[38391a]: / image.py

Download this file

1847 lines (1624 with data), 76.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
"""Utilities for real-time data augmentation on image data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import re
from scipy import linalg
import scipy.ndimage as ndi
from six.moves import range
import os
import threading
import warnings
import multiprocessing.pool
import cv2
from functools import partial
from skimage import data, img_as_float
from skimage import exposure
from . import get_keras_submodule
backend = get_keras_submodule('backend')
keras_utils = get_keras_submodule('utils')
try:
from PIL import ImageEnhance
from PIL import Image as pil_image
except ImportError:
pil_image = None
if pil_image is not None:
_PIL_INTERPOLATION_METHODS = {
'nearest': pil_image.NEAREST,
'bilinear': pil_image.BILINEAR,
'bicubic': pil_image.BICUBIC,
'antialias' : pil_image.ANTIALIAS,
}
# These methods were only introduced in version 3.4.0 (2016).
if hasattr(pil_image, 'HAMMING'):
_PIL_INTERPOLATION_METHODS['hamming'] = pil_image.HAMMING
if hasattr(pil_image, 'BOX'):
_PIL_INTERPOLATION_METHODS['box'] = pil_image.BOX
# This method is new in version 1.1.3 (2013).
if hasattr(pil_image, 'LANCZOS'):
_PIL_INTERPOLATION_METHODS['lanczos'] = pil_image.LANCZOS
def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0.):
"""Performs a random rotation of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
rg: Rotation range, in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Rotated Numpy image tensor.
"""
theta = np.random.uniform(-rg, rg)
x = apply_affine_transform(x, theta=theta, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval)
return x
def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0.):
"""Performs a random spatial shift of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
wrg: Width shift range, as a float fraction of the width.
hrg: Height shift range, as a float fraction of the height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Shifted Numpy image tensor.
"""
h, w = x.shape[row_axis], x.shape[col_axis]
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
x = apply_affine_transform(x, tx=tx, ty=ty, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval)
return x
def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0.):
"""Performs a random spatial shear of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
intensity: Transformation intensity in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Sheared Numpy image tensor.
"""
shear = np.random.uniform(-intensity, intensity)
x = apply_affine_transform(x, shear=shear, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval)
return x
def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0,
fill_mode='nearest', cval=0.):
"""Performs a random spatial zoom of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
zoom_range: Tuple of floats; zoom range for width and height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Zoomed Numpy image tensor.
# Raises
ValueError: if `zoom_range` isn't a tuple.
"""
if len(zoom_range) != 2:
raise ValueError('`zoom_range` should be a tuple or list of two'
' floats. Received: ', zoom_range)
if zoom_range[0] == 1 and zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
x = apply_affine_transform(x, zx=zx, zy=zy, channel_axis=channel_axis,
fill_mode=fill_mode, cval=cval)
return x
def apply_channel_shift(x, intensity, channel_axis=0):
"""Performs a channel shift.
# Arguments
x: Input tensor. Must be 3D.
intensity: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
"""
x = np.rollaxis(x, channel_axis, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [
np.clip(x_channel + intensity,
min_x,
max_x)
for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
def random_channel_shift(x, intensity_range, channel_axis=0):
"""Performs a random channel shift.
# Arguments
x: Input tensor. Must be 3D.
intensity_range: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
"""
intensity = np.random.uniform(-intensity_range, intensity_range)
return apply_channel_shift(x, intensity, channel_axis=channel_axis)
def apply_brightness_shift(x, brightness):
"""Performs a brightness shift.
# Arguments
x: Input tensor. Must be 3D.
brightness: Float. The new brightness value.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
# Raises
ValueError if `brightness_range` isn't a tuple.
"""
x = array_to_img(x)
x = imgenhancer_Brightness = ImageEnhance.Brightness(x)
x = imgenhancer_Brightness.enhance(brightness)
x = img_to_array(x)
return x
def random_brightness(x, brightness_range):
"""Performs a random brightness shift.
# Arguments
x: Input tensor. Must be 3D.
brightness_range: Tuple of floats; brightness range.
channel_axis: Index of axis for channels in the input tensor.
# Returns
Numpy image tensor.
# Raises
ValueError if `brightness_range` isn't a tuple.
"""
if len(brightness_range) != 2:
raise ValueError(
'`brightness_range should be tuple or list of two floats. '
'Received: %s' % brightness_range)
u = np.random.uniform(brightness_range[0], brightness_range[1])
return apply_brightness_shift(x, u)
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def apply_affine_transform(x, theta=0, tx=0, ty=0, shear=0, zx=1, zy=1,
row_axis=0, col_axis=1, channel_axis=2,
fill_mode='nearest', cval=0.):
"""Applies an affine transformation specified by the parameters given.
# Arguments
x: 2D numpy array, single image.
theta: Rotation angle in degrees.
tx: Width shift.
ty: Heigh shift.
shear: Shear angle in degrees.
zx: Zoom in x direction.
zy: Zoom in y direction
row_axis: Index of axis for rows in the input image.
col_axis: Index of axis for columns in the input image.
channel_axis: Index of axis for channels in the input image.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
The transformed version of the input.
"""
transform_matrix = None
if theta != 0:
theta = np.deg2rad(theta)
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = shift_matrix
else:
transform_matrix = np.dot(transform_matrix, shift_matrix)
if shear != 0:
shear = np.deg2rad(shear)
shear_matrix = np.array([[1, -np.sin(shear), 0],
[0, np.cos(shear), 0],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = shear_matrix
else:
transform_matrix = np.dot(transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
if transform_matrix is None:
transform_matrix = zoom_matrix
else:
transform_matrix = np.dot(transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = transform_matrix_offset_center(
transform_matrix, h, w)
x = np.rollaxis(x, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=1,
mode=fill_mode,
cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
def rgb2gray(rgb):
r,g,b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989* r + 0.5870*g + 0.1140*b
return gray
def flip_axis(x, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
def array_to_img(x, data_format=None, scale=True):
"""Converts a 3D Numpy array to a PIL Image instance.
