[030aeb]: / dosma / scan_sequences / mri / qdess.py

Download this file

332 lines (267 with data), 12.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""Quantitative Double Echo in Steady State (qDESS) sequence."""
import logging
import math
import warnings
from copy import deepcopy
from typing import Sequence, Tuple
import numpy as np
import pydicom
from pydicom.tag import Tag
from dosma.core.med_volume import MedicalVolume
from dosma.core.quant_vals import T2
from dosma.models.seg_model import SegModel
from dosma.scan_sequences.scans import ScanSequence
from dosma.tissues.tissue import Tissue
from dosma.utils.cmd_line_utils import ActionWrapper
__all__ = ["QDess"]
_logger = logging.getLogger(__name__)
class QDess(ScanSequence):
"""qDESS MRI sequence.
Quantitative double echo in steady state (qDESS) is a high-resolution scan that consists
of two echos (S1, S2) that has shown high efficacy for analytic :math:`T_2` mapping.
Because of its high resolution, qDESS has been shown to be a good candidate for automatic
segmentation.
DOSMA supports both automatic segmentation and analytical T2 solving for qDESS scans.
Automated segmentation uses pre-trained convolutional neural networks (CNNs).
References:
B Sveinsson, AS Chaudhari, GE Gold, BA Hargreaves. A simple analytic method
for estimating :math:`T_2` in the knee from DESS. Magnetic Resonance in Medicine,
38:63-70 (2017). `[link] <https://www.ncbi.nlm.nih.gov/pubmed/28017730>`_
"""
NAME = "qdess"
# DESS DICOM header keys
__GL_AREA_TAG__ = Tag(0x001910B6)
__TG_TAG__ = Tag(0x001910B7)
# DESS constants
__NUM_ECHOS__ = 2
__VOLUME_DIMENSIONS__ = 3
def __init__(self, volumes: Sequence[MedicalVolume]):
if len(volumes) != 2:
raise ValueError("QDess currently only supports 2 volumes.")
super().__init__(volumes)
def __validate_scan__(self) -> bool:
"""Validate that the dicoms are of qDESS sequence.
Returns:
bool: `True` if has 2 echos, `False` otherwise.
"""
return len(self.volumes) == self.__NUM_ECHOS__
def segment(self, model: SegModel, tissue: Tissue, use_rss: bool = False):
"""Segment tissue in scan.
Args:
model (SegModel): Model to use for segmenting scans.
tissue (Tissue): The tissue to segment.
use_rss (`bool`, optional): If ``True``, use root-sum-of-squares (RSS) of
echos for segmentation (preferred for built-in methods).
If ``False``, use first echo for segmentation.
Returns:
MedicalVolume: Binary mask for segmented region.
"""
tissue_names = (
", ".join([t.FULL_NAME for t in tissue])
if isinstance(tissue, Sequence)
else tissue.FULL_NAME
)
_logger.info(f"Segmenting {tissue_names}...")
if use_rss:
segmentation_volume = self.calc_rss()
else:
# Use first echo for segmentation.
segmentation_volume = self.volumes[0]
# Segment tissue and add it to list.
mask = model.generate_mask(segmentation_volume)
if isinstance(mask, dict):
if not isinstance(tissue, Sequence):
tissue = [tissue]
for abbreviation, tis in zip([t.STR_ID for t in tissue], tissue):
tis.set_mask(mask[abbreviation])
self.__add_tissue__(tis)
else:
assert isinstance(tissue, Tissue)
tissue.set_mask(mask)
self.__add_tissue__(tissue)
return mask
def generate_t2_map(
self,
tissue: Tissue = None,
suppress_fat: bool = False,
suppress_fluid: bool = False,
beta: float = 1.2,
gl_area: float = None,
tg: float = None,
tr: float = None,
te: float = None,
alpha: float = None,
diffusivity: float = 1.25e-9,
t1: float = None,
nan_bounds: Tuple[float, float] = (0, 100),
nan_to_num: float = 0.0,
decimals: int = 1,
):
"""Generate 3D T2 map.
