Download this file

79 lines (79 with data), 15.8 kB

§

9™Ðe¼+ãó’—ddlZgd¢ZeD]HZ	ee¦«Œ#e$r2ee›d¦«ejddeg¦«ee›d¦«YŒEwxYwddlmZmZm	Z	ddl
mZmZm
Z
dd	lmZdd
lmZddlmZddlmZdd
lmZddlZddlZddlZddlmZddlm Z!ddl"Z"ddl#Z$ddlZddlZe¦«d„Z%d„Z&d„Z'd„Z(d„Z)dS)éN)ÚnumpyÚosÚpydicomÚ	SimpleITKÚpandasÚtrimeshÚ	pyntcloudzscikit-imageÚ
matplotlibÚtqdmÚnibabelÚreÚscipyz
opencv-pythonÚsegmentation_modelsÚrandomrz  is not installed. Installing...ÚpipÚinstallz has been installed.)Ú
preprocessingÚVisualValidationMSKÚtransform_string)Úimage_croppingÚuniform_croppingÚuniform_resizing)ÚExport2CompressedNifiti)ÚCreateMasks4MulticlassMSK)ÚcreateDirectoriesfunc©ÚpreprocessTestScans)ÚDataAugmentation)Úmarching_cubesc
ó„—td¦«td¦«td¦«d}d}d}d}|dkrd}nd}|g}g}|d d¦«d}tjd	 |¦«¦«}	|	D]S}
|
 d¦«d}| d
¦«d}||kr| |
¦«ŒTt|¦«|D]g}t|¦«t
||||||¦«\}
}}| d¦«d}t|¦«g}t|
||||¦«Œhd |¦«}d
 |¦«}d |¦«}d |¦«}d}d}d}d}t|d d¦«d¦«}d}d}td¦«t|||||||||||¦«td¦«td¦«td¦«dS)Nú------------------------------z*Loading and preprocessing training data...rFTÚ256x256Ú_éÿÿÿÿz3{}/Raw NIFITI Segmentation Masks (3D Slicer Output)ú.éz{}/nnUNet Data/masksz{}/nnUNet Data/multiclass_masksz{}/nnUNet Data/scansz {}/nnUNet Data/unprocessed_scanséééz/Multi-Class Segmentation Task Data Preparation!zCompleted Preprocessing Stage!)ÚprintÚsplitrÚlistdirÚformatÚappendrrrÚintr)Ú
scans_pathÚscan_data_foldersÚCroppingÚtotal_slices_raw_dataÚDataOnlyAOIÚExportDatasetsÚmulticlass_mask_output_dirÚsegmasksÚ
paitent_idÚfilesÚfileÚfile_idÚsegmaskÚ
imgs_trainÚimgs_mask_trainÚmedian_aoi_indexÚorientationÚcolab_fnameÚindividual_mask_directoryÚscan_dirÚinput_scan_dirÚTIBIA_encodingÚFEMUR_encodingÚFIBULA_encodingÚPELVIS_encodingÚ
