[38391a]: / eval.py

Download this file

171 lines (147 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import absolute_import, division, print_function
from os import environ, getcwd
from os.path import join
import keras
import numpy as np
import pandas as pd
import sklearn as skl
import tensorflow as tf
from keras.applications.vgg19 import VGG19
from keras.applications import DenseNet169, InceptionResNetV2, DenseNet201
from keras.applications import NASNetMobile
from keras.layers import Dense, GlobalAveragePooling2D
from keras.metrics import binary_accuracy, binary_crossentropy
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from mura import Mura
pd.set_option('display.max_rows', 20)
pd.set_option('precision', 4)
np.set_printoptions(precision=4)
environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Shut up tensorflow!
print("tf : {}".format(tf.__version__))
print("keras : {}".format(keras.__version__))
print("numpy : {}".format(np.__version__))
print("pandas : {}".format(pd.__version__))
print("sklearn : {}".format(skl.__version__))
# Hyper-parameters / Globals
BATCH_SIZE = 8 # tweak to your GPUs capacity
IMG_HEIGHT = 420 # ResNetInceptionv2 & Xception like 299, ResNet50/VGG/Inception 224, NASM 331
IMG_WIDTH = IMG_HEIGHT
CHANNELS = 3
DIMS = (IMG_HEIGHT, IMG_WIDTH, CHANNELS) # blame theano
MODEL_TO_EVAL1 = './models/DenseNet169_221_NEW_HIST.hdf5'
MODEL_TO_EVAL2 = './models/DenseNet169_320_NEW_HIST.hdf5'
MODEL_TO_EVAL3 = './models/DenseNet169_420_NEW_HIST.hdf5'
MODEL_TO_EVAL4 = './models/DenseNet169_520_NEW_HIST.hdf5'
MODEL_TO_EVAL5 = './models/DenseNet169_620_NEW_HIST.hdf5'
#MODEL_TO_EVAL6 = './models/DenseNet169_420_SHOULDER_NEW_HIST.hdf5'
#MODEL_TO_EVAL7 = './models/DenseNet169_420_HAND_NEW_HIST.hdf5'
#MODEL_TO_EVAL3 = './models/DenseNet169_420_FOREARM.hdf5'
#MODEL_TO_EVAL4 = './models/DenseNet169_420_HAND.hdf5'
#MODEL_TO_EVAL5 = './models/DenseNet169_420_HUMERUS.hdf5'
#MODEL_TO_EVAL6 = './models/DenseNet169_420_SHOULDER.hdf5'
#MODEL_TO_EVAL7 = './models/DenseNet169_420_WRIST.hdf5'
DATA_DIR = 'MURA-v1.1/'
EVAL_CSV = 'valid.csv'
EVAL_DIR = 'data/val'
# load up our csv with validation factors
data_dir = join(getcwd(), DATA_DIR)
eval_csv = join(data_dir, EVAL_CSV)
df = pd.read_csv(eval_csv, names=['img', 'label'], header=None)
eval_imgs = df.img.values.tolist()
eval_labels = df.label.values.tolist()
eval_datagen = ImageDataGenerator(rescale=1. / 255)
eval_generator = eval_datagen.flow_from_directory(
EVAL_DIR, class_mode='binary', shuffle=False, target_size=(IMG_HEIGHT, IMG_WIDTH), batch_size=BATCH_SIZE)
n_samples = eval_generator.samples
base_model = DenseNet169(input_shape=DIMS, weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(x) # comment for RESNET
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(inputs=base_model.input, outputs=x)
model.load_weights(MODEL_TO_EVAL1)
model.compile(optimizer=Adam(lr=1e-3), loss=binary_crossentropy, metrics=['binary_accuracy'])
score, acc = model.evaluate_generator(eval_generator, n_samples / BATCH_SIZE)
#print(model.metrics_names)
print('==> Metrics with eval')
print("loss :{:0.4f} \t Accuracy:{:0.4f}".format(score, acc))
y_pred1 = model.predict_generator(eval_generator, n_samples / BATCH_SIZE)
#IMG_HEIGHT = 520
#IMG_WIDTH = 520
DIMS = (IMG_HEIGHT, IMG_WIDTH, CHANNELS)
eval_generator = eval_datagen.flow_from_directory(
EVAL_DIR, class_mode='binary', shuffle=False, target_size=(IMG_HEIGHT, IMG_WIDTH), batch_size=BATCH_SIZE)
base_model = DenseNet169(input_shape=DIMS, weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(x) # comment for RESNET
