Download this file

263 lines (213 with data), 11.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import subprocess
required_libraries = [
"numpy", "os", "pydicom", "SimpleITK", "pandas", "trimesh",
"pyntcloud", "scikit-image", "matplotlib", "tqdm", "nibabel",
"re", "scipy", "opencv-python", 'segmentation_models', 'random',
'trimesh'
]
for lib in required_libraries:
try:
__import__(lib)
except ImportError:
print(f"{lib} is not installed. Installing...")
subprocess.check_call(["pip", "install", lib])
print(f"{lib} has been installed.")
from preprocessing import preprocessing, VisualValidationMSK, transform_string
from image_preprocessing import image_cropping, uniform_cropping, uniform_resizing
from writeout_dataset import Export2CompressedNifiti
from MSKMulticlass import CreateMasks4MulticlassMSK
from createDirectories import createDirectoriesfunc
from preparingTestInstance import preprocessTestScans
from data_augmentation import DataAugmentation
import os
# import tensorflow
# from tensorflow import keras
# from keras.models import load_model
# from keras.utils import to_categorical
import nibabel as nib
import numpy as np
# import segmentation_models as sm
# from keras.metrics import MeanIoU
from skimage.measure import marching_cubes
import matplotlib.pyplot as plt
import trimesh
import SimpleITK as sitk
import nibabel as nib
import numpy as np
createDirectoriesfunc()
def Preprocessing(scans_path, scan_data_folders, Cropping):
print('-'*30)
print('Loading and preprocessing training data...')
print('-'*30)
# /research\resmed202100086-tws ----> Address for raw data
# /research\resabi202200010-Friedlander
total_slices_raw_data = 0
DataOnlyAOI = False
ExportDatasets = True
multiclass_mask_output_dir = None
# Only set multiclassSegmentation to True once all the AOI masks are preprocessed or its onto the final AOI
if (Cropping == "256x256"):
Cropping = True
else:
Cropping = False
scan_data_folders = [scan_data_folders]
# Creates the preprocessed scan and mask data and exports to Data folder
# Formats binary masks and applies preprocessing steps
segmasks = []
paitent_id = (scan_data_folders[0].split('_'))[-1]
files = os.listdir(('{}/Raw NIFITI Segmentation Masks (3D Slicer Output)').format(scans_path))
for file in files:
file_id = file.split('_')[-1]
file_id = file_id.split('.')[0]
if (file_id == paitent_id):
segmasks.append(file)
print(segmasks)
for segmask in segmasks:
print(segmask)
imgs_train, imgs_mask_train, median_aoi_index = preprocessing(scans_path, segmask, scan_data_folders, total_slices_raw_data, DataOnlyAOI, Cropping)
orientation = (segmask.split('_'))[1]
colab_fname = [transform_string(segmask)]
Export2CompressedNifiti(imgs_train, scans_path, colab_fname, imgs_mask_train, orientation)
# User Input
# Multi-class mask creation
individual_mask_directory = ('{}/nnUNet Data/masks').format(scans_path)
multiclass_mask_output_dir = ('{}/nnUNet Data/multiclass_masks').format(scans_path)
scan_dir = ('{}/nnUNet Data/scans').format(scans_path)
input_scan_dir = ('{}/nnUNet Data/unprocessed_scans').format(scans_path)
TIBIA_encoding = 1
FEMUR_encoding = 2
FIBULA_encoding = 3
PELVIS_encoding = 4
mask_index = int((scan_data_folders[0].split('_'))[0])
AOIThresholding = True
FriedLanderDataset = False
print('Multi-Class Segmentation Task Data Preparation!')
