
Automatic Segmentation for Lower Limb Bones & Muscles using
Deep Learning

Research Compendium for ENGSCI700: Part IV Project (Project #28)

Report By: Asif Juzar Cheena, Project Partner: Pranav Rao, Project Supervisor: Dr Julie Choisne



Outline
This research compendium will go through the technical aspects of the methodology providing a solid overview
of the work we did to provide some soundness to our findings. In regard to work distribution, I primarily
worked on the deep learning application, and Pranav Rao mainly worked on data preparation as well as the data
processing. We worked together on data processing, where my contribution was primarily integrating it all into
the pipeline detailed in this report.

Medical Data Preprocessing Pipeline

Figure: Training Data Processing Pipeline on GUI

This was the first major component of our deep learning segmentation pipeline and it essentially got our data in
a trainable format to be fed into a deep learning architecture and actually achieve effective model learning.

Libraries



Importing in the required libraries for processing the medical data preprocessing

Reading in DICOMMedical Scans and Pulling Raw Model Training Data

The function above is in charge of accessing the metadata in the DICOM MRI data. This is the main
function calling helper functions like read_dicom_files that iteratively reads the MRI scan data folders
with 1015 individual 2D DICOM scan files. The read_dicom_files outputs the pixel intensity data and
coordinate data of each 2D slice (2D scan). 3D arrays storing the patient’s scan pixel data are returned to
a larger function I will detail next. This provides us with raw scan pixel data.



Reading in Binary Mask Data from 3D Slicer Software Output and Pulling Mask Data

This pulls the data from the binary segmentation masks created in the 3D Slicer modeling software by Pranav
and pulls the “subsetting” slice information, and this determines where exactly in the pelvis starts and the fibula
ends for a given patient. The raw data is of the patient’s full body, however we only need their lower limb data
for the segmentation task as all our regions of interest lie here. So this function feeds into a larger main function
similar to the previous function mentioned.



Core Data Preprocessing Function

This is the main preprocessing function, the brain of the processing phase. On a patient-level we pass through a 3D
array of patient scan and mask data after reading them from the previous 2 functions mentioned. The function first
performs the domain-specific preprocessing step of subsetting the scan volumes to strictly lower limb scans, from
the patient’s waist-down.

Normalization + Binarization



After that pixel scan data is min-max normalized, and the mask is binarized. Normalizing the pixel data brings it
into a range of 0 to 1 for models to learn effectively. The binarizing of the mask forms a binary mask where it
represents a single segmentation task of the model. The mask data would be composed of 2 classes, 0’s to represent
the background pixel data, and 1’s to represent the pixels that belong to the segmentation task. Segmentation refers
to the task of segmenting an individual bone group: tibia, femur, fibula or pelvis. Note: Sometimes the values from
the 3D Slice output were not binary in nature, so the binarization step is just a safety measure.

Image Resizing and Outputting Training Data

The last part of the main function seen above performs image resizing to lower the dimensionality of our input.
This was needed as data size 512x512 was too computationally expensive, and did not support model performance.
256x256 was a more optimal decision, to speed up the flow of patient data within the larger data pipeline, and
supports better modeling computational efficiency more importantly. After resizing, the training scans and training
masks are returned into the core of our data pipeline.



Core Data Pipeline (Multi-Class Segmentation Creation)

Having 4 distinct deep learning models to all individually predict a single bone group is infeasible and impractical. So
we expand the scope of the data and essentially concatenate all the individual binary masks into a multi-class
segmentation mask that allows for a multi-class segmentation model. The CreateMasks4MulticlassMSK is creating the
multi-class masks. It accesses all the individual binary segmentation data that was written out from the model as *niiz.gz
files for a given patient. After doing that it essentially encodes each binary mask with their class value. It maps across as
follows: background = 0, tibia = 1, femur = 2, fibula = 3, and pelvis = 4. Once encoded, each 2D array was summed
together. In theory, with no overlapping regions the multi-class should be perfectly encoded with only the label values
listed. If there are overlapping regions the encoding values would be greater than 4, as the non-zero encodings would
sum when concatenating. We replace the overlap with the background so the model is not confused. Another approach
would be selecting one bone group over the other, but we opted for the background encoding as it smoothens the outline
of the mask.