# Arguments
x: Input Numpy array.
data_format: Image data format.
either "channels_first" or "channels_last".
scale: Whether to rescale image values
to be within `[0, 255]`.
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if invalid `x` or `data_format` is passed.
"""
if pil_image is None:
raise ImportError('Could not import PIL.Image. '
'The use of `array_to_img` requires PIL.')
x = np.asarray(x, dtype=backend.floatx())
if x.ndim != 3:
raise ValueError('Expected image array to have rank 3 (single image). '
'Got array with shape:', x.shape)
if data_format is None:
data_format = backend.image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Invalid data_format:', data_format)
# Original Numpy array x has format (height, width, channel)
# or (channel, height, width)
# but target PIL image has format (width, height, channel)
if data_format == 'channels_first':
x = x.transpose(1, 2, 0)
if scale:
x = x + max(-np.min(x), 0)
x_max = np.max(x)
if x_max != 0:
x /= x_max
x *= 255
if x.shape[2] == 3:
# RGB
return pil_image.fromarray(x.astype('uint8'), 'RGB')
elif x.shape[2] == 1:
# grayscale
return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L')
else:
raise ValueError('Unsupported channel number: ', x.shape[2])
def img_to_array(img, data_format=None):
"""Converts a PIL Image instance to a Numpy array.
# Arguments
img: PIL Image instance.
data_format: Image data format,
either "channels_first" or "channels_last".
# Returns
A 3D Numpy array.
# Raises
ValueError: if invalid `img` or `data_format` is passed.
"""
if data_format is None:
data_format = backend.image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ', data_format)
# Numpy array x has format (height, width, channel)
# or (channel, height, width)
# but original PIL image has format (width, height, channel)
x = np.asarray(img, dtype=backend.floatx())
if len(x.shape) == 3:
if data_format == 'channels_first':
x = x.transpose(2, 0, 1)
elif len(x.shape) == 2:
if data_format == 'channels_first':
x = x.reshape((1, x.shape[0], x.shape[1]))
else:
x = x.reshape((x.shape[0], x.shape[1], 1))
else:
raise ValueError('Unsupported image shape: ', x.shape)
return x
def save_img(path,
x,
data_format=None,
file_format=None,
scale=True, **kwargs):
"""Saves an image stored as a Numpy array to a path or file object.
# Arguments
path: Path or file object.
x: Numpy array.
data_format: Image data format,
either "channels_first" or "channels_last".
file_format: Optional file format override. If omitted, the
format to use is determined from the filename extension.
If a file object was used instead of a filename, this
parameter should always be used.
scale: Whether to rescale image values to be within `[0, 255]`.
**kwargs: Additional keyword arguments passed to `PIL.Image.save()`.
"""
img = array_to_img(x, data_format=data_format, scale=scale)
img.save(path, format=file_format, **kwargs)
def load_img(path, grayscale=False, target_size=None,
interpolation='nearest'): #nearest
"""Loads an image into PIL format.
# Arguments
path: Path to image file.
grayscale: Boolean, whether to load the image as grayscale.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are "nearest", "bilinear", and "bicubic".
If PIL version 1.1.3 or newer is installed, "lanczos" is also
supported. If PIL version 3.4.0 or newer is installed, "box" and
"hamming" are also supported. By default, "nearest" is used.
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
if pil_image is None:
raise ImportError('Could not import PIL.Image. '
'The use of `array_to_img` requires PIL.')
img = pil_image.open(path)
if grayscale:
if img.mode != 'L':
img = img.convert('L')
else:
if img.mode != 'RGB':
img = img.convert('RGB')
if target_size is not None:
width_height_tuple = (target_size[1], target_size[0])
if img.size != width_height_tuple:
if interpolation not in _PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(
interpolation,
", ".join(_PIL_INTERPOLATION_METHODS.keys())))
resample = _PIL_INTERPOLATION_METHODS[interpolation]
img = img.resize(width_height_tuple, resample)
return img
def list_pictures(directory, ext='jpg|jpeg|bmp|png|ppm'):
return [os.path.join(root, f)
for root, _, files in os.walk(directory) for f in files
if re.match(r'([\w]+\.(?:' + ext + '))', f.lower())]
class ImageDataGenerator(object):
"""Generate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).
# Arguments
featurewise_center: Boolean.
Set input mean to 0 over the dataset, feature-wise.
samplewise_center: Boolean. Set each sample mean to 0.
featurewise_std_normalization: Boolean.
Divide inputs by std of the dataset, feature-wise.
samplewise_std_normalization: Boolean. Divide each input by its std.
zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.
zca_whitening: Boolean. Apply ZCA whitening.
rotation_range: Int. Degree range for random rotations.
width_shift_range: Float, 1-D array-like or int
- float: fraction of total width, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
`(-width_shift_range, +width_shift_range)`
- With `width_shift_range=2` possible values
are integers `[-1, 0, +1]`,
same as with `width_shift_range=[-1, 0, +1]`,
while with `width_shift_range=1.0` possible values are floats
in the interval [-1.0, +1.0).
height_shift_range: Float, 1-D array-like or int
- float: fraction of total height, if < 1, or pixels if >= 1.
- 1-D array-like: random elements from the array.
- int: integer number of pixels from interval
`(-height_shift_range, +height_shift_range)`
- With `height_shift_range=2` possible values
are integers `[-1, 0, +1]`,
same as with `height_shift_range=[-1, 0, +1]`,
while with `height_shift_range=1.0` possible values are floats
in the interval [-1.0, +1.0).
shear_range: Float. Shear Intensity
(Shear angle in counter-clockwise direction in degrees)
zoom_range: Float or [lower, upper]. Range for random zoom.