CreateMasks4MulticlassMSK(input_scan_dir, scan_dir, individual_mask_directory, mask_index, TIBIA_encoding, FEMUR_encoding, FIBULA_encoding, PELVIS_encoding, multiclass_mask_output_dir, AOIThresholding, FriedLanderDataset)
print('-'*30)
print('Completed Preprocessing Stage!')
print('-'*30)
def preprocessTestScansMain(cutoffSlice, seg_scan_dir, folders):
preprocessTestScans(cutoffSlice, seg_scan_dir, [folders])
def VisualiseSlice(basedir, colab_fname, slice_idx_bin):
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
def superimpose_images(image1, image2):
image1 = image1 / np.max(image1)
image2 = image2 / np.max(image2)
alpha = 0.5
superimposed_image = alpha * image1 + (1 - alpha) * image2
return superimposed_image
if ((colab_fname.split('_'))[0] != 'msk'):
orientation = (colab_fname.split('_'))[1]
colab_fname = transform_string(colab_fname)
mask_index = '{:03d}'.format(int(((colab_fname).split('_'))[1]))
nii_img_scan = nib.load(('{}/nnUNet Data/scans/msk_{}.nii.gz').format(basedir, mask_index))
nii_img_mask = nib.load(('{}/nnUNet Data/masks/{}/{}_{}.nii.gz').format(basedir, ((colab_fname).split('_'))[0],colab_fname, orientation))
if ((colab_fname.split('_'))[0] == 'msk'):
nii_img_scan = nib.load(('{}/nnUNet Data/scans/{}.nii.gz').format(basedir, colab_fname))
nii_img_mask = nib.load(('{}/nnUNet Data/multiclass_masks/{}.nii.gz').format(basedir, colab_fname))
orientation = '_'
mask_data = nii_img_mask.get_fdata()
scan_data = nii_img_scan.get_fdata()
image1 = scan_data[int(slice_idx_bin), :, :, 0]
image2 = mask_data[int(slice_idx_bin), :, :, 0]
superimposed_image = superimpose_images(image1, image2)
plt.imshow(superimposed_image, cmap='gray')
plt.title(('Validating Scan & Mask on Slice {} of {}_{}').format(slice_idx_bin, colab_fname, orientation))
plt.axis('off')
plt.show()
plt.imshow(image2, cmap='gray')
plt.title(('Validating Mask on Slice {} of {}_{}').format(slice_idx_bin, colab_fname, orientation))
plt.axis('off')
plt.show()
plt.imshow(image1, cmap='gray')
plt.title(('Validating Scan on Slice {} of {}_{}').format(slice_idx_bin, colab_fname, orientation))
plt.axis('off')
plt.show()
print('-'*30)
print('Visulisations Generated!')
print('-'*30)
def DataAug(basedir, aug_fname, num_augs):
imgs_train = nib.load(('{}/nnUNet Data/scans/{}.nii.gz').format(basedir, aug_fname))
imgs_mask_train = nib.load(('{}/nnUNet Data/multiclass_masks/{}.nii.gz').format(basedir, aug_fname))
imgs_train = imgs_train.get_fdata()
imgs_mask_train = imgs_mask_train.get_fdata()
num_train = len(imgs_train)
num_augs = int(num_augs)
augmented_images_train, augmented_masks_train = DataAugmentation(imgs_train, imgs_mask_train, num_augs)
augmented_images_train_sorted, augmented_masks_train_sorted = [], []
for i in range (int(num_augs)):
augmented_images_train_temp = augmented_images_train[i::num_augs]
augmented_masks_train_temp = augmented_masks_train[i::num_augs]
augmented_images_train_sorted.append(augmented_images_train_temp)
augmented_masks_train_sorted.append(augmented_masks_train_temp)
augmented_images_train_sorted = np.array(augmented_images_train_sorted)
augmented_masks_train_sorted = np.array(augmented_masks_train_sorted)
print('Augmented Training Scan Shape: ', augmented_images_train_sorted.shape)
print('Augmented Training Mask Shape: ',augmented_masks_train_sorted.shape)
for i in range (len(augmented_images_train_sorted)):
temp = np.expand_dims(augmented_images_train_sorted[i], axis=-1)
temp = temp.astype('float32')
np.savetxt('D:\MRI - Tairawhiti (User POV)/train.txt', temp[100,:,:,0], fmt="%d", delimiter=",")
# temp /= 255. # scale scans to [0, 1]
nii_img_train = nib.Nifti1Image(temp, affine=np.eye(4))
output_file_path = ('{}/nnUNet Data/scans/{}_aug{}.nii.gz').format(basedir, aug_fname, i)
nib.save(nii_img_train, output_file_path)
temp = np.expand_dims(augmented_masks_train_sorted[i], axis=-1)
temp = temp.astype(int)
np.savetxt('D:\MRI - Tairawhiti (User POV)/train_mask.txt', temp[100,:,:,0], fmt="%d", delimiter=",")
nii_img_mask = nib.Nifti1Image(temp, affine=np.eye(4))
output_file_path = ('{}/nnUNet Data/multiclass_masks/{}_aug{}.nii.gz').format(basedir, aug_fname, i)
nib.save(nii_img_mask, output_file_path)
print('-'*30)
print('Data Augmentation Completed & Exported!')