Within CreateMasks4MulticlassMSK we had a function that exported out all the the preprocessed multi-class
segmentation masks as *nii.gz files into the appropriate training label data folder in the directory.

The Export2CompressedNifiti is the export function used in the CreateMasks4MulticlassMSK function and it writes
the preprocessing pixel training data into the appropriate training data folder in the directory.



Preprocessed Data Visualisation (Tairawhiti Dataset)

MRI Raw Scan

Multi-Class Mask

Superimposed
Representation



Deep Learning Libraries



Data Augmentation - Core Modelling Pipeline

The preprocessed scan and multi-class mask data is imported into the Google Collab after uploading the *ni.gz to Google
Drive.

The above is the data augmentation main function within the data pipeline of the deep learning segmentation model.

The DataAugmentation function is stored in a py file and is imported. The function is fed the preprocessed training
scans and mask data, and a parameter for num_augmentation which determines the number of augments to apply to
each slice. After applying augmentation the size of the training data will scale by this factor.



Data Augmentation - Function

The data augmentation function takes in 3D preprocessed scan volumes and their corresponding segmentation masks for
an entire patient. It applies the following:

1. Rotation about the coronal axis (frontal axis) randomly sampled from a uniform distribution within [-15°, 15°]
2. Probabilistically flipping images about the sagittal axis from a uniform distribution within [0, 1].



2D U-Net Architecture - PyTorch



2D U-Net Hyper-Parameter Configuration



nnU-Net - Preprocessing Plan

The nnU-Net uses the same import function as stated for the 2D-UNet

nnU-Net - 2D U-Net Configuration

nnU-Net - 3D U-Net Configuration

The model architecture summary output, and hyper-parameters are stored in the json files created in the preprocessing
step.



nnU-Net Slice Predictions

nnU-Net (3D U-Net) - 3D Raw Segmentation Output nnU-Net (2D U-Net) - 3D Raw Segmentation Output



Transfer Learning Model (Resnet34 U-Net)

The transfer learning model utilizes the same scan and mask import and data augmentation functions as stated earlier.

Resnet34 U-Net Hyper-Parameter Configuration

● LR Schedule (Decay of 1e-6) with LR = 1e-4
● Softmax on output layer
● Custom Loss Function of Dice Loss & Categorical Focal Loss
● After each epoch report the IoU, F1-Score, and approximate DSC



Resnet34 U-Net Model

● Load in the resnet34 backbone architecture using the segmentation-models module
● Applying the required preprocessing steps for the backbone model, this was included as a safety measure as the

data should have the correct dimensionality for any of the backbone models used in the experimentation.
● Constructing the model with the backbone architecture. This involved defining the set of pretrained weights for

the encoder (imagenet dataset), the number of classes being the number of segmentation groups plus the
background, the activation function for the output layer (softmax for multiple classes), and finally specifying
whether or not we want to freeze the encoder weights which essentially freezes all the imagenet pre-trained
weights of the resnet34 model. When fine-tuning with this set to true, the model would only further optimize the
decoder weights. When set to false, the encoder and decoder weights are fine-tuned.

● Early stopping so if the validation loss demonstrates convergence for 20 epochs or more the training will end



Resnet34 U-Net Segmentation Predictions

● The above loads in the weights of the trained model. It also imports unseen patient’s MRI and mask data. This
data is preprocessed and formatted, then run through the model for prediction, producing an output/predicted
segmentation.



● Each output segmentation mask contains segmentation data on all the tasks, so they are separated out so we can
assess the performance of the model on both a multi-class and individual task basis. Each prediction
segmentation mask and its corresponding ground truth mask are fed into the performance evaluation, where the
metric is returned, and this encapsulates the procedure behind a single fold evaluation of a model.



Model Evaluation Metrics

The functions calculate the Dice Similarity Score (DSC) and the Volume Error (VError) that we use to evaluate and
benchmark model performance/segmentation accuracy.