If a float, `[lower, upper] = [1-zoom_range, 1+zoom_range]`.
channel_shift_range: Float. Range for random channel shifts.
fill_mode: One of {"constant", "nearest", "reflect" or "wrap"}.
Default is 'nearest'.
Points outside the boundaries of the input are filled
according to the given mode:
- 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)
- 'nearest': aaaaaaaa|abcd|dddddddd
- 'reflect': abcddcba|abcd|dcbaabcd
- 'wrap': abcdabcd|abcd|abcdabcd
cval: Float or Int.
Value used for points outside the boundaries
when `fill_mode = "constant"`.
horizontal_flip: Boolean. Randomly flip inputs horizontally.
vertical_flip: Boolean. Randomly flip inputs vertically.
rescale: rescaling factor. Defaults to None.
If None or 0, no rescaling is applied,
otherwise we multiply the data by the value provided
(before applying any other transformation).
preprocessing_function: function that will be implied on each input.
The function will run after the image is resized and augmented.
The function should take one argument:
one image (Numpy tensor with rank 3),
and should output a Numpy tensor with the same shape.
data_format: Image data format,
either "channels_first" or "channels_last".
"channels_last" mode means that the images should have shape
`(samples, height, width, channels)`,
"channels_first" mode means that the images should have shape
`(samples, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
validation_split: Float. Fraction of images reserved for validation
(strictly between 0 and 1).
# Examples
Example of using `.flow(x, y)`:
```python
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=epochs)
# here's a more "manual" example
for e in range(epochs):
print('Epoch', e)
batches = 0
for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
model.fit(x_batch, y_batch)
batches += 1
if batches >= len(x_train) / 32:
# we need to break the loop by hand because
# the generator loops indefinitely
break
```
Example of using `.flow_from_directory(directory)`:
```python
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
```
Example of transforming images and masks together.
```python
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90.,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
```
"""
def __init__(self,
contrast_stretching=False,
histogram_equalization=False,
adaptive_equalization=False,
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-6,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
brightness_range=None,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0):
if data_format is None:
data_format = backend.image_data_format()
self.contrast_stretching = contrast_stretching
self.histogram_equalization = histogram_equalization
self.adaptive_equalization = adaptive_equalization
self.featurewise_center = featurewise_center
self.samplewise_center = samplewise_center
self.featurewise_std_normalization = featurewise_std_normalization
self.samplewise_std_normalization = samplewise_std_normalization
self.zca_whitening = zca_whitening
self.zca_epsilon = zca_epsilon
self.rotation_range = rotation_range
self.width_shift_range = width_shift_range
self.height_shift_range = height_shift_range
self.brightness_range = brightness_range
self.shear_range = shear_range
self.zoom_range = zoom_range
self.channel_shift_range = channel_shift_range
self.fill_mode = fill_mode
self.cval = cval
self.horizontal_flip = horizontal_flip
self.vertical_flip = vertical_flip
self.rescale = rescale
self.preprocessing_function = preprocessing_function
if data_format not in {'channels_last', 'channels_first'}:
raise ValueError(
'`data_format` should be `"channels_last"` '
'(channel after row and column) or '
'`"channels_first"` (channel before row and column). '
'Received: %s' % data_format)
self.data_format = data_format
if data_format == 'channels_first':
self.channel_axis = 1
self.row_axis = 2
self.col_axis = 3
if data_format == 'channels_last':
self.channel_axis = 3
self.row_axis = 1
self.col_axis = 2
if validation_split and not 0 < validation_split < 1:
raise ValueError(
'`validation_split` must be strictly between 0 and 1. '
' Received: %s' % validation_split)
self._validation_split = validation_split
self.mean = None
self.std = None
self.principal_components = None
if np.isscalar(zoom_range):
self.zoom_range = [1 - zoom_range, 1 + zoom_range]
elif len(zoom_range) == 2:
self.zoom_range = [zoom_range[0], zoom_range[1]]
else:
raise ValueError('`zoom_range` should be a float or '
'a tuple or list of two floats. '
'Received: %s' % zoom_range)
if zca_whitening:
if not featurewise_center:
self.featurewise_center = True
warnings.warn('This ImageDataGenerator specifies '
'`zca_whitening`, which overrides '
'setting of `featurewise_center`.')
if featurewise_std_normalization:
self.featurewise_std_normalization = False
warnings.warn('This ImageDataGenerator specifies '
'`zca_whitening` '
'which overrides setting of'
'`featurewise_std_normalization`.')
if featurewise_std_normalization:
if not featurewise_center:
self.featurewise_center = True
warnings.warn('This ImageDataGenerator specifies '
'`featurewise_std_normalization`, '
'which overrides setting of '
'`featurewise_center`.')
if samplewise_std_normalization:
if not samplewise_center:
self.samplewise_center = True
warnings.warn('This ImageDataGenerator specifies '
'`samplewise_std_normalization`, '
'which overrides setting of '
'`samplewise_center`.')
def flow(self, x,
y=None, batch_size=32, shuffle=True,
sample_weight=None, seed=None,
save_to_dir=None, save_prefix='', save_format='png', subset=None):
"""Takes data & label arrays, generates batches of augmented data.
# Arguments
x: Input data. Numpy array of rank 4 or a tuple.
If tuple, the first element
should contain the images and the second element
another numpy array or a list of numpy arrays
that gets passed to the output
without any modifications.
Can be used to feed the model miscellaneous data
along with the images.
In case of grayscale data, the channels axis of the image array
should have value 1, and in case
of RGB data, it should have value 3.
y: Labels.
batch_size: Int (default: 32).
shuffle: Boolean (default: True).
sample_weight: Sample weights.
seed: Int (default: None).
save_to_dir: None or str (default: None).