mask_indexÚAOIThresholdingÚFriedLanderDatasets                            úv/Users/asif/Documents/Deep Learning Musculoskeletal Automatic Segmentation/Preprocessing Medical Data Pipeline/main.pyÚ
PreprocessingrM,s¯€Ý	ˆ&M„M€MÝ	Ð
6Ñ7Ô7Ð7Ý	ˆ&M„M€MðÐØ€KØ€NØ!%Ðð	IÒÐØˆˆàˆà*Ð+Ðð€HØ# AÔ&×,Ò,¨SÑ1Ô1°2Ô6€JÝŒJÐM×UÒUÐV`ÑaÔaÑbÔb€Eàð"ð"ˆØ—*’*˜S‘/”/ "Ô%ˆØ—-’- Ñ$Ô$ QÔ'ˆØzÒ!Ð!ØOŠO˜DÑ!Ô!Ð!øÝ	ˆ(O„O€OØðcðcˆÝ
ˆg‰ŒˆÝ8EÀjÐRYÐ[lðoDðFQðS[ñ9\ô9\Ñ5ˆ
OÐ%5Ø—}’} SÑ)Ô)¨1Ô-ˆÝ'¨Ñ0Ô0Ð1ˆÝ 
¨J¸À_ÐVaÑbÔbÐbÐbð"8× ?Ò ?À
Ñ KÔ KÐØ"C×!KÒ!KÈJÑ!WÔ!WÐØ&×.Ò.¨zÑ:Ô:€HØ8×@Ò@ÀÑLÔL€Nà€NØ€NØ€OØ€OÝÐ'¨Ô*×0Ò0°Ñ5Ô5°qÔ9Ñ:Ô:€JØ€OØÐå	Ð
;Ñ<Ô<Ð<ݘn¨hÐ8QÐS]Ð_mÐo}ð@OðQ`ðb|ð~MðOañbôbðbõ
ˆ&M„M€MÝ	Ð
*Ñ+Ô+Ð+Ý	ˆ&M„M€M€M€Mócó*—t|||g¦«dS)Nr)ÚcutoffSliceÚseg_scan_dirÚfolderss   rLÚpreprocessTestScansMainrSjs€Ý˜ \°G°9Ñ=Ô=Ð=Ð=Ð=rNcó‡—ddl}ddlŠddlm}ˆfd„}| d¦«ddkrÈ| d¦«d}t|¦«}d t| d¦«d¦«¦«}|jd ||¦«¦«}|jd || d¦«d||¦«¦«}	| d¦«ddkrJ|jd	 ||¦«¦«}|jd
 ||¦«¦«}	d}|	 	¦«}
| 	¦«}|t|¦«dd…dd…df}|
t|¦«dd…dd…df}
|||
¦«}|j
|d¬¦«|jd
 |||¦«¦«|jd¦«|j
¦«|j
|
d¬¦«|jd |||¦«¦«|jd¦«|j
¦«|j
|d¬¦«|jd |||¦«¦«|jd¦«|j
¦«td¦«td¦«td¦«dS)Nrcót•—|‰j|¦«z}|‰j|¦«z}d}||zd|z
|zz}|S)Ngà?r&)Úmax)Úimage1Úimage2ÚalphaÚsuperimposed_imageÚnps    €rLÚsuperimpose_imagesz*VisualiseSlice.<locals>.superimpose_imagesqsNø€Ø˜&˜"œ& ™.œ.Ñ(ˆØ˜&˜"œ& ™.œ.Ñ(ˆØˆØ" V™^¨q°5©y¸FÑ.BÑBÐØ!Ð!rNr#Úmskr&z{:03d}z"{}/nnUNet Data/scans/msk_{}.nii.gzz${}/nnUNet Data/masks/{}/{}_{}.nii.gzú{}/nnUNet Data/scans/{}.nii.gzú){}/nnUNet Data/multiclass_masks/{}.nii.gzÚgray)Úcmapz+Validating Scan & Mask on Slice {} of {}_{}Úoffz$Validating Mask on Slice {} of {}_{}z$Validating Scan on Slice {} of {}_{}r!zVisulisations Generated!)rrÚmatplotlib.pyplotÚpyplotr+rr-r/ÚloadÚ	get_fdataÚimshowÚtitleÚaxisÚshowr*)ÚbasedirrAÚ
