|
a |
|
b/model/model.py |
|
|
1 |
import math |
|
|
2 |
import os |
|
|
3 |
import os.path as osp |
|
|
4 |
import random |
|
|
5 |
import sys |
|
|
6 |
from datetime import datetime |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
import torch |
|
|
10 |
import torch.nn as nn |
|
|
11 |
import torch.autograd as autograd |
|
|
12 |
import torch.optim as optim |
|
|
13 |
import torch.utils.data as tordata |
|
|
14 |
|
|
|
15 |
from .network import TripletLoss, SetNet |
|
|
16 |
from .utils import TripletSampler |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
class Model: |
|
|
20 |
def __init__(self, |
|
|
21 |
hidden_dim, |
|
|
22 |
lr, |
|
|
23 |
hard_or_full_trip, |
|
|
24 |
margin, |
|
|
25 |
num_workers, |
|
|
26 |
batch_size, |
|
|
27 |
restore_iter, |
|
|
28 |
total_iter, |
|
|
29 |
save_name, |
|
|
30 |
train_pid_num, |
|
|
31 |
frame_num, |
|
|
32 |
model_name, |
|
|
33 |
train_source, |
|
|
34 |
test_source, |
|
|
35 |
img_size=64): |
|
|
36 |
|
|
|
37 |
self.save_name = save_name |
|
|
38 |
self.train_pid_num = train_pid_num |
|
|
39 |
self.train_source = train_source |
|
|
40 |
self.test_source = test_source |
|
|
41 |
|
|
|
42 |
self.hidden_dim = hidden_dim |
|
|
43 |
self.lr = lr |
|
|
44 |
self.hard_or_full_trip = hard_or_full_trip |
|
|
45 |
self.margin = margin |
|
|
46 |
self.frame_num = frame_num |
|
|
47 |
self.num_workers = num_workers |
|
|
48 |
self.batch_size = batch_size |
|
|
49 |
self.model_name = model_name |
|
|
50 |
self.P, self.M = batch_size |
|
|
51 |
|
|
|
52 |
self.restore_iter = restore_iter |
|
|
53 |
self.total_iter = total_iter |
|
|
54 |
|
|
|
55 |
self.img_size = img_size |
|
|
56 |
|
|
|
57 |
self.encoder = SetNet(self.hidden_dim).float() |
|
|
58 |
self.encoder = nn.DataParallel(self.encoder) |
|
|
59 |
self.triplet_loss = TripletLoss(self.P * self.M, self.hard_or_full_trip, self.margin).float() |
|
|
60 |
self.triplet_loss = nn.DataParallel(self.triplet_loss) |
|
|
61 |
self.encoder.cuda() |
|
|
62 |
self.triplet_loss.cuda() |
|
|
63 |
|
|
|
64 |
self.optimizer = optim.Adam([ |
|
|
65 |
{'params': self.encoder.parameters()}, |
|
|
66 |
], lr=self.lr) |
|
|
67 |
|
|
|
68 |
self.hard_loss_metric = [] |
|
|
69 |
self.full_loss_metric = [] |
|
|
70 |
self.full_loss_num = [] |
|
|
71 |
self.dist_list = [] |
|
|
72 |
self.mean_dist = 0.01 |
|
|
73 |
|
|
|
74 |
self.sample_type = 'all' |
|
|
75 |
|
|
|
76 |
def collate_fn(self, batch): |
|
|
77 |
batch_size = len(batch) |
|
|
78 |
feature_num = len(batch[0][0]) |
|
|
79 |
seqs = [batch[i][0] for i in range(batch_size)] |
|
|
80 |
frame_sets = [batch[i][1] for i in range(batch_size)] |
|
|
81 |
view = [batch[i][2] for i in range(batch_size)] |
|
|
82 |
seq_type = [batch[i][3] for i in range(batch_size)] |
|
|
83 |