print('-'*30)
def AutoSegModel(subjectfname, base_dir):
model_dir = ('{}/Pre-Trained Models (Google Colab)/res34_backbone_20_epochs_dicefocal_256_4P_12batch_maxF1_pelvis_aug_best.hdf5').format(base_dir)
model = load_model(model_dir, compile=False)
n_classes = 5
BACKBONE = 'resnet34'
model_used = 'U-Net(resnet34)'
img_dir = ('{}/nnUNet Data/scans/{}.nii.gz').format(base_dir, subjectfname)
img = nib.load(img_dir)
img_data = img.get_fdata()
X_test = np.repeat(img_data, 3, axis=3)
print(('Fined-Tuned Model: {}').format((model_dir.split('/'))[-1]))
print('Prediction Scan Stack: ', subjectfname)
print('Number of Segmentation Classes: ', n_classes)
print('\n')
print("Test Images Shape: ", X_test.shape)
print('\n')
preprocess_input = sm.get_preprocessing(BACKBONE)
X_test_processed = preprocess_input(X_test)
# Prediction
y_pred=model.predict(X_test_processed)
y_pred_argmax=np.argmax(y_pred, axis=3)
y_pred_argmax = np.expand_dims(y_pred_argmax, axis = -1)
print('Pred Mask Shape: ', y_pred_argmax.shape)
print("Pred Mask Labels: ", np.unique(y_pred_argmax))
print('\n')
combined_mask = y_pred_argmax.astype(np.int32)
combined_img = nib.Nifti1Image(combined_mask, affine=np.eye(4), dtype=np.int32)
nib.save(combined_img, ("{}/{}_pred.nii.gz").format(model_dir, subjectfname), dtype = np.uint8)
print('Exported Prediction Segmentation: ', (("{}/{}_pred.nii.gz").format(model_dir, subjectfname)))
print('\n')
def Export3DStructure(segmentation_data, predfname, class_msk, model_used):
# Generate a surface mesh using marching cubes
vertices, faces, normals, _ = marching_cubes(segmentation_data, level=0)
# Create a Trimesh object
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_normals=normals)
# Save the mesh as a PLY file
ply_path = ('{}/{}_{}_{}.ply').format(model_dir, predfname, class_msk, model_used)
mesh.export(ply_path)
segmentation_data_all = y_pred_argmax
segmentation_data_all = segmentation_data_all[:,:,:,0]
tibia_seg_data = np.where(segmentation_data_all != 1, 0, 1)
femur_seg_data = np.where(segmentation_data_all != 2, 0, 2)
fibula_seg_data = np.where(segmentation_data_all != 3, 0, 3)
pelvis_seg_data = np.where(segmentation_data_all != 4, 0, 4)
segmentation_data = [segmentation_data_all, tibia_seg_data, femur_seg_data, fibula_seg_data, pelvis_seg_data]
class_msk = ['ALL', 'TIBIA', 'FEMUR', 'FIBULA', 'PELVIS']
for i in range (len(segmentation_data)):
Export3DStructure(segmentation_data[i], subjectfname, class_msk[i], model_used)