[38391a]: / mura.py

Download this file

193 lines (160 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import absolute_import, division, print_function
import re
import numpy as np
import pandas as pd
from sklearn.metrics import (accuracy_score, cohen_kappa_score, f1_score, precision_score, recall_score)
pd.set_option('display.max_rows', 20)
pd.set_option('precision', 4)
np.set_printoptions(precision=4)
class Mura(object):
"""`MURA <https://stanfordmlgroup.github.io/projects/mura/>`_ Dataset :
Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs.
"""
url = "https://cs.stanford.edu/group/mlgroup/mura-v1.0.zip"
filename = "mura-v1.0.zip"
md5_checksum = '4c36feddb7f5698c8bf291b912c438b1'
_patient_re = re.compile(r'patient(\d+)')
_study_re = re.compile(r'study(\d+)')
_image_re = re.compile(r'image(\d+)')
_study_type_re = re.compile(r'_(\w+)_patient')
def __init__(self, image_file_names, y_true, y_pred1=None, y_pred2=None, y_pred3=None, y_pred4=None, y_pred5=None, output_path=None):
self.imgs = image_file_names
df_img = pd.Series(np.array(image_file_names), name='img')
self.y_true = y_true
df_true = pd.Series(np.array(y_true), name='y_true')
self.y_pred1 = y_pred1
self.y_pred2 = y_pred2
self.y_pred3 = y_pred3
self.y_pred4 = y_pred4
self.y_pred5 = y_pred5
self.output_path = output_path
# number of unique classes
self.patient = []
self.study = []
self.study_type = []
self.image_num = []
self.encounter = []
self.valid =[]
for img in image_file_names:
self.patient.append(self._parse_patient(img))
self.study.append(self._parse_study(img))
self.image_num.append(self._parse_image(img))
self.study_type.append(self._parse_study_type(img))
self.valid.append(self._parse_valid(img))
self.encounter.append("MURA-v1.1/{}/XR_{}/patient{}/study{}_{}".format(
self._parse_valid(img),
self._parse_study_type(img),
self._parse_patient(img),
self._parse_study(img),
self._parse_normal(img)))
self.classes = np.unique(self.y_true)
df_patient = pd.Series(np.array(self.patient), name='patient')
df_study = pd.Series(np.array(self.study), name='study')
df_image_num = pd.Series(np.array(self.image_num), name='image_num')
df_study_type = pd.Series(np.array(self.study_type), name='study_type')
df_encounter = pd.Series(np.array(self.encounter), name='encounter')
self.data = pd.concat(
[
df_img,
df_encounter,
df_true,
df_patient,
# df_patient,
df_study,
df_image_num,
df_study_type,
], axis=1)
# print(self.data)
if self.y_pred1 is not None:
self.y_pred1_probability = self.y_pred1.flatten()
self.y_pred1 = self.y_pred1_probability.round().astype(int)
df_y_pred1 = pd.Series(self.y_pred1, name='y_pred1')
df_y_pred1_probability = pd.Series(self.y_pred1_probability, name='y_pred1_probs')
self.data = pd.concat((self.data, df_y_pred1, df_y_pred1_probability), axis=1)
if self.y_pred2 is not None:
self.y_pred2_probability = self.y_pred2.flatten()
self.y_pred2 = self.y_pred2_probability.round().astype(int)
df_y_pred2 = pd.Series(self.y_pred2, name='y_pred2')
df_y_pred2_probability = pd.Series(self.y_pred2_probability, name='y_pred2_probs')
self.data = pd.concat((self.data, df_y_pred2, df_y_pred2_probability), axis=1)
if self.y_pred3 is not None:
self.y_pred3_probability = self.y_pred3.flatten()
self.y_pred3 = self.y_pred3_probability.round().astype(int)
df_y_pred3 = pd.Series(self.y_pred3, name='y_pred3')
df_y_pred3_probability = pd.Series(self.y_pred3_probability, name='y_pred3_probs')
self.data = pd.concat((self.data, df_y_pred3, df_y_pred3_probability), axis=1)
if self.y_pred4 is not None:
self.y_pred4_probability = self.y_pred4.flatten()
self.y_pred4 = self.y_pred4_probability.round().astype(int)