label = [batch[i][4] for i in range(batch_size)] |
|
|
84 |
batch = [seqs, view, seq_type, label, None] |
|
|
85 |
|
|
|
86 |
def select_frame(index): |
|
|
87 |
sample = seqs[index] |
|
|
88 |
frame_set = frame_sets[index] |
|
|
89 |
if self.sample_type == 'random': |
|
|
90 |
frame_id_list = random.choices(frame_set, k=self.frame_num) |
|
|
91 |
_ = [feature.loc[frame_id_list].values for feature in sample] |
|
|
92 |
else: |
|
|
93 |
_ = [feature.values for feature in sample] |
|
|
94 |
return _ |
|
|
95 |
|
|
|
96 |
seqs = list(map(select_frame, range(len(seqs)))) |
|
|
97 |
|
|
|
98 |
if self.sample_type == 'random': |
|
|
99 |
seqs = [np.asarray([seqs[i][j] for i in range(batch_size)]) for j in range(feature_num)] |
|
|
100 |
else: |
|
|
101 |
gpu_num = min(torch.cuda.device_count(), batch_size) |
|
|
102 |
batch_per_gpu = math.ceil(batch_size / gpu_num) |
|
|
103 |
batch_frames = [[ |
|
|
104 |
len(frame_sets[i]) |
|
|
105 |
for i in range(batch_per_gpu * _, batch_per_gpu * (_ + 1)) |
|
|
106 |
if i < batch_size |
|
|
107 |
] for _ in range(gpu_num)] |
|
|
108 |
if len(batch_frames[-1]) != batch_per_gpu: |
|
|
109 |
for _ in range(batch_per_gpu - len(batch_frames[-1])): |
|
|
110 |
batch_frames[-1].append(0) |
|
|
111 |
max_sum_frame = np.max([np.sum(batch_frames[_]) for _ in range(gpu_num)]) |
|
|
112 |
seqs = [[ |
|
|
113 |
np.concatenate([ |
|
|
114 |
seqs[i][j] |
|
|
115 |
for i in range(batch_per_gpu * _, batch_per_gpu * (_ + 1)) |
|
|
116 |
if i < batch_size |
|
|
117 |
], 0) for _ in range(gpu_num)] |
|
|
118 |
for j in range(feature_num)] |
|
|
119 |
seqs = [np.asarray([ |
|
|
120 |
np.pad(seqs[j][_], |
|
|
121 |
((0, max_sum_frame - seqs[j][_].shape[0]), (0, 0), (0, 0)), |
|
|
122 |
'constant', |
|
|
123 |
constant_values=0) |
|
|
124 |
for _ in range(gpu_num)]) |
|
|
125 |
for j in range(feature_num)] |
|
|
126 |
batch[4] = np.asarray(batch_frames) |
|
|
127 |
|
|
|
128 |
batch[0] = seqs |
|
|
129 |
return batch |
|
|
130 |
|
|
|
131 |
def fit(self): |
|
|
132 |
if self.restore_iter != 0: |
|
|
133 |
self.load(self.restore_iter) |
|
|
134 |
|
|
|
135 |
self.encoder.train() |
|
|
136 |
self.sample_type = 'random' |
|
|
137 |
for param_group in self.optimizer.param_groups: |
|
|
138 |
param_group['lr'] = self.lr |
|
|
139 |
triplet_sampler = TripletSampler(self.train_source, self.batch_size) |
|
|
140 |
train_loader = tordata.DataLoader( |
|
|
141 |
dataset=self.train_source, |
|
|
142 |
batch_sampler=triplet_sampler, |
|
|
143 |
collate_fn=self.collate_fn, |
|
|
144 |
num_workers=self.num_workers) |
|
|
145 |
|
|
|
146 |
train_label_set = list(self.train_source.label_set) |
|
|
147 |
train_label_set.sort() |
|
|
148 |
|
|
|
149 |
_time1 = datetime.now() |
|
|
150 |
for seq, view, seq_type, label, batch_frame in train_loader: |