Spoiler amplitude (``gl_area``) and duration (``tg``) must be specified if dicom header
does not contain relevant private tags. If dicom header is unavailable, ``tr``, ``te``,
and ``alpha`` must also be specified.
All array-like arguments must be the same dimensions as the echo 1 and echo 2 volumes.
Args:
tissue (Tissue, optional): Tissue to generate T2 map for.
If provided, the resulting quantitative value map will
be added to the list of quantitative values for the tissue.
suppress_fat (`bool`, optional): Suppress fat region in T2 computation.
This can help reduce noise.
suppress_fluid (`bool`, optional): Suppress fluid region in T2 computation.
Fluid-nulled image is calculated as ``S1 - beta*S2``.
beta (float, optional): Beta value used for suppressing fluid.
gl_area (float, optional): Spoiler area.
Defaults to value in dicom private tag '0x001910b6'.
Required if dicom header unavailable or private tag missing.
tg (float, optional): Spoiler duration (in microseconds).
Defaults to value in dicom private tag ``0x001910b7``.
Required if dicom header unavailable or private tag missing.
tr (float, optional): Repitition time (in milliseconds).
Required if dicom header unavailable.
te (float, optional): Echo time (in milliseconds).
Required if dicom header unavailable.
alpha (float or array-like): Flip angle in degrees.
Required if dicom header unavailable.
diffusivity (float or array-like): Estimated diffusivity.
t1 (float or array-like): Estimated t1 in milliseconds.
Defaults to ``tissue.T1_EXPECTED`` if ``tissue`` provided.
nan_bounds (float or Tuple[float, float], optional): The closed interval
(``[a, b]``) for valid t2 values. All values outside of this interval will
be set to ``nan``.
nan_to_num (float): Value to be used to fill NaN values. If ``None``, values
will not be replaced.
decimals (int): Number of decimal places to round to. If ``None``, values
will not be rounded.
Returns:
qv.T2: T2 fit map.
"""
if self.volumes is None:
raise ValueError("volumes and ref_dicom fields must be initialized")
if (
self.get_metadata(self.__GL_AREA_TAG__, gl_area) is None
or self.get_metadata(self.__TG_TAG__, tg) is None
):
raise ValueError(
"Dicom headers do not contain tags for `gl_area` and `tg`. Please input manually"
)
xp = self.volumes[0].device.xp
ref_dicom = self.ref_dicom if self.ref_dicom is not None else pydicom.Dataset()
r, c, num_slices = self.volumes[0].volume.shape
subvolumes = self.volumes
# Split echos
echo_1 = subvolumes[0].volume
echo_2 = subvolumes[1].volume
# All timing in seconds
TR = (float(ref_dicom.RepetitionTime) if tr is None else tr) * 1e-3
TE = (float(ref_dicom.EchoTime) if te is None else te) * 1e-3
Tg = (float(ref_dicom[self.__TG_TAG__].value) if tg is None else tg) * 1e-6
T1 = (float(tissue.T1_EXPECTED) if t1 is None else t1) * 1e-3
# Flip Angle (degree -> radians)
alpha = float(ref_dicom.FlipAngle) if alpha is None else alpha
alpha = math.radians(alpha)
if np.allclose(math.sin(alpha / 2), 0):
warnings.warn("sin(flip angle) is close to 0 - t2 map may fail.")
GlArea = float(ref_dicom[self.__GL_AREA_TAG__].value) if gl_area is None else gl_area
Gl = GlArea / (Tg * 1e6) * 100
gamma = 4258 * 2 * math.pi # Gamma, Rad / (G * s).