This allows you to optionally specify a directory
to which to save the augmented pictures being generated
(useful for visualizing what you are doing).
save_prefix: Str (default: `''`).
Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
save_format: one of "png", "jpeg"
(only relevant if `save_to_dir` is set). Default: "png".
subset: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
# Returns
An `Iterator` yielding tuples of `(x, y)`
where `x` is a numpy array of image data
(in the case of a single image input) or a list
of numpy arrays (in the case with
additional inputs) and `y` is a numpy array
of corresponding labels. If 'sample_weight' is not None,
the yielded tuples are of the form `(x, y, sample_weight)`.
If `y` is None, only the numpy array `x` is returned.
"""
return NumpyArrayIterator(
x, y, self,
batch_size=batch_size,
shuffle=shuffle,
sample_weight=sample_weight,
seed=seed,
data_format=self.data_format,
save_to_dir=save_to_dir,
save_prefix=save_prefix,
save_format=save_format,
subset=subset)
def flow_from_directory(self, directory,
target_size=(256, 256), color_mode='rgb',
classes=None, class_mode='categorical',
batch_size=32, shuffle=True, seed=None,
save_to_dir=None,
save_prefix='',
save_format='png',
follow_links=False,
subset=None,
interpolation='nearest'):
"""Takes the path to a directory & generates batches of augmented data.
# Arguments
directory: Path to the target directory.
It should contain one subdirectory per class.
Any PNG, JPG, BMP, PPM or TIF images
inside each of the subdirectories directory tree
will be included in the generator.
See [this script](
https://gist.github.com/fchollet/
0830affa1f7f19fd47b06d4cf89ed44d)
for more details.
target_size: Tuple of integers `(height, width)`,
default: `(256, 256)`.
The dimensions to which all images found will be resized.
color_mode: One of "grayscale", "rbg". Default: "rgb".
Whether the images will be converted to
have 1 or 3 color channels.
classes: Optional list of class subdirectories
(e.g. `['dogs', 'cats']`). Default: None.
If not provided, the list of classes will be automatically
inferred from the subdirectory names/structure
under `directory`, where each subdirectory will
be treated as a different class
(and the order of the classes, which will map to the label
indices, will be alphanumeric).
The dictionary containing the mapping from class names to class
indices can be obtained via the attribute `class_indices`.
class_mode: One of "categorical", "binary", "sparse",
"input", or None. Default: "categorical".
Determines the type of label arrays that are returned:
- "categorical" will be 2D one-hot encoded labels,
- "binary" will be 1D binary labels,
"sparse" will be 1D integer labels,
- "input" will be images identical
to input images (mainly used to work with autoencoders).
- If None, no labels are returned
(the generator will only yield batches of image data,
which is useful to use with `model.predict_generator()`,
`model.evaluate_generator()`, etc.).
Please note that in case of class_mode None,
the data still needs to reside in a subdirectory
of `directory` for it to work correctly.
batch_size: Size of the batches of data (default: 32).
shuffle: Whether to shuffle the data (default: True)
seed: Optional random seed for shuffling and transformations.
save_to_dir: None or str (default: None).
This allows you to optionally specify
a directory to which to save
the augmented pictures being generated
(useful for visualizing what you are doing).
save_prefix: Str. Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
save_format: One of "png", "jpeg"
(only relevant if `save_to_dir` is set). Default: "png".
follow_links: Whether to follow symlinks inside
class subdirectories (default: False).
subset: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
interpolation: Interpolation method used to
resample the image if the
target size is different from that of the loaded image.
Supported methods are `"nearest"`, `"bilinear"`,
and `"bicubic"`.
If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
supported. If PIL version 3.4.0 or newer is installed,
`"box"` and `"hamming"` are also supported.
By default, `"nearest"` is used.
# Returns
A `DirectoryIterator` yielding tuples of `(x, y)`
where `x` is a numpy array containing a batch
of images with shape `(batch_size, *target_size, channels)`
and `y` is a numpy array of corresponding labels.
"""
return DirectoryIterator(
directory, self,
target_size=target_size, color_mode=color_mode,
classes=classes, class_mode=class_mode,
data_format=self.data_format,
batch_size=batch_size, shuffle=shuffle, seed=seed,
save_to_dir=save_to_dir,
save_prefix=save_prefix,
save_format=save_format,
follow_links=follow_links,
subset=subset,
interpolation=interpolation)
def standardize(self, x):
"""Applies the normalization configuration to a batch of inputs.
# Arguments
x: Batch of inputs to be normalized.
# Returns
The inputs, normalized.
"""
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
if self.rescale:
x *= self.rescale
if self.preprocessing_function:
x = self.preprocessing_function(x)
# if self.rescale:
# x *= self.rescale
if self.samplewise_center:
x -= np.mean(x, keepdims=True)
if self.samplewise_std_normalization:
x /= (np.std(x, keepdims=True) + backend.epsilon())
#x = (x - imagenet_mean) / imagenet_std
if self.featurewise_center:
if self.mean is not None:
x -= self.mean
else:
warnings.warn('This ImageDataGenerator specifies '
'`featurewise_center`, but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling `.fit(numpy_data)`.')
if self.featurewise_std_normalization:
if self.std is not None:
x /= (self.std + backend.epsilon())
else:
warnings.warn('This ImageDataGenerator specifies '
'`featurewise_std_normalization`, '
'but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling `.fit(numpy_data)`.')
if self.zca_whitening:
if self.principal_components is not None:
flatx = np.reshape(x, (-1, np.prod(x.shape[-3:])))
whitex = np.dot(flatx, self.principal_components)
x = np.reshape(whitex, x.shape)
else:
warnings.warn('This ImageDataGenerator specifies '
'`zca_whitening`, but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling ')
# if self.contrast_stretching:
# if np.random.random() < 0.5:
# p2, p98 = np.percentile((x),(2,98))
# x = (exposure.rescale_intensity((x), in_range=(p2, p98)))
# if self.adaptive_equalization:
# if np.random.random() < 0.5:
# x = (exposure.equalize_adapthist((x), clip_limit = 0.03))
# if self.histogram_equalization:
# if np.random.random() < 0.5:
# x = (exposure.equalize_hist((x)))
return x
def get_random_transform(self, img_shape, seed=None):
"""Generates random parameters for a transformation.