slice_idx_binÚnibÚpltr\r@rIÚnii_img_scanÚnii_img_maskÚ	mask_dataÚ	scan_datarWrXrZr[s               @rLÚVisualiseSlicersmsJø€ØÐÐÐØÐÐÐØ#Ð#Ð#Ð#Ð#Ð#ð"ð"ð"ð"ð"ð
×	Ò	˜3Ñ	Ô	 Ô# uÒ,Ð,Ø"×(Ò(¨Ñ-Ô-¨qÔ1ˆÝ& {Ñ3Ô3ˆØ—_’_¥S¨;×*=Ò*=¸cÑ*BÔ*BÀAÔ)FÑ%GÔ%GÑHÔHˆ
ؐs”xÐ!E× MÒ MÈgÐWaÑ bÔ bÑcÔcˆؐs”xÐ!G× OÒ OÐPWÐ[f×ZmÒZmÐnqÑZrÔZrÐtuÔYvðxCðEPñ!Qô!QñRôRˆà	×	Ò	˜3Ñ	Ô	 Ô# uÒ,Ð,ؐs”xÐ!A× IÒ IÈ'ÐS^Ñ _Ô _Ñ`Ô`ˆؐs”xÐ!L× TÒ TÐU\Ð^iÑ jÔ jÑkÔkˆ؈ð×&Ò&Ñ(Ô(€IØ×&Ò&Ñ(Ô(€IØ
•s˜=Ñ)Ô)¨1¨1¨1¨a¨a¨a°Ð2Ô
3€FØ
•s˜=Ñ)Ô)¨1¨1¨1¨a¨a¨a°Ð2Ô
3€FØ+Ð+¨F°FÑ;Ô;Ðà€C„JÐ!¨Ð/Ñ/Ô/Ð/Ø
€C„IÐ<×DÒDÀ]ÐT_ÐalÑmÔmÑnÔnÐnØ€C„HˆUO„O€OØ€C„HJ„J€Jà€C„Jˆv˜FÐ#Ñ#Ô#Ð#Ø
€C„IÐ5×=Ò=¸mÈ[ÐZeÑfÔfÑgÔgÐgØ€C„HˆUO„O€OØ€C„HJ„J€Jà€C„Jˆv˜FÐ#Ñ#Ô#Ð#Ø
€C„IÐ5×=Ò=¸mÈ[ÐZeÑfÔfÑgÔgÐgØ€C„HˆUO„O€OØ€C„HJ„J€Jå	ˆ&M„M€MÝ	Ð
$Ñ%Ô%Ð%Ý	ˆ&M„M€M€M€MrNc	ó—tjd ||¦«¦«}tjd ||¦«¦«}| ¦«}| ¦«}t	|¦«}t|¦«}t
|||¦«\}}gg}	}tt|¦«¦«D]B}
||
d|…}||
d|…}| |¦«|	 |¦«ŒCtj
|¦«}tj
|	¦«}	td|j¦«td|	j¦«tt	|¦«¦«D]^}
tj
||
d¬¦«}
|
 d¦«}
tjd|
d	dd…dd…d
fdd¬
¦«tj|
tjd¦«¬¦«}d |||
¦«}tj||¦«tj
|	|
d¬¦«}
|
 t
¦«}
tjd|
d	dd…dd…d
fdd¬
¦«tj|
tjd¦«¬¦«}d |||
¦«}tj||¦«Œ`td¦«td¦«td¦«dS)Nr^r_zAugmented Training Scan Shape: zAugmented Training Mask Shape: r$©riÚfloat32z(D:\MRI - Tairawhiti (User POV)/train.txtédrz%dú,)ÚfmtÚ	delimiterr))Úaffinez${}/nnUNet Data/scans/{}_aug{}.nii.gzz-D:\MRI - Tairawhiti (User POV)/train_mask.txtz/{}/nnUNet Data/multiclass_masks/{}_aug{}.nii.gzr!z'Data Augmentation Completed & Exported!)rmrer-rfÚlenr/rÚranger.r[Úarrayr*ÚshapeÚexpand_dimsÚastypeÚsavetxtÚNifti1ImageÚeyeÚsave)rkÚ	aug_fnameÚnum_augsr=r>Ú	num_trainÚaugmented_images_trainÚaugmented_masks_trainÚaugmented_images_train_sortedÚaugmented_masks_train_sortedÚiÚaugmented_images_train_tempÚaugmented_masks_train_tempÚtempÚ