3D Visualisation of Segmentation Results

● The function above produces PLY files containing the 3D musculoskeletal structures for each segmentation task.



Post-Processing

● The function above is the denoising algorithm developed for the post-processing of segmentation results
● The denoising algorithm performs both hole filling and small noise/small artifact removal, and this is

done through leveraging adaptive thresholding.
● Small Artifact Removal - On a slice level we look at the pixel distribution among the classes, and then

determine a minimum noise threshold. We look at given class pixels and their adjacent pixel neighbors to
understand the density. If that density falls under a certain threshold the pixels of that region are
considered noise and are removed.

● Hole Filling - This uses similar logic but searches for pixel density regions that are “inconsistent”. We
firstly invert the encodings, get the number of pixels for each class, if this number falls under a region size
threshold the reversed encodings are defined as a hole for that given class and its replaced with the class
encoding.



Lower Limb Musculoskeletal Automatic Segmentation Tool

● Once the tool is launched it automatically creates all the data directories required to run the pipeline
○ Model Code - Holds all the pipeline backend code plus scripts that operate independently outside

of the pipeline that yet require integration.
○ nnUNet Data - Holds all scan and multi-class/binary preprocessed outputs (Note: Despite its

naming it holds ALL preprocessed data that is fed into all deep learning models)
○ Patient Segmentation Tasks (Google Colab) - Holds all the preprocessed test instances that do not

have any ground truth segmentations
○ Pre-Trained Models (Google Colab) - This holds all the pre-trained deep learning models as

*.keras and *.h5 files containing their weights
○ Raw DICOM MRI Scans - This holds all the raw patient data as 2D DICOM files
○ Raw NIFITI Segmentation Masks (3D Slicer Output) - This contains all the binarized

segmentation masks



● Define the base directory, essentially where the folders stated above lie

● This part of the tool runs the preprocessing data pipeline
○ Scan Folder Name - The name of the patient scan folder within the Raw DICOM MRI Scans folder
○ Select Image Data Size - Provides a dropbox that allows the resizing of the preprocessed data as either

512x512 or 256x256.
○ Each patient folder has a specific de-identified code and that allows us to clearly define on a patient level

what data belongs to who. When entering the scan folder name it's important to follow the structure,
mainly the starting index and the final code (6, 9B). As long as the binarized mask data imported in from
3D slicer follows this structure the pipeline picks it up from its given folder and runs the multi-class
segmentation creation.

○ Output: Preprocessed Scan Data & Multiclass Segmentation Masks



● Preprocessing inference data runs a special variation. This is not for model training and for preprocessing
data that does not have any binarized masks/manual segmentation data available. It is for running
predictions/inference.

● Scan Folder Name - Similar to above!
● Approximate Slice Index of Pelvis - This information is required from the user, and it can be an estimate

(400-600), and it simply helps the model best subset the lower limbs of the patient and it is required if a
full body scan is inputted into the model.

● This runs the deep learning segmentation model
● Subject Scan File Name - This is the only required input, and it is a preprocessed compressed NIFTI (*nii.gz)

containing preprocessed scan data. Notice the naming convention. It correlates to the raw scan data where that
leading index is used to define the preprocessed data.



● This part of the tool was very useful in regard to developing our model, visualizing segmentation output results
on a 2D slice level, and also data validation to ensure the scan and mask data have the correct spatial overlap.

● Slice Number - The index of the slice you want to visualize
● Mask File Name - The function requires the mask file name and with that it pulls the scan data from the

preprocessed scan folder. Notice the naming convention required once again.
● When RUN it produces 3 visualizations: MRI scan slice, multi-class segmentation mask, and a superimposed

representation of them.





Experimental Result Documentation

● Our experimental results were documented on Confluence and this documentation included:
○ Information on the model configuration: deep learning architecture, number of epochs, loss function,

number of training patients, batch size, and augmentation factor.
○ Dice Scores across segmentation tasks for given fold
○ 2D visualization of a random slice across the predicted mask
○ Training/validation loss curves
○ Training/validation IoU curves