# Arguments
seed: Random seed.
img_shape: Tuple of integers.
Shape of the image that is transformed.
# Returns
A dictionary containing randomly chosen parameters describing the
transformation.
"""
img_row_axis = self.row_axis - 1
img_col_axis = self.col_axis - 1
if seed is not None:
np.random.seed(seed)
if self.rotation_range:
theta = np.random.uniform(
-self.rotation_range,
self.rotation_range)
else:
theta = 0
if self.height_shift_range:
try: # 1-D array-like or int
tx = np.random.choice(self.height_shift_range)
tx *= np.random.choice([-1, 1])
except ValueError: # floating point
tx = np.random.uniform(-self.height_shift_range,
self.height_shift_range)
if np.max(self.height_shift_range) < 1:
tx *= img_shape[img_row_axis]
else:
tx = 0
if self.width_shift_range:
try: # 1-D array-like or int
ty = np.random.choice(self.width_shift_range)
ty *= np.random.choice([-1, 1])
except ValueError: # floating point
ty = np.random.uniform(-self.width_shift_range,
self.width_shift_range)
if np.max(self.width_shift_range) < 1:
ty *= img_shape[img_col_axis]
else:
ty = 0
if self.shear_range:
shear = np.random.uniform(
-self.shear_range,
self.shear_range)
else:
shear = 0
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(
self.zoom_range[0],
self.zoom_range[1],
2)
flip_horizontal = (np.random.random() < 0.5) * self.horizontal_flip
flip_vertical = (np.random.random() < 0.5) * self.vertical_flip
channel_shift_intensity = None
if self.channel_shift_range != 0:
channel_shift_intensity = np.random.uniform(-self.channel_shift_range,
self.channel_shift_range)
brightness = None
if self.brightness_range is not None:
if len(self.brightness_range) != 2:
raise ValueError(
'`brightness_range should be tuple or list of two floats. '
'Received: %s' % brightness_range)
brightness = np.random.uniform(self.brightness_range[0],
self.brightness_range[1])
transform_parameters = {'theta': theta,
'tx': tx,
'ty': ty,
'shear': shear,
'zx': zx,
'zy': zy,
'flip_horizontal': flip_horizontal,
'flip_vertical': flip_vertical,
'channel_shift_intensity': channel_shift_intensity,
'brightness': brightness,
'contrast_stretching' : self.contrast_stretching,
'adaptive_equalization' : self.adaptive_equalization,
'histogram_equalization' : self.histogram_equalization
}
return transform_parameters
def apply_transform(self, x, transform_parameters):
"""Applies a transformation to an image according to given parameters.
# Arguments
x: 3D tensor, single image.
transform_parameters: Dictionary with string - parameter pairs
describing the transformation.
Currently, the following parameters
from the dictionary are used:
- `'theta'`: Float. Rotation angle in degrees.
- `'tx'`: Float. Shift in the x direction.
- `'ty'`: Float. Shift in the y direction.
- `'shear'`: Float. Shear angle in degrees.
- `'zx'`: Float. Zoom in the x direction.
- `'zy'`: Float. Zoom in the y direction.
- `'flip_horizontal'`: Boolean. Horizontal flip.
- `'flip_vertical'`: Boolean. Vertical flip.
- `'channel_shift_intencity'`: Float. Channel shift intensity.
- `'brightness'`: Float. Brightness shift intensity.
# Returns
A ransformed version of the input (same shape).
"""
# x is a single image, so it doesn't have image number at index 0
img_row_axis = self.row_axis - 1
img_col_axis = self.col_axis - 1
img_channel_axis = self.channel_axis - 1
x = apply_affine_transform(x, transform_parameters.get('theta', 0),
transform_parameters.get('tx', 0),
transform_parameters.get('ty', 0),
transform_parameters.get('shear', 0),
transform_parameters.get('zx', 1),
transform_parameters.get('zy', 1),
row_axis=img_row_axis, col_axis=img_col_axis,
channel_axis=img_channel_axis,
fill_mode=self.fill_mode, cval=self.cval)
if transform_parameters.get('channel_shift_intensity') is not None:
x = apply_channel_shift(x,
transform_parameters['channel_shift_intensity'],
img_channel_axis)
if transform_parameters.get('flip_horizontal', False):
x = flip_axis(x, img_col_axis)
if transform_parameters.get('flip_vertical', False):
x = flip_axis(x, img_row_axis)
if transform_parameters.get('brightness') is not None:
x = apply_brightness_shift(x, transform_parameters['brightness'])
if transform_parameters.get('contrast_stretching') is not None:
if np.random.random() < 1.0:
x = img_to_array(x)
p2, p98 = np.percentile((x),(2,98))
x = (exposure.rescale_intensity((x), in_range=(p2, p98)))
# x = x.reshape((x.shape[0], x.shape[1],3))
# if transform_parameters.get('adaptive_equalization') is not None:
# if np.random.random() < 1.0:
# x = (exposure.equalize_adapthist(x/255, clip_limit = 0.03))
# x = x.reshape((x.shape[0], x.shape[1],1))
if transform_parameters.get('histogram_equalization') is not None:
if np.random.random() < 1.0:
x[:,:,0] = exposure.equalize_hist(x[:,:,0])
x[:,:,1] = exposure.equalize_hist(x[:,:,1])
x[:,:,2] = exposure.equalize_hist(x[:,:,2])
# x = x.reshape((x.shape[0], x.shape[1],3))
# x = x.reshape((x.shape[0], x.shape[1], 1))
return x
def random_transform(self, x, seed=None):
"""Applies a random transformation to an image.