nii_img_trainÚoutput_file_pathrps                 rLÚDataAugr“žsó€Ý”Ð;×CÒCÀGÈYÑWÔWÑXÔX€JÝ”hÐ K×SÒSÐT[Ð]fÑgÔgÑhÔh€OØ×%Ò%Ñ'Ô'€JØ%×/Ò/Ñ1Ô1€OݐJ‘”€Iݐ8‰}Œ}€HÝ4DÀZÐQ`ÐbjÑ4kÔ4kÑ1ÐÐ1àBDÀbÐ#?Ð!Ý
•C˜‘M”MÑ
"Ô
"ðHðHˆØ&<¸Q¸[À¸[Ô&IÐ#Ø%:¸1¸;¸h¸;Ô%GÐ"Ø%×,Ò,Ð-HÑIÔIÐIØ$×+Ò+Ð,FÑGÔGÐGÐGÝ$&¤HÐ-JÑ$KÔ$KÐ!Ý#%¤8Ð,HÑ#IÔ#IÐ å	Ð
+Ð-JÔ-PÑQÔQÐQÝ	Ð
+Ð,HÔ,NÑOÔOÐOõ•CÐ5Ñ6Ô6Ñ
7Ô
7ð1ñ1ˆÝŒ~Ð;¸AÔ>ÀRÐHÑHÔHˆØ{Š{˜9Ñ%Ô%ˆÝ
Œ
Ð=¸tÀCÈÈÈÈ!È!È!ÈAÀI¼ÐTXÐdgÐhÑhÔhÐh在µR´V¸A±Y´YÐ?Ñ?Ô?ˆ
ØB×JÒJÈ7ÐT]Ð_`ÑaÔaÐÝŒÐ 0Ñ1Ô1Ð1åŒ~Ð:¸1Ô=ÀBÐGÑGÔGˆØ{Š{3ÑÔˆÝ
Œ
ÐBÀDÈÈQÈQÈQÈqÈqÈqÐQRÈÄOÐY]ÐilÐmÑmÔmÐmÝ” tµB´F¸1±I´IÐ>Ñ>Ô>ˆØM×UÒUÐV]Ð_hÐjkÑlÔlÐÝŒÐ/Ñ0Ô0Ð0Ñ0å	ˆ&M„M€MÝ	Ð
3Ñ4Ô4Ð4Ý	ˆ&M„M€M€M€MrNcó|‡—d |¦«Št‰d¬¦«}d}d}d}d ||¦«}tj|¦«}| ¦«}tj|dd¬	¦«}	td
 ‰ d¦«d¦«¦«td
|¦«td|¦«td¦«td|	j	¦«td¦«t |¦«}
|
|	¦«}| |¦«}tj
|d¬	¦«}
tj|
d¬	¦«}
td|
j	¦«tdtj|
¦«¦«td¦«|
 t
j¦«}tj|tjd¦«t
j¬¦«}tj|d ‰|¦«t
j¬¦«tdd ‰|¦«¦«td¦«ˆfd„}|
}|dd…dd…dd…df}tj|dkdd¦«}tj|dkdd¦«}tj|dkdd¦«}tj|dkdd¦«}|||||g}gd¢}t/t1|¦«¦«D]}|||||||¦«ŒdS)Nzq{}/Pre-Trained Models (Google Colab)/res34_backbone_20_epochs_dicefocal_256_4P_12batch_maxF1_pelvis_aug_best.hdf5F)ÚcompileéÚresnet34zU-Net(resnet34)r^r(ruzFined-Tuned Model: {}ú/r$zPrediction Scan Stack: z Number of Segmentation Classes: ú
zTest Images Shape: zPred Mask Shape: zPred Mask Labels: r))r{Údtypez{}/{}_pred.nii.gz)ršz"Exported Prediction Segmentation: c󼕗t|d¬¦«\}}}}tj|||¬¦«}d ‰
|||¦«}	| |	¦«dS)Nr)Úlevel)ÚverticesÚfacesÚvertex_normalsz{}/{}_{}_{}.ply)rrÚTrimeshr-Úexport)Úsegmentation_dataÚ	predfnameÚ	class_mskÚ
model_usedrržÚnormalsr#ÚmeshÚply_pathÚ	model_dirs          €rLÚExport3DStructurez'AutoSegModel.<locals>.Export3DStructureïsjø€å&4Ð5FÈaÐ&PÑ&PÔ&PÑ#ˆ%˜ !õŒ¨¸ÈgÐVÑVÔVˆð&×-Ò-¨i¸ÀIÈzÑZÔZˆØŠHÑÔÐÐÐrNrr&r')ÚALLÚTIBIAÚFEMURÚFIBULAÚPELVIS)r-Ú
