independent_coordinate_names>knee_angle</independent_coordinate_names>
<!--Name of the dependent coordinate.-->
<dependent_coordinate_name>patellofemoral_tx</dependent_coordinate_name>
<!--Scale factor for the function.-->
<scale_factor>1</scale_factor>
</CoordinateCouplerConstraint>
<CoordinateCouplerConstraint name="patellofemoral_ty_con">
<!--Flag indicating whether the constraint is disabled or not. Disabled means that the constraint is not active in subsequent dynamics realization-->
<isDisabled>false</isDisabled>
<!--Constraint function of generalized coordinates (to be specified) used to evaluate the constraint errors and their derivatives, and must valid to at least 2nd order. Constraint function must evaluate to zero when coordinates satisfy constraint-->
<coupled_coordinates_function>
<SimmSpline name="f10">
<x> 0 0.174533 0.349066 0.523599 0.698132 0.872665 1.0472 1.22173 1.39626 1.5708 1.74533 1.91986 2.0944</x>
<y> -0.418712 -0.426965 -0.43422 -0.440152 -0.444617 -0.447495 -0.448724 -0.448337 -0.446353 -0.442826 -0.438035 -0.432448 -0.426632</y>
</SimmSpline>
</coupled_coordinates_function>
<!--List of names of the independent coordinates (restricted to 1 for now).-->
<independent_coordinate_names>knee_angle</independent_coordinate_names>
<!--Name of the dependent coordinate.-->
<dependent_coordinate_name>patellofemoral_ty</dependent_coordinate_name>
<!--Scale factor for the function.-->
<scale_factor>1</scale_factor>
</CoordinateCouplerConstraint>
</objects>
<groups />
</ConstraintSet>
<!--Forces in the model.-->
<ForceSet>
<objects>
<Schutte1993Muscle_Deprecated name="add_brev_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="addbrev-P1">
<location> -0.0191 -0.094 0.0154</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="addbrev-P2">
<location> -0.002 -0.118 0.0249</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>AB_at_femshaft</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>303.7</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1031</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.036</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.10646508</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="add_long_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="addlong-P1">
<location> -0.00758 -0.0889 0.01888</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="addlong-P2">
<location> 0.01126 -0.23937 0.01583</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>AL_at_femshaft</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>399.5</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1082</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.13</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.12356931</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="add_mag1_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="addmagMid-P1">
<location> -0.05266 -0.12075 0.02854</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="addmagMid-P2">
<location> 0.00242 -0.1624 0.02922</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>AMmid_at_femshaft</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>324.2</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1377</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.048</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.25673793</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="add_mag2_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="addmagDist-P1">
<location> -0.07404 -0.12767 0.03982</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="addmagDist-P2">
<location> 0.01125 -0.2625 0.0193</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>AMdist_at_femshaft</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>324.2</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1772</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.09</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.2412045</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="add_mag3_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="addmagIsch-P1">
<location> -0.08962 -0.12976 0.04171</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="addmagIsch-P2">
<location> 0.00481 -0.38797 -0.03273</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>AMisch_at_condyles</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>324.2</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1562</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.221</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.20734512</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="bifemlh_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="bflh-P1">
<location> -0.104 -0.1191 0.0586</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="bflh-P2">
<location> -0.0317 -0.0425 0.0333</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>BFLH_at_gastroc</wrap_object>
<method>midpoint</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>705.2</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0976</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.322</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.20210913</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="gem_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="gem-P1">
<location> -0.10357 -0.0764 0.06707</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="gem-P2">
<location> -0.0142 -0.0033 0.0443</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>109</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.024</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.039</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_max1_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmax1-P1">
<location> -0.1231 0.0345 0.0563</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax1-P2">
<location> -0.1257 -0.0242 0.0779</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax1-P3">
<location> -0.0444 -0.0326 0.0302</location>
<body>femur</body>
</PathPoint>
<PathPoint name="glmax1-P4">
<location> -0.0277 -0.0566 0.047</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>Gmax_at_pelvis</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>546.1</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1473</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.05</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.38292524</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_max2_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmax2-P1">
<location> -0.1317 0.0087 0.0462</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax2-P2">
<location> -0.1344 -0.0609 0.0813</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax2-P3">
<location> -0.045 -0.0584 0.0252</location>
<body>femur</body>
</PathPoint>
<PathPoint name="glmax2-P4">