# Arguments
x: 3D tensor, single image.
seed: Random seed.
# Returns
A randomly transformed version of the input (same shape).
"""
params = self.get_random_transform(x.shape, seed)
return self.apply_transform(x, params)
def fit(self, x,
augment=False,
rounds=1,
seed=None):
"""Fits the data generator to some sample data.
This computes the internal data stats related to the
data-dependent transformations, based on an array of sample data.
Only required if `featurewise_center` or
`featurewise_std_normalization` or `zca_whitening` are set to True.
# Arguments
x: Sample data. Should have rank 4.
In case of grayscale data,
the channels axis should have value 1, and in case
of RGB data, it should have value 3.
augment: Boolean (default: False).
Whether to fit on randomly augmented samples.
rounds: Int (default: 1).
If using data augmentation (`augment=True`),
this is how many augmentation passes over the data to use.
seed: Int (default: None). Random seed.
"""
x = np.asarray(x, dtype=backend.floatx())
if x.ndim != 4:
raise ValueError('Input to `.fit()` should have rank 4. '
'Got array with shape: ' + str(x.shape))
if x.shape[self.channel_axis] not in {1, 3, 4}:
warnings.warn(
'Expected input to be images (as Numpy array) '
'following the data format convention "' +
self.data_format + '" (channels on axis ' +
str(self.channel_axis) + '), i.e. expected '
'either 1, 3 or 4 channels on axis ' +
str(self.channel_axis) + '. '
'However, it was passed an array with shape ' +
str(x.shape) + ' (' + str(x.shape[self.channel_axis]) +
' channels).')
if seed is not None:
np.random.seed(seed)
x = np.copy(x)
if augment:
ax = np.zeros(
tuple([rounds * x.shape[0]] + list(x.shape)[1:]),
dtype=backend.floatx())
for r in range(rounds):
for i in range(x.shape[0]):
ax[i + r * x.shape[0]] = self.random_transform(x[i])
x = ax
if self.featurewise_center:
self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.mean = np.reshape(self.mean, broadcast_shape)
x -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.std = np.reshape(self.std, broadcast_shape)
x /= (self.std + backend.epsilon())
if self.zca_whitening:
flat_x = np.reshape(
x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]))
sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0]
u, s, _ = linalg.svd(sigma)
s_inv = 1. / np.sqrt(s[np.newaxis] + self.zca_epsilon)
self.principal_components = (u * s_inv).dot(u.T)
class Iterator(keras_utils.Sequence):
"""Base class for image data iterators.
Every `Iterator` must implement the `_get_batches_of_transformed_samples`
method.
# Arguments
n: Integer, total number of samples in the dataset to loop over.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seeding for data shuffling.
"""
def __init__(self, n, batch_size, shuffle, seed):
self.n = n
self.batch_size = batch_size
self.seed = seed
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_array = None
self.index_generator = self._flow_index()
def _set_index_array(self):
self.index_array = np.arange(self.n)
if self.shuffle:
self.index_array = np.random.permutation(self.n)
def __getitem__(self, idx):
if idx >= len(self):
raise ValueError('Asked to retrieve element {idx}, '
'but the Sequence '
'has length {length}'.format(idx=idx,
length=len(self)))
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
self.total_batches_seen += 1
if self.index_array is None:
self._set_index_array()
index_array = self.index_array[self.batch_size * idx:
self.batch_size * (idx + 1)]
return self._get_batches_of_transformed_samples(index_array)
def __len__(self):
return (self.n + self.batch_size - 1) // self.batch_size # round up
def on_epoch_end(self):
self._set_index_array()
def reset(self):
self.batch_index = 0
def _flow_index(self):
# Ensure self.batch_index is 0.
self.reset()
while 1:
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
if self.batch_index == 0:
self._set_index_array()
current_index = (self.batch_index * self.batch_size) % self.n
if self.n > current_index + self.batch_size:
self.batch_index += 1
else:
self.batch_index = 0
self.total_batches_seen += 1
yield self.index_array[current_index:
current_index + self.batch_size]
def __iter__(self):
# Needed if we want to do something like:
# for x, y in data_gen.flow(...):
return self
def __next__(self, *args, **kwargs):
return self.next(*args, **kwargs)
def _get_batches_of_transformed_samples(self, index_array):
"""Gets a batch of transformed samples.
# Arguments
index_array: Array of sample indices to include in batch.
# Returns
A batch of transformed samples.
"""
raise NotImplementedError
class NumpyArrayIterator(Iterator):
"""Iterator yielding data from a Numpy array.
# Arguments
x: Numpy array of input data or tuple.
If tuple, the second elements is either
another numpy array or a list of numpy arrays,
each of which gets passed
through as an output without any modifications.
y: Numpy array of targets data.
image_data_generator: Instance of `ImageDataGenerator`
to use for random transformations and normalization.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
sample_weight: Numpy array of sample weights.
seed: Random seed for data shuffling.
data_format: String, one of `channels_first`, `channels_last`.
save_to_dir: Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.
save_prefix: String prefix to use for saving sample
images (if `save_to_dir` is set).
save_format: Format to use for saving sample images
(if `save_to_dir` is set).
subset: Subset of data (`"training"` or `"validation"`) if
validation_split is set in ImageDataGenerator.