dkL = gamma * Gl * Tg
# Simply math
k = (
xp.power((xp.sin(alpha / 2)), 2)
* (1 + xp.exp(-TR / T1 - TR * xp.power(dkL, 2) * diffusivity))
/ (1 - xp.cos(alpha) * xp.exp(-TR / T1 - TR * xp.power(dkL, 2) * diffusivity))
)
c1 = (TR - Tg / 3) * (xp.power(dkL, 2)) * diffusivity
# T2 fit
mask = xp.ones([r, c, num_slices])
ratio = mask * echo_2 / echo_1
ratio = xp.nan_to_num(ratio)
# have to divide division into steps to avoid overflow error
t2map = -2000 * (TR - TE) / (xp.log(abs(ratio) / k) + c1)
t2map = xp.nan_to_num(t2map)
# Filter calculated T2 values that are below 0ms and over 100ms
if nan_bounds is not None:
lower, upper = nan_bounds
t2map[(t2map < lower) | (t2map > upper)] = xp.nan
if nan_to_num is not None:
t2map = (
xp.nan_to_num(t2map)
if isinstance(nan_to_num, bool)
else xp.nan_to_num(t2map, nan=nan_to_num)
)
if decimals is not None:
t2map = xp.around(t2map, decimals)
if suppress_fat:
t2map = t2map * (echo_1 > 0.15 * xp.max(echo_1))
if suppress_fluid:
vol_null_fluid = echo_1 - beta * echo_2
t2map = t2map * (vol_null_fluid > 0.1 * xp.max(vol_null_fluid))
t2_map_wrapped = subvolumes[0]._partial_clone(volume=t2map, headers=True)
t2_map_wrapped = T2(t2_map_wrapped)
if tissue is not None:
tissue.add_quantitative_value(t2_map_wrapped)
return t2_map_wrapped
def calc_rss(self):
"""Calculate root-sum-of-squares (RSS) of two echos.
Returns:
MedicalVolume: Volume corresponding to RSS of two echos.
"""
return self._combine_echoes("rss")
def _combine_echoes(self, method="rss"):
"""Combine two echoes.
Args:
method (str, optional): Supported combination methods are:
* ``"rss"`` (default): The root-sum-of-squares of two echoes.
* ``"rms"``: The root-mean-square of two echoes.
Returns:
MedicalVolume: Volume with RMS of two echos.
"""
xp = self.volumes[0].device.xp
if self.volumes is None:
raise ValueError("Volumes must be initialized")
assert len(self.volumes) == 2, "2 Echos expected"
echo1 = xp.asarray(self.volumes[0].volume, dtype=xp.float64)
echo2 = xp.asarray(self.volumes[1].volume, dtype=xp.float64)
assert (~xp.iscomplex(echo1)).all() and (~xp.iscomplex(echo2)).all()
if method == "rss":
vol = xp.sqrt(echo1 ** 2 + echo2 ** 2)
elif method == "rms":
vol = xp.sqrt((echo1 ** 2 + echo2 ** 2) / 2)
else:
raise ValueError(f"`method={method}` is not supported")
mv = deepcopy(self.volumes[0])
mv.volume = vol
return mv
def _save(self, metadata, save_dir, fname_fmt=None, **kwargs):
default_fmt = {MedicalVolume: "echo-{}"}
default_fmt.update(fname_fmt if fname_fmt else {})
return super()._save(metadata, save_dir, fname_fmt=default_fmt, **kwargs)
@classmethod
def cmd_line_actions(cls):
"""
Provide command line information (such as name, help strings, etc)
as list of dictionary.
"""
segment_action = ActionWrapper(
name=cls.segment.__name__,
help="generate automatic segmentation",
param_help={"use_rss": "use root sum of squares (RSS) of two echos for segmentation"},
alternative_param_names={"use_rss": ["rss"]},
)
generate_t2_map_action = ActionWrapper(
name=cls.generate_t2_map.__name__,
aliases=["t2"],
param_help={
"suppress_fat": "suppress computation on low SNR fat regions",
"suppress_fluid": "suppress computation on fluid regions",
"beta": "constant for calculating fluid-nulled image (S1-beta*S2)",
"gl_area": "GL Area. Defaults to value in dicom tag '0x001910b6'",
"tg": "Gradient time (in microseconds). "
"Defaults to value in dicom tag '0x001910b7'.",
"alpha": "Flip angle in degrees. Defaults to value in dicom tag '0x00181314'.",
"diffusivity": "Estimated diffusivity. Defaults to 1.25e-9",
},
help="generate T2 map",
)
return [(cls.segment, segment_action), (cls.generate_t2_map, generate_t2_map_action)]