load_modelrmrerfr[Úrepeatr*r+rÚsmÚget_preprocessingÚpredictÚargmaxr€ÚuniquerÚint32rƒr„r…Úuint8Úwherer}r|)ÚsubjectfnameÚbase_dirÚmodelÚ	n_classesÚBACKBONEr¥Úimg_dirÚimgÚimg_dataÚX_testÚpreprocess_inputÚX_test_processedÚy_predÚ
y_pred_argmaxÚ
combined_maskÚcombined_imgrªÚsegmentation_data_allÚtibia_seg_dataÚfemur_seg_dataÚfibula_seg_dataÚpelvis_seg_datar¢r¤rr©s                         @rLÚAutoSegModelrÎÉsIø€ðE÷MòMðNVñWôW€IÝy¨%Ð0Ñ0Ô0€Eà€IØ€HØ"€Jà/×7Ò7¸À,ÑOÔO€GÝ

Œ(7Ñ
Ô
€C؏}Š}‰Œ€HÝ
ŒYx ¨Ð
+Ñ
+Ô
+€Få	Ð"×
*Ò
*¨I¯OªO¸CÑ,@Ô,@À"Ô+EÑ
FÔ
FÑGÔGÐGÝ	Ð
# \Ñ2Ô2Ð2Ý	Ð
,¨iÑ8Ô8Ð8Ý	ˆ$K„K€Kå	Ð
 ¤Ñ.Ô.Ð.Ý	ˆ$K„K€Kå×+Ò+¨HÑ5Ô5ÐØ'Ð'¨Ñ/Ô/Ðð=Š=Ð)Ñ*Ô*€FÝ”)˜F¨Ð+Ñ+Ô+€MÝ”N =¸Ð<Ñ<Ô<€MÝ	Ð
˜}Ô2Ñ3Ô3Ð3Ý	Ð
¥¤	¨-Ñ 8Ô 8Ñ9Ô9Ð9Ý	ˆ$K„K€Kà!×(Ò(­¬Ñ2Ô2€MÝ”? =½¼À¹¼Í"Ì(ÐSÑSÔS€LÝ„Hˆ\Ð/×7Ò7¸	À<ÑPÔPÕZ\ÔZbÐcÑcÔcÐcÝ	Ð
.Ð2E×1MÒ1MÈiÐYeÑ1fÔ1fÑhÔhÐhÝ	ˆ$K„K€Kð	ð	ð	ð	ð	ð*ÐØ1°!°!°!°A°A°A°a°a°a¸°'Ô:ÐÝ”XÐ3°qÒ8¸!¸QÑ?Ô?€NÝ”XÐ3°qÒ8¸!¸QÑ?Ô?€NÝ”hÐ4¸Ò9¸1¸aÑ@Ô@€OÝ”hÐ4¸Ò9¸1¸aÑ@Ô@€Oà.°ÀÐP_ÐapÐqÐØ=Ð=Ð=€Iå
•CÐ)Ñ*Ô*Ñ
+Ô
+ðXðXˆØÐÐ+¨AÔ.°¸iȼlÈJÑWÔWÐWÐWðXðXrN)*Ú
subprocessÚrequired_librariesÚlibÚ
__import__ÚImportErrorr*Ú
check_callrrrÚimage_preprocessingrrrÚwriteout_datasetrÚ
MSKMulticlassrÚcreateDirectoriesrÚpreparingTestInstancerÚdata_augmentationrrrrmrr[Úskimage.measurerrcrdrnrrÚsitkrMrSrsr“rΩrNrLú<module>rÞs0ðØÐÐÐðððÐðð,ð,€Cð,؈
3‰ŒˆˆøØð,ð,ð,Ø
ˆÐ6Ð6Ð6Ñ7Ô7Ð7؈
Ô˜u i°Ð5Ñ6Ô6Ð6Ø
ˆÐ*Ð*Ð*Ñ+Ô+Ð+Ð+Ð+ð,øøøðOÐNÐNÐNÐNÐNÐNÐNÐNÐNØRÐRÐRÐRÐRÐRÐRÐRÐRÐRØ4Ð4Ð4Ð4Ð4Ð4Ø3Ð3Ð3Ð3Ð3Ð3Ø3Ð3Ð3Ð3Ð3Ð3Ø5Ð5Ð5Ð5Ð5Ð5Ø.Ð.Ð.Ð.Ð.Ð.Ø	€	€	€	ð
ÐÐÐØÐÐÐð+Ð*Ð*Ð*Ð*Ð*ØÐÐÐÐÐØ€€€ØÐÐÐØÐÐÐØÐÐÐàÐÑÔÐð<ð<ð<ð|>ð>ð>ð/ð/ð/ðb(ð(ð(ðV<Xð<Xð<Xð<Xð<XsŽš4AÁA