[d8e3cc]: / code / identification / CNN+LSTM / cnn_fix.py

Download this file

149 lines (134 with data), 6.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
import numpy as np
import os
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
def load_X(path):
X_signals = []
files = os.listdir(path)
files.sort(key=str.lower)
#file
#['train_acc_x.txt', 'train_acc_y.txt', 'train_acc_z.txt', 'train_gyr_x.txt', 'train_gyr_y.txt', 'train_gyr_z.txt']
for my_file in files:
fileName = os.path.join(path,my_file)
file = open(fileName, 'r')
X_signals.append(
[np.array(cell, dtype=np.float32) for cell in [
row.strip().split(' ') for row in file
]]
)
file.close()
#X_signals = 6*totalStepNum*128
return np.transpose(np.array(X_signals), (1, 2, 0))#(totalStepNum*128*6)
def load_y(y_path):
file = open(y_path, 'r')
# Read dataset from disk, dealing with text file's syntax
y_ = np.array(
[elem for elem in [
row.replace(' ', ' ').strip().split(' ') for row in file
]],
dtype=np.int32
)
file.close()
# Substract 1 to each output class for friendly 0-based indexing
y_ = y_ - 1
#one_hot
y_ = y_.reshape(len(y_))
n_values = int(np.max(y_)) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)] # Returns FLOATS
#---------------------------the part of CNN---------------------------------
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
#----------------------------------the part of LSTM--------------------------------
def LSTM_Network(input):
n_hidden = 1024
n_steps = 128
n_inputs = 6
# (NOTE: This step could be greatly optimised by shaping the dataset once
# input shape: (batch_size, n_steps, n_input)
_X = tf.transpose(input, [1, 0, 2]) # permute n_steps and batch_size
# Reshape to prepare input to hidden activation
_X = tf.reshape(_X, [-1, n_inputs])
# new shape: (n_steps*batch_size, n_input)
W = tf.Variable(tf.random_normal([n_inputs, n_hidden]))
B = tf.Variable(tf.random_normal([n_hidden], mean=1.0)),
# Linear activation
_X = tf.nn.relu(tf.matmul(_X, W) + B)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X,n_steps, 0)
# new shape: n_steps * (batch_size, n_hidden)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
# Get LSTM cell output
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# Get last time step's output feature for a "many to one" style classifier,
# as in the image describing RNNs at the top of this page
# Linear activation
#return tf.matmul(lstm_last_output, config.W['output']) + config.biases['output']
return outputs[-1]
def last_full_connection_layer(lstm_output,cnn_output):
cnn_output = tf.contrib.layers.flatten(cnn_output)
eigen_input = tf.concat([lstm_output, cnn_output],1)
W_fc2 = weight_variable([1024+2048, 118])
b_fc2 = bias_variable([118])
#y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
return tf.nn.softmax(tf.matmul(eigen_input, W_fc2) + b_fc2)
X_ = tf.placeholder(tf.float32, [None, 128, 6])
label_ = tf.placeholder(tf.float32, [None, 118])
X_train = load_X('../data/train/record')
X_test = load_X('../data/test/record')
train_label = load_y('../data/train/label.txt')
test_label = load_y('../data/test/label.txt')
sess = tf.InteractiveSession(config=config)
#lstm
lstm_output = LSTM_Network(X_)
#cnn
# load model
cnn_saver = tf.train.import_meta_graph('./cnn_ckpt/model.meta')
cnn_saver.restore(sess, tf.train.latest_checkpoint('./cnn_ckpt/'))
graph = tf.get_default_graph()
# cnn placeholder
cnn_X = graph.get_tensor_by_name("cnn_X:0")
# cnn output
cnn_output = graph.get_tensor_by_name("cnn_output:0")
pred_Y = last_full_connection_layer(lstm_output,cnn_output)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(label_ * tf.log(pred_Y+1e-10), reduction_indices=[1]),name='cnn_fix_cross_entropy')
train_step = tf.train.AdamOptimizer(1e-3,name='cnn_fix_train_step').minimize(cross_entropy,name='cnn_fix_minimize')
correct_prediction = tf.equal(tf.argmax(pred_Y,1), tf.argmax(label_,1),name='cnn_fix_correct_prediction')
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32,name='cnn_fix_accuracy'))
sess.run(tf.global_variables_initializer())
f = open('result_cnn_fix.txt','w')
best_accuracy = 0
for i in range(100):
batch_size = 128
for start,end in zip(range(0,len(train_label),batch_size),
range(batch_size,len(train_label)+1,batch_size)):
cnn_feed = np.transpose(X_train[start:end],[0,2,1]).reshape([-1,6,128,1])
sess.run(train_step,feed_dict={
cnn_X:cnn_feed,
X_:X_train[start:end],
label_:train_label[start:end]
})
# Test completely at every epoch: calculate accuracy
cnn_test_feed = np.transpose(X_test, [0, 2, 1]).reshape([-1, 6, 128, 1])
accuracy_out, loss_out = sess.run(
[accuracy, cross_entropy],
feed_dict={
cnn_X: cnn_test_feed,
X_:X_test,
label_:test_label
}
)
if accuracy_out > best_accuracy:
best_accuracy = accuracy_out
print(str(i)+'th cross_entropy:',str(loss_out),'accuracy:',str(accuracy_out))
f.write(str(i)+'th cross_entropy:',str(loss_out),'accuracy:',str(accuracy_out))
print("best accuracy:"+str(best_accuracy))
f.write("best accuracy:"+str(best_accuracy))
f.close()