|
a |
|
b/train.py |
|
|
1 |
from __future__ import absolute_import, division, print_function |
|
|
2 |
|
|
|
3 |
import argparse |
|
|
4 |
from datetime import datetime |
|
|
5 |
from os import environ |
|
|
6 |
|
|
|
7 |
import keras.backend as K |
|
|
8 |
from keras.datasets import cifar10 |
|
|
9 |
import keras |
|
|
10 |
import numpy as np |
|
|
11 |
import pandas as pd |
|
|
12 |
import tensorflow as tf |
|
|
13 |
from random_eraser import get_random_eraser |
|
|
14 |
|
|
|
15 |
from skimage import io, color, transform, exposure |
|
|
16 |
from keras.applications import MobileNet, ResNet50 |
|
|
17 |
from keras.applications import DenseNet169, InceptionResNetV2,DenseNet201 |
|
|
18 |
from keras.applications.vgg19 import VGG19 |
|
|
19 |
from keras.callbacks import (EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard) |
|
|
20 |
from keras.layers import Dense, GlobalAveragePooling2D, GlobalMaxPooling2D |
|
|
21 |
from keras.metrics import binary_accuracy, binary_crossentropy, kappa_error, kullback_leibler_divergence |
|
|
22 |
from keras.models import Model |
|
|
23 |
from keras.optimizers import SGD, Adam |
|
|
24 |
from keras.preprocessing.image import ImageDataGenerator |
|
|
25 |
from sklearn.utils import class_weight |
|
|
26 |
from keras.utils.training_utils import multi_gpu_model |
|
|
27 |
from custom_layers import * |
|
|
28 |
|
|
|
29 |
environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Shut up tensorflow! |
|
|
30 |
print("tf : {}".format(tf.__version__)) |
|
|
31 |
print("keras : {}".format(keras.__version__)) |
|
|
32 |
print("numpy : {}".format(np.__version__)) |
|
|
33 |
print("pandas : {}".format(pd.__version__)) |
|
|
34 |
|
|
|
35 |
parser = argparse.ArgumentParser(description='Hyperparameters') |
|
|
36 |
parser.add_argument('--classes', default=1, type=int) |
|
|
37 |
parser.add_argument('--workers', default=4, type=int) |
|
|
38 |
parser.add_argument('--epochs', default=30, type=int) |
|
|
39 |
parser.add_argument('-b', '--batch-size', default=8, type=int, help='mini-batch size') |
|
|
40 |
parser.add_argument('--lr', '--learning-rate', default=1e-4, type=float) |
|
|
41 |
parser.add_argument('--lr-wait', default=10, type=int, help='how long to wait on plateu') |
|
|
42 |
parser.add_argument('--decay', default=1e-4, type=float) |
|
|
43 |
parser.add_argument('--momentum', default=0.9, type=float) |
|
|
44 |
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint') |
|
|
45 |
parser.add_argument('--fullretrain', dest='fullretrain', action='store_true', help='retrain all layers of the model') |
|
|
46 |
parser.add_argument('--seed', default=1953, type=int, help='random seed') |
|
|
47 |
parser.add_argument('--img_channels', default=3, type=int) |
|
|
48 |
parser.add_argument('--img_size', default=499, type=int) |
|
|
49 |
parser.add_argument('--early_stop', default=20, type=int) |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
#def preprocess_img(): |
|
|
53 |
# def preprocess_img(img): |
|
|
54 |
# Histogram normalization in v channel |
|
|
55 |
# args = parser.parse_args() |
|
|
56 |
|
|
|
57 |
# hsv = color.rgb2hsv(img) |
|
|
58 |
# hsv[:, :, 2] = exposure.equalize_hist(hsv[:, :, 2]) |
|
|
59 |
# img = color.hsv2rgb(hsv) |
|
|
60 |
|
|
|
61 |
# central square crop |
|
|
62 |
# min_side = min(img.shape[:-1]) |
|