<location> -0.0156 -0.1016 0.0419</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>Gmax_at_pelvis</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>780.5</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1569</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.0733</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.38292524</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_max3_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmax3-P1">
<location> -0.13 -0.0525 0.009</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax3-P2">
<location> -0.1273 -0.1263 0.0435</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmax3-P3">
<location> -0.0281 -0.1125 0.0094</location>
<body>femur</body>
</PathPoint>
<PathPoint name="glmax3-P4">
<location> -0.006 -0.1419 0.0411</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>Gmax_at_pelvis</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>526.1</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1665</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.0702</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.38292524</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_med1_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmed1-P1">
<location> -0.0445 0.0245 0.1172</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmed1-P2">
<location> -0.0218 -0.0117 0.0555</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>881.1</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0733</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.0565</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.3572689</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_med2_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmed2-P1">
<location> -0.085 0.0316 0.0675</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmed2-P2">
<location> -0.0258 -0.0058 0.0527</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>616.5</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0733</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.066</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.3572689</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_med3_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmed3-P1">
<location> -0.1152 -0.0073 0.0526</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmed3-P2">
<location> -0.0309 -0.0047 0.0518</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>702</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0733</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.046</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.3572689</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_min1_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmin1-P1">
<location> -0.0464 -0.0149 0.1042</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmin1-P2">
<location> -0.0072 -0.0104 0.056</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>180</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.068</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.016</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.17453293</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_min2_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmin2-P1">
<location> -0.0616 -0.0142 0.0971</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmin2-P2">
<location> -0.0096 -0.0104 0.056</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>190</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.056</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.026</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="glut_min3_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="glmin3-P1">
<location> -0.0789 -0.0155 0.0798</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="glmin3-P2">
<location> -0.0135 -0.0083 0.055</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>215</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.038</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.051</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.01745329</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="grac_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="grac-P1">
<location> -0.04736 -0.12932 0.02456</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="grac-P2">
<location> -0.01842 -0.04755 -0.02961</location>
<body>tibia</body>
</PathPoint>
<PathPoint name="grac-P3">
<location> 0.00178 -0.06962 -0.01573</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>GR_at_condyles</wrap_object>
<method>midpoint</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>137.3</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.2278</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.169</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.14241887</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="iliacus_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="iliacus-P1">
<location> -0.0605 0.0309 0.0843</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="iliacus-P2">
<location> -0.0135 -0.0557 0.0756</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="iliacus-P3">
<location> -0.0023 -0.0565 0.0139</location>
<body>femur</body>
</PathPoint>
<PathPoint name="iliacus-P4">
<location> -0.0122 -0.0636 0.0196</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>IL_at_brim</wrap_object>
<method>hybrid</method>
<range> 2 3</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>621.9</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1066</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.094</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.24940755</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="pect_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="pect-P1">
<location> -0.0232 -0.08325 0.04529</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="pect-P2">
<location> -0.00797 -0.08518 0.02403</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>PECT_at_femshaft</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>177</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.133</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.001</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="piri_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="piri-P1">
<location> -0.10181 -0.00653 0.01351</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="piri-P2">
<location> -0.10202 -0.03066 0.06092</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="piri-P3">
<location> -0.0148 -0.0036 0.0437</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>296</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.026</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.115</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.17453293</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="psoas_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="psoas-P1">
<location> -0.0606 0.0619 0.039</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="psoas-P2">
<location> -0.0205 -0.0654 0.0656</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="psoas-P3">
<location> -0.0132 -0.0467 0.0046</location>
<body>femur</body>
</PathPoint>