df_y_pred4 = pd.Series(self.y_pred4, name='y_pred4')
df_y_pred4_probability = pd.Series(self.y_pred4_probability, name='y_pred4_probs')
self.data = pd.concat((self.data, df_y_pred3, df_y_pred4_probability), axis=1)
if self.y_pred5 is not None:
self.y_pred5_probability = self.y_pred5.flatten()
self.y_pred5 = self.y_pred5_probability.round().astype(int)
df_y_pred5 = pd.Series(self.y_pred5, name='y_pred5')
df_y_pred5_probability = pd.Series(self.y_pred5_probability, name='y_pred5_probs')
self.data = pd.concat((self.data, df_y_pred5, df_y_pred5_probability), axis=1)
def __len__(self):
return len(self.imgs)
def _parse_normal(self, img_filename):
return "positive" if ("abnormal" in img_filename ) else "negative"
def _parse_valid(self, img_filename):
return "valid" if ("valid" in img_filename ) else "test"
def _parse_patient(self, img_filename):
return int(self._patient_re.search(img_filename).group(1))
def _parse_study(self, img_filename):
return int(self._study_re.search(img_filename).group(1))
def _parse_image(self, img_filename):
return int(self._image_re.search(img_filename).group(1))
def _parse_study_type(self, img_filename):
return self._study_type_re.search(img_filename).group(1)
def metrics(self):
return "per image metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format(
accuracy_score(self.y_true, self.y_pred2),
f1_score(self.y_true, self.y_pred2),
precision_score(self.y_true, self.y_pred2),
recall_score(self.y_true, self.y_pred2),
cohen_kappa_score(self.y_true, self.y_pred2), )
def metrics_by_encounter(self):
y_pred1 = self.data.groupby(['encounter'])['y_pred1_probs'].mean()
y_pred2 = self.data.groupby(['encounter'])['y_pred2_probs'].mean()
y_pred3 = self.data.groupby(['encounter'])['y_pred3_probs'].mean()
y_pred4 = self.data.groupby(['encounter'])['y_pred4_probs'].mean()
y_pred5 = self.data.groupby(['encounter'])['y_pred5_probs'].mean()
week_group = (list( self.data.groupby(['encounter']).groups.keys()))
y_pred = ((y_pred1 + y_pred2 + y_pred3 + y_pred4 + y_pred5)/5).round()
y_pred_ = (y_pred + 1) % 2
#y_pred = y_pred.round()
df_pred = pd.Series(np.array(y_pred_, np.int32), index=week_group)
df_pred.to_csv(self.output_path)
self.data.to_csv("data.csv", mode="a", header=True)
# print(df_pred)
#df_filename = pd.Series(np.array(week_group))
# self.group_data = pd.concat([df_pred])
# self.group_data.to_csv(self.output_path)
y_true = self.data.groupby(['encounter'])['y_true'].mean().round()
return "per encounter metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format(
accuracy_score(y_true, y_pred),
f1_score(y_true, y_pred),
precision_score(y_true, y_pred),
recall_score(y_true, y_pred),
cohen_kappa_score(y_true, y_pred), )
def metrics_by_study_type(self):
y_pred1 = self.data.groupby(['patient'])['y_pred1_probs'].mean()
y_pred2 = self.data.groupby(['patient'])['y_pred2_probs'].mean()
y_pred3 = self.data.groupby(['patient'])['y_pred3_probs'].mean()
y_pred4 = self.data.groupby(['patient'])['y_pred4_probs'].mean()
y_pred5 = self.data.groupby(['patient'])['y_pred5_probs'].mean()
y_pred = ((y_pred1 + y_pred5 + y_pred3 + y_pred3 + y_pred5)/5).round()
# y_pred = y_pred1
y_true = self.data.groupby(['patient'])['y_true'].mean().round()
self.data.to_csv("data.csv",mode="a",header=True)
self.group_data = pd.concat([self.data, y_pred, y_true,], axis=1)
self.group_data.to_csv("group_data.csv", mode="a", header=True)
return "per study_type metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format(
accuracy_score(y_true, y_pred),
f1_score(y_true, y_pred),
precision_score(y_true, y_pred),
recall_score(y_true, y_pred),
cohen_kappa_score(y_true, y_pred), )