|
63 |
# centre = img.shape[0] // 2, img.shape[1] // 2 |
|
|
64 |
# img = img[centre[0] - min_side // 2:centre[0] + min_side // 2, |
|
|
65 |
# centre[1] - min_side // 2:centre[1] + min_side // 2, |
|
|
66 |
# :] |
|
|
67 |
|
|
|
68 |
# rescale to standard size |
|
|
69 |
# img = transform.resize(img, (args.img_size, args.img_size)) |
|
|
70 |
|
|
|
71 |
# roll color axis to axis 0 |
|
|
72 |
# img = np.rollaxis(img, -1) |
|
|
73 |
|
|
|
74 |
# img = img.transpose([2,0,1]) |
|
|
75 |
# img = img.transpose([2,0,1]) |
|
|
76 |
# return img |
|
|
77 |
# return preprocess_img |
|
|
78 |
|
|
|
79 |
def train(args=None): |
|
|
80 |
|
|
|
81 |
args = parser.parse_args() |
|
|
82 |
|
|
|
83 |
img_shape = ( args.img_size, args.img_size, args.img_channels) # blame theano |
|
|
84 |
now_iso = datetime.now().strftime('%Y-%m-%dT%H:%M:%S%z') |
|
|
85 |
|
|
|
86 |
#(x_train, y_train), (x_test,y_test) = cifar10.load_data() |
|
|
87 |
|
|
|
88 |
# We then scale the variable-sized images to 224x224 |
|
|
89 |
# We augment .. by applying random lateral inversions and rotations. |
|
|
90 |
train_datagen = ImageDataGenerator( |
|
|
91 |
rescale=1. / 255, |
|
|
92 |
rotation_range=30, |
|
|
93 |
# contrast_stretching=True, |
|
|
94 |
# adaptive_equalization=True, |
|
|
95 |
histogram_equalization=True, |
|
|
96 |
# featurewise_center=True, |
|
|
97 |
# samplewise_center=True, |
|
|
98 |
# featurewise_std_normalization=True, |
|
|
99 |
# samplewise_std_normalization=True, |
|
|
100 |
# channel_shift_range=0.2, |
|
|
101 |
# brightness_range=[-0.3, 0.3], |
|
|
102 |
width_shift_range=0.2, |
|
|
103 |
height_shift_range=0.2, |
|
|
104 |
zoom_range=0.3, |
|
|
105 |
horizontal_flip=True, |
|
|
106 |
# preprocessing_function= get_random_eraser(v_l=0, v_h=1, pixel_level=True) |
|
|
107 |
# preprocessing_function=preprocess_img() |
|
|
108 |
) |
|
|
109 |
#train_datagen.fit(x_train) |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
train_generator = train_datagen.flow_from_directory( |
|
|
113 |
'data/train/', |
|
|
114 |
shuffle=True, |
|
|
115 |
target_size=(args.img_size, args.img_size), |
|
|
116 |
# save_to_dir='data/AUG_ELBOW_HIST', |
|
|
117 |
class_mode='binary', |
|
|
118 |
# color_mode='grayscale', |
|
|
119 |
# interpolation='bicubic', |
|
|
120 |
batch_size=args.batch_size, ) |
|
|
121 |
|
|
|
122 |
val_datagen = ImageDataGenerator(rescale=1. / 255, |
|
|
123 |
# contrast_stretching=True |
|
|
124 |
# ,adaptive_equalization=True |
|
|
125 |
# histogram_equalization=True |
|
|
126 |
) |
|
|
127 |
val_generator = val_datagen.flow_from_directory( |
|
|
128 |
'data/val/', |
|
|
129 |
shuffle=True, # otherwise we get distorted batch-wise metrics |
|
|
130 |
class_mode='binary', |
|
|
131 |
# color_mode='grayscale', |
|
|
132 |
target_size=(args.img_size, args.img_size), |
|
|
133 |
batch_size=args.batch_size, ) |
|
|
134 |
# val_datagen.fit(x_train) |
|
|
135 |
|
|
|
136 |
classes = len(train_generator.class_indices) |
|
|
137 |
assert classes > 0 |
|
|
138 |
assert classes is len(val_generator.class_indices) |
|
|
139 |
n_of_train_samples = train_generator.samples |
|
|
140 |
n_of_val_samples = val_generator.samples |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
# Architectures |
|
|
144 |
base_model = InceptionResNetV2(input_shape=img_shape, weights='imagenet', include_top=False) |