|
|
151 |
self.restore_iter += 1 |
|
|
152 |
self.optimizer.zero_grad() |
|
|
153 |
|
|
|
154 |
for i in range(len(seq)): |
|
|
155 |
seq[i] = self.np2var(seq[i]).float() |
|
|
156 |
if batch_frame is not None: |
|
|
157 |
batch_frame = self.np2var(batch_frame).int() |
|
|
158 |
|
|
|
159 |
feature, label_prob = self.encoder(*seq, batch_frame) |
|
|
160 |
|
|
|
161 |
target_label = [train_label_set.index(l) for l in label] |
|
|
162 |
target_label = self.np2var(np.array(target_label)).long() |
|
|
163 |
|
|
|
164 |
triplet_feature = feature.permute(1, 0, 2).contiguous() |
|
|
165 |
triplet_label = target_label.unsqueeze(0).repeat(triplet_feature.size(0), 1) |
|
|
166 |
(full_loss_metric, hard_loss_metric, mean_dist, full_loss_num |
|
|
167 |
) = self.triplet_loss(triplet_feature, triplet_label) |
|
|
168 |
if self.hard_or_full_trip == 'hard': |
|
|
169 |
loss = hard_loss_metric.mean() |
|
|
170 |
elif self.hard_or_full_trip == 'full': |
|
|
171 |
loss = full_loss_metric.mean() |
|
|
172 |
|
|
|
173 |
self.hard_loss_metric.append(hard_loss_metric.mean().data.cpu().numpy()) |
|
|
174 |
self.full_loss_metric.append(full_loss_metric.mean().data.cpu().numpy()) |
|
|
175 |
self.full_loss_num.append(full_loss_num.mean().data.cpu().numpy()) |
|
|
176 |
self.dist_list.append(mean_dist.mean().data.cpu().numpy()) |
|
|
177 |
|
|
|
178 |
if loss > 1e-9: |
|
|
179 |
loss.backward() |
|
|
180 |
self.optimizer.step() |
|
|
181 |
|
|
|
182 |
if self.restore_iter % 1000 == 0: |
|
|
183 |
print(datetime.now() - _time1) |
|
|
184 |
_time1 = datetime.now() |
|
|
185 |
|
|
|
186 |
if self.restore_iter % 100 == 0: |
|
|
187 |
self.save() |
|
|
188 |
print('iter {}:'.format(self.restore_iter), end='') |
|
|
189 |
print(', hard_loss_metric={0:.8f}'.format(np.mean(self.hard_loss_metric)), end='') |
|
|
190 |
print(', full_loss_metric={0:.8f}'.format(np.mean(self.full_loss_metric)), end='') |
|
|
191 |
print(', full_loss_num={0:.8f}'.format(np.mean(self.full_loss_num)), end='') |
|
|
192 |
self.mean_dist = np.mean(self.dist_list) |
|
|
193 |
print(', mean_dist={0:.8f}'.format(self.mean_dist), end='') |
|
|
194 |
print(', lr=%f' % self.optimizer.param_groups[0]['lr'], end='') |
|
|
195 |
print(', hard or full=%r' % self.hard_or_full_trip) |
|
|
196 |
sys.stdout.flush() |
|
|
197 |
self.hard_loss_metric = [] |
|
|
198 |
self.full_loss_metric = [] |
|
|
199 |
self.full_loss_num = [] |
|
|
200 |
self.dist_list = [] |
|
|
201 |
|
|
|
202 |
# Visualization using t-SNE |
|
|
203 |
# if self.restore_iter % 500 == 0: |
|
|
204 |
# pca = TSNE(2) |
|
|
205 |
# pca_feature = pca.fit_transform(feature.view(feature.size(0), -1).data.cpu().numpy()) |
|
|
206 |
# for i in range(self.P): |
|
|
207 |
# plt.scatter(pca_feature[self.M * i:self.M * (i + 1), 0], |
|