"""
def __init__(self, x, y, image_data_generator,
batch_size=32, shuffle=False, sample_weight=None,
seed=None, data_format=None,
save_to_dir=None, save_prefix='', save_format='png',
subset=None):
if (type(x) is tuple) or (type(x) is list):
if type(x[1]) is not list:
x_misc = [np.asarray(x[1])]
else:
x_misc = [np.asarray(xx) for xx in x[1]]
x = x[0]
for xx in x_misc:
if len(x) != len(xx):
raise ValueError(
'All of the arrays in `x` '
'should have the same length. '
'Found a pair with: len(x[0]) = %s, len(x[?]) = %s' %
(len(x), len(xx)))
else:
x_misc = []
if y is not None and len(x) != len(y):
raise ValueError('`x` (images tensor) and `y` (labels) '
'should have the same length. '
'Found: x.shape = %s, y.shape = %s' %
(np.asarray(x).shape, np.asarray(y).shape))
if sample_weight is not None and len(x) != len(sample_weight):
raise ValueError('`x` (images tensor) and `sample_weight` '
'should have the same length. '
'Found: x.shape = %s, sample_weight.shape = %s' %
(np.asarray(x).shape, np.asarray(sample_weight).shape))
if subset is not None:
if subset not in {'training', 'validation'}:
raise ValueError('Invalid subset name:', subset,
'; expected "training" or "validation".')
split_idx = int(len(x) * image_data_generator._validation_split)
if subset == 'validation':
x = x[:split_idx]
x_misc = [np.asarray(xx[:split_idx]) for xx in x_misc]
if y is not None:
y = y[:split_idx]
else:
x = x[split_idx:]
x_misc = [np.asarray(xx[split_idx:]) for xx in x_misc]
if y is not None:
y = y[split_idx:]
if data_format is None:
data_format = backend.image_data_format()
self.x = np.asarray(x, dtype=backend.floatx())
self.x_misc = x_misc
if self.x.ndim != 4:
raise ValueError('Input data in `NumpyArrayIterator` '
'should have rank 4. You passed an array '
'with shape', self.x.shape)
channels_axis = 3 if data_format == 'channels_last' else 1
if self.x.shape[channels_axis] not in {1, 3, 4}:
warnings.warn('NumpyArrayIterator is set to use the '
'data format convention "' + data_format + '" '
'(channels on axis ' + str(channels_axis) +
'), i.e. expected either 1, 3 or 4 '
'channels on axis ' + str(channels_axis) + '. '
'However, it was passed an array with shape ' +
str(self.x.shape) + ' (' +
str(self.x.shape[channels_axis]) + ' channels).')
if y is not None:
self.y = np.asarray(y)
else:
self.y = None
if sample_weight is not None:
self.sample_weight = np.asarray(sample_weight)
else:
self.sample_weight = None
self.image_data_generator = image_data_generator
self.data_format = data_format
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
super(NumpyArrayIterator, self).__init__(x.shape[0],
batch_size,
shuffle,
seed)
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros(tuple([len(index_array)] + list(self.x.shape)[1:]),
dtype=backend.floatx())
for i, j in enumerate(index_array):
x = self.x[j]
params = self.image_data_generator.get_random_transform(x.shape)
x = self.image_data_generator.apply_transform(
x.astype(backend.floatx()), params)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
batch_x_miscs = [xx[index_array] for xx in self.x_misc]
output = (batch_x if batch_x_miscs == []
else [batch_x] + batch_x_miscs,)
if self.y is None:
return output[0]
output += (self.y[index_array],)
if self.sample_weight is not None:
output += (self.sample_weight[index_array],)
return output
def next(self):
"""For python 2.x.
# Returns
The next batch.
"""
# Keeps under lock only the mechanism which advances
# the indexing of each batch.
with self.lock:
index_array = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
return self._get_batches_of_transformed_samples(index_array)
def _iter_valid_files(directory, white_list_formats, follow_links):
"""Iterates on files with extension in `white_list_formats` contained in `directory`.
# Arguments
directory: Absolute path to the directory
containing files to be counted
white_list_formats: Set of strings containing allowed extensions for
the files to be counted.
follow_links: Boolean.
# Yields
Tuple of (root, filename) with extension in `white_list_formats`.
"""
def _recursive_list(subpath):
return sorted(os.walk(subpath, followlinks=follow_links),
key=lambda x: x[0])
for root, _, files in _recursive_list(directory):
for fname in sorted(files):
for extension in white_list_formats:
if fname.lower().endswith('.tiff'):
warnings.warn('Using \'.tiff\' files with multiple bands '
'will cause distortion. '
'Please verify your output.')
if fname.lower().endswith('.' + extension):
yield root, fname
def _count_valid_files_in_directory(directory,
white_list_formats,
split,
follow_links):
"""Counts files with extension in `white_list_formats` contained in `directory`.
# Arguments
directory: absolute path to the directory
containing files to be counted
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into
account a certain fraction of files in each directory.
E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent
of images in each directory.
follow_links: boolean.
# Returns
the count of files with extension in `white_list_formats` contained in
the directory.
"""
num_files = len(list(
_iter_valid_files(directory, white_list_formats, follow_links)))
if split:
start, stop = int(split[0] * num_files), int(split[1] * num_files)
else:
start, stop = 0, num_files
return stop - start
def _list_valid_filenames_in_directory(directory, white_list_formats, split,
class_indices, follow_links):
"""Lists paths of files in `subdir` with extensions in `white_list_formats`.
# Arguments
directory: absolute path to a directory containing the files to list.
The directory name is used as class label
and must be a key of `class_indices`.
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into
account a certain fraction of files in each directory.
E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent
of images in each directory.
class_indices: dictionary mapping a class name to its index.
follow_links: boolean.
# Returns
classes: a list of class indices
filenames: the path of valid files in `directory`, relative from
`directory`'s parent (e.g., if `directory` is "dataset/class1",
the filenames will be
`["class1/file1.jpg", "class1/file2.jpg", ...]`).