|
|
145 |
|
|
|
146 |
|
|
|
147 |
x = base_model.output # Recast classification layer |
|
|
148 |
|
|
|
149 |
#x = Flatten()(x) # Uncomment for Resnet based model |
|
|
150 |
# x = GlobalAveragePooling2D(name='predictions_avg_pool')(x) # comment for RESNET models |
|
|
151 |
x = WildcatPool2d()(x) |
|
|
152 |
# n_classes; softmax for multi-class, sigmoid for binary |
|
|
153 |
x = Dense(args.classes, activation='sigmoid', name='predictions')(x) |
|
|
154 |
|
|
|
155 |
model = Model(inputs=base_model.input, outputs=x) |
|
|
156 |
|
|
|
157 |
# model = multi_gpu_model(model, gpus=2) |
|
|
158 |
|
|
|
159 |
# checkpoints |
|
|
160 |
# |
|
|
161 |
checkpoint = ModelCheckpoint(filepath='./models/InceptionResNetV2_499_NEW_HIST_WC_1.hdf5', verbose=1, save_best_only=True) |
|
|
162 |
early_stop = EarlyStopping(patience=args.early_stop) |
|
|
163 |
tensorboard = TensorBoard(log_dir='./logs/InceptionResNetV2_499_NEW_HIST_WC_1/{}/'.format(now_iso)) |
|
|
164 |
reduce_lr = ReduceLROnPlateau(factor=0.03, cooldown=0, patience=args.lr_wait, min_lr=0.1e-6) |
|
|
165 |
callbacks = [checkpoint, tensorboard, reduce_lr] |
|
|
166 |
|
|
|
167 |
# Calculate class weights |
|
|
168 |
weights = class_weight.compute_class_weight('balanced', np.unique(train_generator.classes), train_generator.classes) |
|
|
169 |
weights = {0: weights[0], 1: weights[1]} |
|
|
170 |
# for layer in base_model.layers: |
|
|
171 |
# layer.set_trainable = False |
|
|
172 |
|
|
|
173 |
#print(model.summary()) |
|
|
174 |
#for i, layer in enumerate(base_model.layers): |
|
|
175 |
# print(i, layer.name) |
|
|
176 |
if args.resume: |
|
|
177 |
model.load_weights(args.resume) |
|
|
178 |
for layer in model.layers: |
|
|
179 |
layer.set_trainable = True |
|
|
180 |
|
|
|
181 |
#if TRAIN_FULL: |
|
|
182 |
# print("=> retrain all layers of network") |
|
|
183 |
# for layer in model.layers: |
|
|
184 |
# set_trainable = True |
|
|
185 |
#else: |
|
|
186 |
# print("=> retraining only bottleneck and fc layers") |
|
|
187 |
# import pdb |
|
|
188 |
# pdb.set_trace() |
|
|
189 |
# set_trainable = False |
|
|
190 |
# for layer in base_model.layers: |
|
|
191 |
# if "block12" in layer.name: # what block do we want to start unfreezing |
|
|
192 |
# set_trainable = True |
|
|
193 |
# if set_trainable: |
|
|
194 |
# layer.trainable = True |
|
|
195 |
# else: |
|
|
196 |
# layer.trainable = False |
|
|
197 |
|
|
|
198 |
# The network is trained end-to-end using Adam with default parameters |
|
|
199 |
model.compile( |
|
|
200 |
optimizer=Adam(lr=args.lr, decay=args.decay), |
|
|
201 |
# optimizer=SGD(lr=args.lr, decay=args.decay,momentum=args.momentum, nesterov=True), |
|
|
202 |
loss=binary_crossentropy, |
|
|
203 |
# loss=kappa_error, |
|
|
204 |
metrics=['accuracy', binary_accuracy], ) |
|
|
205 |
|
|
|
206 |
model_out = model.fit_generator( |
|
|
207 |
train_generator, |
|
|
208 |
steps_per_epoch=n_of_train_samples // args.batch_size, |
|
|
209 |
epochs=args.epochs, |
|
|
210 |
validation_data=val_generator, |
|
|
211 |
validation_steps=n_of_val_samples // args.batch_size, |
|
|
212 |
class_weight=weights, |
|
|
213 |
workers=args.workers, |
|
|
214 |
use_multiprocessing=True, |
|
|
215 |
callbacks=callbacks) |
|
|
216 |
|
|
|
217 |
|
|
|
218 |
if __name__ == '__main__': |
|
|
219 |
train() |