|
208 |
# pca_feature[self.M * i:self.M * (i + 1), 1], label=label[self.M * i]) |
|
|
209 |
# |
|
|
210 |
# plt.show() |
|
|
211 |
|
|
|
212 |
if self.restore_iter == self.total_iter: |
|
|
213 |
break |
|
|
214 |
|
|
|
215 |
def ts2var(self, x): |
|
|
216 |
return autograd.Variable(x).cuda() |
|
|
217 |
|
|
|
218 |
def np2var(self, x): |
|
|
219 |
return self.ts2var(torch.from_numpy(x)) |
|
|
220 |
|
|
|
221 |
def transform(self, flag, batch_size=1): |
|
|
222 |
self.encoder.eval() |
|
|
223 |
source = self.test_source if flag == 'test' else self.train_source |
|
|
224 |
self.sample_type = 'all' |
|
|
225 |
data_loader = tordata.DataLoader( |
|
|
226 |
dataset=source, |
|
|
227 |
batch_size=batch_size, |
|
|
228 |
sampler=tordata.sampler.SequentialSampler(source), |
|
|
229 |
collate_fn=self.collate_fn, |
|
|
230 |
num_workers=self.num_workers) |
|
|
231 |
|
|
|
232 |
feature_list = list() |
|
|
233 |
view_list = list() |
|
|
234 |
seq_type_list = list() |
|
|
235 |
label_list = list() |
|
|
236 |
|
|
|
237 |
for i, x in enumerate(data_loader): |
|
|
238 |
seq, view, seq_type, label, batch_frame = x |
|
|
239 |
for j in range(len(seq)): |
|
|
240 |
seq[j] = self.np2var(seq[j]).float() |
|
|
241 |
if batch_frame is not None: |
|
|
242 |
batch_frame = self.np2var(batch_frame).int() |
|
|
243 |
# print(batch_frame, np.sum(batch_frame)) |
|
|
244 |
|
|
|
245 |
feature, _ = self.encoder(*seq, batch_frame) |
|
|
246 |
n, num_bin, _ = feature.size() |
|
|
247 |
feature_list.append(feature.view(n, -1).data.cpu().numpy()) |
|
|
248 |
view_list += view |
|
|
249 |
seq_type_list += seq_type |
|
|
250 |
label_list += label |
|
|
251 |
|
|
|
252 |
return np.concatenate(feature_list, 0), view_list, seq_type_list, label_list |
|
|
253 |
|
|
|
254 |
def save(self): |
|
|
255 |
os.makedirs(osp.join('checkpoint', self.model_name), exist_ok=True) |
|
|
256 |
torch.save(self.encoder.state_dict(), |
|
|
257 |
osp.join('checkpoint', self.model_name, |
|
|
258 |
'{}-{:0>5}-encoder.ptm'.format( |
|
|
259 |
self.save_name, self.restore_iter))) |
|
|
260 |
torch.save(self.optimizer.state_dict(), |
|
|
261 |
osp.join('checkpoint', self.model_name, |
|
|
262 |
'{}-{:0>5}-optimizer.ptm'.format( |
|
|
263 |
self.save_name, self.restore_iter))) |
|
|
264 |
|
|
|
265 |
# restore_iter: iteration index of the checkpoint to load |
|
|
266 |
def load(self, restore_iter): |
|
|
267 |
self.encoder.load_state_dict(torch.load(osp.join( |
|
|
268 |
'checkpoint', self.model_name, |
|
|
269 |
'{}-{:0>5}-encoder.ptm'.format(self.save_name, restore_iter)))) |
|
|
270 |
self.optimizer.load_state_dict(torch.load(osp.join( |
|
|
271 |
'checkpoint', self.model_name, |
|
|
272 |
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, restore_iter)))) |