"""
dirname = os.path.basename(directory)
if split:
num_files = len(list(
_iter_valid_files(directory, white_list_formats, follow_links)))
start, stop = int(split[0] * num_files), int(split[1] * num_files)
valid_files = list(
_iter_valid_files(
directory, white_list_formats, follow_links))[start: stop]
else:
valid_files = _iter_valid_files(
directory, white_list_formats, follow_links)
classes = []
filenames = []
for root, fname in valid_files:
classes.append(class_indices[dirname])
absolute_path = os.path.join(root, fname)
relative_path = os.path.join(
dirname, os.path.relpath(absolute_path, directory))
filenames.append(relative_path)
return classes, filenames
class DirectoryIterator(Iterator):
"""Iterator capable of reading images from a directory on disk.
# Arguments
directory: Path to the directory to read images from.
Each subdirectory in this directory will be
considered to contain images from one class,
or alternatively you could specify class subdirectories
via the `classes` argument.
image_data_generator: Instance of `ImageDataGenerator`
to use for random transformations and normalization.
target_size: tuple of integers, dimensions to resize input images to.
color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images.
classes: Optional list of strings, names of subdirectories
containing images from each class (e.g. `["dogs", "cats"]`).
It will be computed automatically if not set.
class_mode: Mode for yielding the targets:
`"binary"`: binary targets (if there are only two classes),
`"categorical"`: categorical targets,
`"sparse"`: integer targets,
`"input"`: targets are images identical to input images (mainly
used to work with autoencoders),
`None`: no targets get yielded (only input images are yielded).
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seed for data shuffling.
data_format: String, one of `channels_first`, `channels_last`.
save_to_dir: Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.
save_prefix: String prefix to use for saving sample
images (if `save_to_dir` is set).
save_format: Format to use for saving sample images
(if `save_to_dir` is set).
subset: Subset of data (`"training"` or `"validation"`) if
validation_split is set in ImageDataGenerator.
interpolation: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are "nearest", "bilinear", and "bicubic".
If PIL version 1.1.3 or newer is installed, "lanczos" is also
supported. If PIL version 3.4.0 or newer is installed, "box" and
"hamming" are also supported. By default, "nearest" is used.
"""
def __init__(self, directory, image_data_generator,
target_size=(256, 256), color_mode='rgb',
classes=None, class_mode='categorical',
batch_size=32, shuffle=True, seed=None,
data_format=None,
save_to_dir=None, save_prefix='', save_format='png',
follow_links=False,
subset=None,
interpolation='nearest'):
if data_format is None:
data_format = backend.image_data_format()
self.directory = directory
self.image_data_generator = image_data_generator
self.target_size = tuple(target_size)
if color_mode not in {'rgb', 'grayscale'}:
raise ValueError('Invalid color mode:', color_mode,
'; expected "rgb" or "grayscale".')
self.color_mode = color_mode
self.data_format = data_format
if self.color_mode == 'rgb':
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (3,)
else:
self.image_shape = (3,) + self.target_size
else:
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (1,)
else:
self.image_shape = (1,) + self.target_size
self.classes = classes
if class_mode not in {'categorical', 'binary', 'sparse',
'input', None}:
raise ValueError('Invalid class_mode:', class_mode,
'; expected one of "categorical", '
'"binary", "sparse", "input"'
' or None.')
self.class_mode = class_mode
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
self.interpolation = interpolation
if subset is not None:
validation_split = self.image_data_generator._validation_split
if subset == 'validation':
split = (0, validation_split)
elif subset == 'training':
split = (validation_split, 1)
else:
raise ValueError('Invalid subset name: ', subset,
'; expected "training" or "validation"')
else:
split = None
self.subset = subset
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp',
'ppm', 'tif', 'tiff'}
# First, count the number of samples and classes.
self.samples = 0
if not classes:
classes = []
for subdir in sorted(os.listdir(directory)):
if os.path.isdir(os.path.join(directory, subdir)):
classes.append(subdir)
self.num_classes = len(classes)
self.class_indices = dict(zip(classes, range(len(classes))))
pool = multiprocessing.pool.ThreadPool()
function_partial = partial(_count_valid_files_in_directory,
white_list_formats=white_list_formats,
follow_links=follow_links,
split=split)
self.samples = sum(pool.map(function_partial,
(os.path.join(directory, subdir)
for subdir in classes)))
print('Found %d images belonging to %d classes.' %
(self.samples, self.num_classes))
# Second, build an index of the images
# in the different class subfolders.
results = []
self.filenames = []
self.classes = np.zeros((self.samples,), dtype='int32')
i = 0
for dirpath in (os.path.join(directory, subdir) for subdir in classes):
results.append(
pool.apply_async(_list_valid_filenames_in_directory,
(dirpath, white_list_formats, split,
self.class_indices, follow_links)))
for res in results:
classes, filenames = res.get()
self.classes[i:i + len(classes)] = classes
self.filenames += filenames
i += len(classes)
pool.close()
pool.join()
super(DirectoryIterator, self).__init__(self.samples,
batch_size,
shuffle,
seed)
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros(
(len(index_array),) + self.image_shape,
dtype=backend.floatx())
grayscale = self.color_mode == 'grayscale'
# build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(os.path.join(self.directory, fname),
grayscale=grayscale,
target_size=self.target_size,
interpolation=self.interpolation)
x = img_to_array(img, data_format=self.data_format)
params = self.image_data_generator.get_random_transform(x.shape)
x = self.image_data_generator.apply_transform(x, params)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e7),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# build batch of labels
if self.class_mode == 'input':
batch_y = batch_x.copy()
elif self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype(backend.floatx())
elif self.class_mode == 'categorical':
batch_y = np.zeros(
(len(batch_x), self.num_classes),
dtype=backend.floatx())
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x, batch_y
def next(self):
"""For python 2.x.
# Returns
The next batch.
"""
with self.lock:
index_array = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
return self._get_batches_of_transformed_samples(index_array)