--- a +++ b/mura.py @@ -0,0 +1,192 @@ +from __future__ import absolute_import, division, print_function + +import re + +import numpy as np +import pandas as pd +from sklearn.metrics import (accuracy_score, cohen_kappa_score, f1_score, precision_score, recall_score) + +pd.set_option('display.max_rows', 20) +pd.set_option('precision', 4) +np.set_printoptions(precision=4) + + +class Mura(object): + """`MURA <https://stanfordmlgroup.github.io/projects/mura/>`_ Dataset : + Towards Radiologist-Level Abnormality Detection in Musculoskeletal Radiographs. + """ + url = "https://cs.stanford.edu/group/mlgroup/mura-v1.0.zip" + filename = "mura-v1.0.zip" + md5_checksum = '4c36feddb7f5698c8bf291b912c438b1' + _patient_re = re.compile(r'patient(\d+)') + _study_re = re.compile(r'study(\d+)') + _image_re = re.compile(r'image(\d+)') + _study_type_re = re.compile(r'_(\w+)_patient') + + def __init__(self, image_file_names, y_true, y_pred1=None, y_pred2=None, y_pred3=None, y_pred4=None, y_pred5=None, output_path=None): + self.imgs = image_file_names + df_img = pd.Series(np.array(image_file_names), name='img') + self.y_true = y_true + df_true = pd.Series(np.array(y_true), name='y_true') + self.y_pred1 = y_pred1 + self.y_pred2 = y_pred2 + self.y_pred3 = y_pred3 + self.y_pred4 = y_pred4 + self.y_pred5 = y_pred5 + self.output_path = output_path + # number of unique classes + self.patient = [] + self.study = [] + self.study_type = [] + self.image_num = [] + self.encounter = [] + self.valid =[] + for img in image_file_names: + self.patient.append(self._parse_patient(img)) + self.study.append(self._parse_study(img)) + self.image_num.append(self._parse_image(img)) + self.study_type.append(self._parse_study_type(img)) + self.valid.append(self._parse_valid(img)) + self.encounter.append("MURA-v1.1/{}/XR_{}/patient{}/study{}_{}".format( + self._parse_valid(img), + self._parse_study_type(img), + self._parse_patient(img), + self._parse_study(img), + self._parse_normal(img))) + + self.classes = np.unique(self.y_true) + df_patient = pd.Series(np.array(self.patient), name='patient') + df_study = pd.Series(np.array(self.study), name='study') + df_image_num = pd.Series(np.array(self.image_num), name='image_num') + df_study_type = pd.Series(np.array(self.study_type), name='study_type') + df_encounter = pd.Series(np.array(self.encounter), name='encounter') + + self.data = pd.concat( + [ + df_img, + df_encounter, + df_true, + df_patient, + # df_patient, + df_study, + df_image_num, + df_study_type, + ], axis=1) + + # print(self.data) + + if self.y_pred1 is not None: + self.y_pred1_probability = self.y_pred1.flatten() + self.y_pred1 = self.y_pred1_probability.round().astype(int) + df_y_pred1 = pd.Series(self.y_pred1, name='y_pred1') + df_y_pred1_probability = pd.Series(self.y_pred1_probability, name='y_pred1_probs') + self.data = pd.concat((self.data, df_y_pred1, df_y_pred1_probability), axis=1) + + if self.y_pred2 is not None: + self.y_pred2_probability = self.y_pred2.flatten() + self.y_pred2 = self.y_pred2_probability.round().astype(int) + df_y_pred2 = pd.Series(self.y_pred2, name='y_pred2') + df_y_pred2_probability = pd.Series(self.y_pred2_probability, name='y_pred2_probs') + self.data = pd.concat((self.data, df_y_pred2, df_y_pred2_probability), axis=1) + + if self.y_pred3 is not None: + self.y_pred3_probability = self.y_pred3.flatten() + self.y_pred3 = self.y_pred3_probability.round().astype(int) + df_y_pred3 = pd.Series(self.y_pred3, name='y_pred3') + df_y_pred3_probability = pd.Series(self.y_pred3_probability, name='y_pred3_probs') + self.data = pd.concat((self.data, df_y_pred3, df_y_pred3_probability), axis=1) + + if self.y_pred4 is not None: + self.y_pred4_probability = self.y_pred4.flatten() + self.y_pred4 = self.y_pred4_probability.round().astype(int) + df_y_pred4 = pd.Series(self.y_pred4, name='y_pred4') + df_y_pred4_probability = pd.Series(self.y_pred4_probability, name='y_pred4_probs') + self.data = pd.concat((self.data, df_y_pred3, df_y_pred4_probability), axis=1) + + if self.y_pred5 is not None: + self.y_pred5_probability = self.y_pred5.flatten() + self.y_pred5 = self.y_pred5_probability.round().astype(int) + df_y_pred5 = pd.Series(self.y_pred5, name='y_pred5') + df_y_pred5_probability = pd.Series(self.y_pred5_probability, name='y_pred5_probs') + self.data = pd.concat((self.data, df_y_pred5, df_y_pred5_probability), axis=1) + + def __len__(self): + return len(self.imgs) + + def _parse_normal(self, img_filename): + return "positive" if ("abnormal" in img_filename ) else "negative" + + def _parse_valid(self, img_filename): + return "valid" if ("valid" in img_filename ) else "test" + + def _parse_patient(self, img_filename): + return int(self._patient_re.search(img_filename).group(1)) + + def _parse_study(self, img_filename): + return int(self._study_re.search(img_filename).group(1)) + + def _parse_image(self, img_filename): + return int(self._image_re.search(img_filename).group(1)) + + def _parse_study_type(self, img_filename): + return self._study_type_re.search(img_filename).group(1) + + def metrics(self): + return "per image metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format( + accuracy_score(self.y_true, self.y_pred2), + f1_score(self.y_true, self.y_pred2), + precision_score(self.y_true, self.y_pred2), + recall_score(self.y_true, self.y_pred2), + cohen_kappa_score(self.y_true, self.y_pred2), ) + + def metrics_by_encounter(self): + y_pred1 = self.data.groupby(['encounter'])['y_pred1_probs'].mean() + y_pred2 = self.data.groupby(['encounter'])['y_pred2_probs'].mean() + y_pred3 = self.data.groupby(['encounter'])['y_pred3_probs'].mean() + y_pred4 = self.data.groupby(['encounter'])['y_pred4_probs'].mean() + y_pred5 = self.data.groupby(['encounter'])['y_pred5_probs'].mean() + week_group = (list( self.data.groupby(['encounter']).groups.keys())) + + y_pred = ((y_pred1 + y_pred2 + y_pred3 + y_pred4 + y_pred5)/5).round() + y_pred_ = (y_pred + 1) % 2 + #y_pred = y_pred.round() + df_pred = pd.Series(np.array(y_pred_, np.int32), index=week_group) + + df_pred.to_csv(self.output_path) + self.data.to_csv("data.csv", mode="a", header=True) + + # print(df_pred) + #df_filename = pd.Series(np.array(week_group)) + # self.group_data = pd.concat([df_pred]) + + # self.group_data.to_csv(self.output_path) + + y_true = self.data.groupby(['encounter'])['y_true'].mean().round() + return "per encounter metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format( + accuracy_score(y_true, y_pred), + f1_score(y_true, y_pred), + precision_score(y_true, y_pred), + recall_score(y_true, y_pred), + cohen_kappa_score(y_true, y_pred), ) + + def metrics_by_study_type(self): + y_pred1 = self.data.groupby(['patient'])['y_pred1_probs'].mean() + y_pred2 = self.data.groupby(['patient'])['y_pred2_probs'].mean() + y_pred3 = self.data.groupby(['patient'])['y_pred3_probs'].mean() + y_pred4 = self.data.groupby(['patient'])['y_pred4_probs'].mean() + y_pred5 = self.data.groupby(['patient'])['y_pred5_probs'].mean() + + y_pred = ((y_pred1 + y_pred5 + y_pred3 + y_pred3 + y_pred5)/5).round() +# y_pred = y_pred1 + y_true = self.data.groupby(['patient'])['y_true'].mean().round() + + self.data.to_csv("data.csv",mode="a",header=True) + self.group_data = pd.concat([self.data, y_pred, y_true,], axis=1) + self.group_data.to_csv("group_data.csv", mode="a", header=True) + + return "per study_type metrics:\n\taccuracy : {:.3f}\tf1 : {:.3f}\tprecision : {:.3f}\trecall : {:.3f}\tcohen_kappa : {:.3f}".format( + accuracy_score(y_true, y_pred), + f1_score(y_true, y_pred), + precision_score(y_true, y_pred), + recall_score(y_true, y_pred), + cohen_kappa_score(y_true, y_pred), )