Download this file

123 lines (101 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import nibabel as nib
import matplotlib.pyplot as plt
import os
from image_preprocessing import uniform_resizing
def CreateMasks4MulticlassMSK(input_scan_dir, scan_dir, directory, mask_index, TIBIA_encoding, FEMUR_encoding, FIBULA_encoding, PELVIS_encoding, output_dir, AOIThresholding, FriedLanderDataset):
aoi_fnames = os.listdir(directory)
resizing_size = 256
print('Regions of Interest for Segmentation: ', aoi_fnames)
fnames = []
for aoi_fname in aoi_fnames:
directory_aoi = (directory + ('/{}').format(aoi_fname))
aoi_fname = os.listdir(directory_aoi)
aoi_fname = sorted(aoi_fname)
fnames.append(aoi_fname)
n_segmentation_classes = len(fnames)
print('Number of Segmentation Classes: ', n_segmentation_classes)
suffix_index_dict = {}
for idx, file_list in enumerate(fnames):
for filename in file_list:
# Extract the suffix index from the filename
parts = filename.split('_')
if len(parts) > 1:
suffix_index = parts[1].split('.')[0] # Extracting the index before '.'
suffix_index = int(suffix_index) # Convert index to integer
# Add the filename to the corresponding list in the dictionary
if suffix_index in suffix_index_dict:
suffix_index_dict[suffix_index].append(filename)
else:
suffix_index_dict[suffix_index] = [filename]
# for index, filenames in suffix_index_dict.items():
# print(f"Segmentation Mask {index}: {filenames}")
combined_mask = None
for fname_mask in suffix_index_dict[mask_index]:
print(fname_mask)
mask = nib.load(('{}/{}/{}').format(directory, (fname_mask.split('_'))[0], fname_mask))
mask_data = mask.get_fdata().astype(np.uint8)
aoi = (fname_mask.split('_'))[0]
if (FriedLanderDataset == True):
mask_data = np.expand_dims(mask_data, axis = -1)
mask_data = mask_data.transpose(1, 0, 2, 3)
print(('Unprocessed {} Mask Shape: {}').format(aoi, mask_data.shape))
mask_data = uniform_resizing(mask_data, resizing_size)
if (aoi == 'TIBIA'):
mask_data = np.where(mask_data != 0, TIBIA_encoding, 0)
if (aoi == 'FEMUR'):
mask_data = np.where(mask_data != 0, FEMUR_encoding, 0)
if (aoi == 'FIBULA'):
mask_data = np.where(mask_data != 0, FIBULA_encoding, 0)
if (aoi == 'PELVIS'):
mask_data = np.where(mask_data != 0, PELVIS_encoding, 0)
if combined_mask is None:
combined_mask = mask_data
else:
combined_mask += mask_data # Combine the pixel arrays by adding them element-wise
combined_mask = np.array(combined_mask)
combined_mask[combined_mask > n_segmentation_classes] = 0
if (AOIThresholding == True):
threshold = 0
combined_mask = np.array(combined_mask)
indices = np.transpose(np.nonzero(combined_mask != 0))
if indices.size > 0:
first_non_zero_index_2d = tuple(indices[0])
else:
first_non_zero_index_2d = None
if indices.size > 0:
last_non_zero_index_2d = tuple(indices[-1])
else:
last_non_zero_index_2d = None
print(first_non_zero_index_2d)
print(last_non_zero_index_2d)
first_slice_aoi = (first_non_zero_index_2d[0]) - int(threshold)
last_slice_aoi = (last_non_zero_index_2d[0]) + int(threshold)
print("AOI Slice Start (Final with Thresholding): ", first_slice_aoi)
print("AOI Slice End (Final with Thresholding): ", last_slice_aoi)
mask_index = '{:03d}'.format(mask_index)
combined_mask = combined_mask[first_slice_aoi:last_slice_aoi, :, :, :]
scan = nib.load(('{}/msk_{}.nii.gz').format(input_scan_dir, mask_index))
scan_data = scan.get_fdata()
# scan_og = nib.Nifti1Image(scan_data, scan.affine)
# nib.save(scan_og, ('{}/msk_{}_og.nii.gz').format(output_dir, mask_index))
if (FriedLanderDataset == True):
scan_data = np.expand_dims(scan_data, axis = -1)
scan_data = scan_data.transpose(1, 0, 2, 3)
print('Unprocessed Scan Shape: ', scan_data.shape)
scan_data = uniform_resizing(scan_data, resizing_size)
scan_data = scan_data.astype('float32')
scan_data /= np.max(scan_data) # scale scans to [0, 1]
print('Max Pixel Value in Scan: ', np.max(scan_data))
scan_data = scan_data[first_slice_aoi:last_slice_aoi, :, :, :]
print('Final Training Scans Input Shape: ', scan_data.shape)
print('Final Training Masks Input Shape: ', combined_mask.shape)
# np.savetxt('output.txt', scan_data[100,:,:,0], fmt="%d", delimiter=",")
combined_mask = combined_mask.astype(int)
combined_img = nib.Nifti1Image(combined_mask, mask.affine)
print('Multi-class Labels: ', np.unique(combined_mask))
nib.save(combined_img, ('{}/msk_{}.nii.gz').format(output_dir, mask_index))
combined_img = nib.Nifti1Image(scan_data, scan.affine)
nib.save(combined_img, ('{}/msk_{}.nii.gz').format(scan_dir, mask_index))
print(('MSK Multiclass Mask Made Using {}, Saved To {}, and Region of Interest Slice Thresholding = {} !').format(aoi_fnames, ('{}/msk_{}.nii.gz').format(output_dir, mask_index), AOIThresholding))
print('\n')