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(inputs=base_model.input, outputs=x)
model.load_weights(MODEL_TO_EVAL2)
model.compile(optimizer=Adam(lr=1e-3), loss=binary_crossentropy, metrics=['binary_accuracy'])
score, acc = model.evaluate_generator(eval_generator, n_samples / BATCH_SIZE)
#print(model.metrics_names)
print('==> Metrics with eval')
print("loss :{:0.4f} \t Accuracy:{:0.4f}".format(score, acc))
y_pred2 = model.predict_generator(eval_generator, n_samples / BATCH_SIZE)
IMG_HEIGHT = 420
IMG_WIDTH = 420
DIMS = (IMG_HEIGHT, IMG_WIDTH, CHANNELS)
eval_generator = eval_datagen.flow_from_directory(
EVAL_DIR, class_mode='binary', shuffle=False,target_size=(IMG_HEIGHT, IMG_WIDTH), batch_size =BATCH_SIZE)
base_model = DenseNet169(input_shape=DIMS, weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(x) # comment for RESNET
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(inputs=base_model.input, outputs=x)
model.load_weights(MODEL_TO_EVAL3)
model.compile(optimizer=Adam(lr=1e-3), loss=binary_crossentropy, metrics=['binary_accuracy'])
score, acc = model.evaluate_generator(eval_generator, n_samples / BATCH_SIZE)
#print(model.metrics_names)
print('==> Metrics with eval')
print("loss :{:0.4f} \t Accuracy:{:0.4f}".format(score, acc))
y_pred3 = model.predict_generator(eval_generator, n_samples / BATCH_SIZE)
#IMG_HEIGHT = 520
#IMG_WIDTH = 520
DIMS = (IMG_HEIGHT, IMG_WIDTH, CHANNELS)
eval_generator = eval_datagen.flow_from_directory(
EVAL_DIR, class_mode='binary', shuffle=False,target_size=(IMG_HEIGHT, IMG_WIDTH), batch_size=BATCH_SIZE)
base_model = DenseNet169(input_shape=DIMS, weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(x) # comment for RESNET
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(inputs=base_model.input, outputs=x)
model.load_weights(MODEL_TO_EVAL4)
model.compile(optimizer=Adam(lr=1e-3), loss=binary_crossentropy, metrics=['binary_accuracy'])
score, acc = model.evaluate_generator(eval_generator, n_samples / BATCH_SIZE)
#print(model.metrics_names)
print('==> Metrics with eval')
print("loss :{:0.4f} \t Accuracy:{:0.4f}".format(score, acc))
y_pred4 = model.predict_generator(eval_generator, n_samples / BATCH_SIZE)
IMG_HEIGHT = 420
IMG_WIDTH = 420
DIMS = (IMG_HEIGHT, IMG_WIDTH, CHANNELS)
eval_generator = eval_datagen.flow_from_directory(
EVAL_DIR, class_mode='binary', shuffle=False,target_size=(IMG_HEIGHT, IMG_WIDTH), batch_size=BATCH_SIZE)
base_model = DenseNet169(input_shape=DIMS, weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(x) # comment for RESNET
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(inputs=base_model.input, outputs=x)
model.load_weights(MODEL_TO_EVAL5)
model.compile(optimizer=Adam(lr=1e-3), loss=binary_crossentropy, metrics=['binary_accuracy'])
score, acc = model.evaluate_generator(eval_generator, n_samples / BATCH_SIZE)
#print(model.metrics_names)
print('==> Metrics with eval')
print("loss :{:0.4f} \t Accuracy:{:0.4f}".format(score, acc))
y_pred5 = model.predict_generator(eval_generator, n_samples / BATCH_SIZE)
#print(y_pred)
df_filenames = pd.Series(np.array(eval_generator.filenames), name='filenames')
df_classes = pd.Series(np.array(eval_generator.classes), name='classes')
#print(eval_generator.filenames)
#print(eval_generator.classes)
mura = Mura(eval_generator.filenames, y_true=eval_generator.classes, y_pred1=y_pred1, y_pred2=y_pred2, y_pred3=y_pred3, y_pred4=y_pred4, y_pred5=y_pred5)
print('==> Metrics with predict')
print(mura.metrics())
print(mura.metrics_by_encounter())
print(mura.metrics_by_study_type())