<PathPoint name="psoas-P4">
<location> -0.0235 -0.0524 0.0088</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>PS_at_brim</wrap_object>
<method>hybrid</method>
<range> 2 3</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>479.7</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.1169</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.097</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.1860521</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="quad_fem_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="quadfem-P1">
<location> -0.11192 -0.11473 0.05166</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="quadfem-P2">
<location> -0.03575 -0.03552 0.03612</location>
<body>femur</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>254</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.054</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.024</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="rect_fem_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="recfem-P1">
<location> -0.024 -0.0388 0.0933</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="recfem-P2">
<location> 0.01 0.049 0.0007</location>
<body>patella</body>
</PathPoint>
<PathPoint name="recfem-P3">
<location> 0.0121 0.0437 -0.001</location>
<body>patella</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>KnExt_at_fem</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>848.8</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.0759</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.346</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.24312436</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="sar_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="sart-P1">
<location> -0.0195 -0.0156 0.1056</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="sart-P2">
<location> -0.003 -0.3568 -0.0421</location>
<body>femur</body>
</PathPoint>
<PathPoint name="sart-P3">
<location> -0.0251 -0.0401 -0.0365</location>
<body>tibia</body>
</PathPoint>
<PathPoint name="sart-P4">
<location> -0.0159 -0.0599 -0.0264</location>
<body>tibia</body>
</PathPoint>
<PathPoint name="sart-P5">
<location> 0.0136 -0.081 -0.0026</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>113.5</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.403</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.11</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.02321288</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="semimem_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="semimem-P1">
<location> -0.0987 -0.114 0.0614</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="semimem-P2">
<location> -0.029 -0.0417 -0.0196</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>SM_at_condyles</wrap_object>
<method>hybrid</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>1162.7</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.069</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.378</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.26337018</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="semiten_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="semiten-P1">
<location> -0.1038 -0.1253 0.0515</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="semiten-P2">
<location> -0.0312 -0.0508 -0.0229</location>
<body>tibia</body>
</PathPoint>
<PathPoint name="semiten-P3">
<location> 0.0019 -0.0773 -0.0117</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects>
<PathWrap>
<wrap_object>ST_at_condyles</wrap_object>
<method>midpoint</method>
<range> -1 -1</range>
</PathWrap>
</objects>
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>301.9</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.193</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.245</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.22444934</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
<Schutte1993Muscle_Deprecated name="tfl_r">
<!--The set of points defining the path of the muscle.-->
<GeometryPath>
<!--The set of points defining the path-->
<PathPointSet>
<objects>
<PathPoint name="tfl-P1">
<location> -0.0311 0.0214 0.1241</location>
<body>pelvis</body>
</PathPoint>
<PathPoint name="tfl-P2">
<location> 0.0294 -0.0995 0.0597</location>
<body>femur</body>
</PathPoint>
<PathPoint name="tfl-P3">
<location> 0.0107 -0.405 0.0324</location>
<body>femur</body>
</PathPoint>
<PathPoint name="tfl-P4">
<location> 0.0108 -0.041 0.0346</location>
<body>tibia</body>
</PathPoint>
</objects>
<groups />
</PathPointSet>
<!--The wrap objecs that are associated with this path-->
<PathWrapSet>
<objects />
<groups />
</PathWrapSet>
<!--Used to display the path in the 3D window-->
<VisibleObject name="display">
<!--Three scale factors for display purposes: scaleX scaleY scaleZ-->
<scale_factors> 1 1 1</scale_factors>
<!--Whether to show a coordinate frame-->
<show_axes>false</show_axes>
<!--Display Pref. 0:Hide 1:Wire 3:Flat 4:Shaded Can be overriden for individual geometries-->
<display_preference>4</display_preference>
</VisibleObject>
</GeometryPath>
<!--Maximum isometric force that the fibers can generate-->
<max_isometric_force>155</max_isometric_force>
<!--Optimal length of the muscle fibers-->
<optimal_fiber_length>0.095</optimal_fiber_length>
<!--Resting length of the tendon-->
<tendon_slack_length>0.45</tendon_slack_length>
<!--Angle between tendon and fibers at optimal fiber length expressed in radians-->
<pennation_angle_at_optimal>0.05235988</pennation_angle_at_optimal>
<!--Maximum contraction velocity of the fibers, in optimal fiberlengths/second-->
<max_contraction_velocity>10</max_contraction_velocity>
<!--Scale factor for normalizing time-->
<time_scale>0.1</time_scale>
<!--Parameter used in time constant of ramping up of muscle force-->
<activation1>0</activation1>
<!--Parameter used in time constant of ramping up and ramping down of muscle force-->
<activation2>0</activation2>
<!--Function representing force-length behavior of tendon-->
</Schutte1993Muscle_Deprecated>
</objects>
<groups>
<ObjectGroup name="hip_add">
<members />
</ObjectGroup>
<ObjectGroup name="hip_flex">
<members />
</ObjectGroup>
<ObjectGroup name="hip_ext">
<members />
</ObjectGroup>
<ObjectGroup name="knee_flex">
<members />
</ObjectGroup>
<ObjectGroup name="ankle_df">
<members />
</ObjectGroup>
<ObjectGroup name="everter">
<members />
</ObjectGroup>
<ObjectGroup name="inverter">
<members />
</ObjectGroup>
<ObjectGroup name="ankle_pf">
<members />
</ObjectGroup>
<ObjectGroup name="hip_exrot">
<members />
</ObjectGroup>
<ObjectGroup name="hip_abd">
<members />
</ObjectGroup>
<ObjectGroup name="hip_inrot">
<members />
</ObjectGroup>
<ObjectGroup name="knee_ext">
<members />
</ObjectGroup>
</groups>
</ForceSet>
<!--Markers in the model.-->
<MarkerSet>
<objects />
<groups />
</MarkerSet>
<!--ContactGeometries in the model.-->
<ContactGeometrySet>
<objects />
<groups />
</ContactGeometrySet>
</Model>
</OpenSimDocument>