|
a |
|
b/test.py |
|
|
1 |
from datetime import datetime |
|
|
2 |
import numpy as np |
|
|
3 |
import argparse |
|
|
4 |
|
|
|
5 |
from model.initialization import initialization |
|
|
6 |
from model.utils import evaluation |
|
|
7 |
from config import conf |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
def boolean_string(s): |
|
|
11 |
if s.upper() not in {'FALSE', 'TRUE'}: |
|
|
12 |
raise ValueError('Not a valid boolean string') |
|
|
13 |
return s.upper() == 'TRUE' |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
parser = argparse.ArgumentParser(description='Test') |
|
|
17 |
parser.add_argument('--iter', default='80000', type=int, |
|
|
18 |
help='iter: iteration of the checkpoint to load. Default: 80000') |
|
|
19 |
parser.add_argument('--batch_size', default='1', type=int, |
|
|
20 |
help='batch_size: batch size for parallel test. Default: 1') |
|
|
21 |
parser.add_argument('--cache', default=False, type=boolean_string, |
|
|
22 |
help='cache: if set as TRUE all the test data will be loaded at once' |
|
|
23 |
' before the transforming start. Default: FALSE') |
|
|
24 |
opt = parser.parse_args() |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
# Exclude identical-view cases |
|
|
28 |
def de_diag(acc, each_angle=False): |
|
|
29 |
result = np.sum(acc - np.diag(np.diag(acc)), 1) / 10.0 |
|
|
30 |
if not each_angle: |
|
|
31 |
result = np.mean(result) |
|
|
32 |
return result |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
m = initialization(conf, test=opt.cache)[0] |
|
|
36 |
|
|
|
37 |
# load model checkpoint of iteration opt.iter |
|
|
38 |
print('Loading the model of iteration %d...' % opt.iter) |
|
|
39 |
m.load(opt.iter) |
|
|
40 |
print('Transforming...') |
|
|
41 |
time = datetime.now() |
|
|
42 |
test = m.transform('test', opt.batch_size) |
|
|
43 |
print('Evaluating...') |
|
|
44 |
acc = evaluation(test, conf['data']) |
|
|
45 |
print('Evaluation complete. Cost:', datetime.now() - time) |
|
|
46 |
|
|
|
47 |
# Print rank-1 accuracy of the best model |
|
|
48 |
# e.g. |
|
|
49 |
# ===Rank-1 (Include identical-view cases)=== |
|
|
50 |
# NM: 95.405, BG: 88.284, CL: 72.041 |
|
|
51 |
for i in range(1): |
|
|
52 |
print('===Rank-%d (Include identical-view cases)===' % (i + 1)) |
|
|
53 |
print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % ( |
|
|
54 |
np.mean(acc[0, :, :, i]), |
|
|
55 |
np.mean(acc[1, :, :, i]), |
|
|
56 |
np.mean(acc[2, :, :, i]))) |
|
|
57 |
|
|
|
58 |
# Print rank-1 accuracy of the best model,excluding identical-view cases |
|
|
59 |
# e.g. |
|
|
60 |
# ===Rank-1 (Exclude identical-view cases)=== |
|
|
61 |
# NM: 94.964, BG: 87.239, CL: 70.355 |
|
|
62 |
for i in range(1): |
|
|
63 |
print('===Rank-%d (Exclude identical-view cases)===' % (i + 1)) |
|
|
64 |
print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % ( |
|
|
65 |
de_diag(acc[0, :, :, i]), |
|
|
66 |
de_diag(acc[1, :, :, i]), |
|
|
67 |
de_diag(acc[2, :, :, i]))) |
|
|
68 |
|
|
|
69 |
# Print rank-1 accuracy of the best model (Each Angle) |
|
|
70 |
# e.g. |
|
|
71 |
# ===Rank-1 of each angle (Exclude identical-view cases)=== |
|
|
72 |
# NM: [90.80 97.90 99.40 96.90 93.60 91.70 95.00 97.80 98.90 96.80 85.80] |
|
|
73 |
# BG: [83.80 91.20 91.80 88.79 83.30 81.00 84.10 90.00 92.20 94.45 79.00] |
|
|
74 |
# CL: [61.40 75.40 80.70 77.30 72.10 70.10 71.50 73.50 73.50 68.40 50.00] |
|
|
75 |
np.set_printoptions(precision=2, floatmode='fixed') |
|
|
76 |
for i in range(1): |
|
|
77 |
print('===Rank-%d of each angle (Exclude identical-view cases)===' % (i + 1)) |
|
|
78 |
print('NM:', de_diag(acc[0, :, :, i], True)) |
|
|
79 |
print('BG:', de_diag(acc[1, :, :, i], True)) |
|
|
80 |
print('CL:', de_diag(acc[2, :, :, i], True)) |