|
a |
|
b/dosma/tissues/patellar_cartilage.py |
|
|
1 |
"""Analysis for patellar cartilage. |
|
|
2 |
|
|
|
3 |
Attributes: |
|
|
4 |
BOUNDS (dict): Upper bounds for quantitative values. |
|
|
5 |
""" |
|
|
6 |
import itertools |
|
|
7 |
import os |
|
|
8 |
import warnings |
|
|
9 |
|
|
|
10 |
import numpy as np |
|
|
11 |
import pandas as pd |
|
|
12 |
import scipy.ndimage as sni |
|
|
13 |
|
|
|
14 |
from dosma.core.device import get_array_module |
|
|
15 |
from dosma.core.quant_vals import QuantitativeValueType |
|
|
16 |
from dosma.defaults import preferences |
|
|
17 |
from dosma.tissues.tissue import Tissue, largest_cc |
|
|
18 |
from dosma.utils import io_utils |
|
|
19 |
|
|
|
20 |
import matplotlib.pyplot as plt |
|
|
21 |
|
|
|
22 |
# milliseconds |
|
|
23 |
BOUNDS = { |
|
|
24 |
QuantitativeValueType.T2: 60.0, |
|
|
25 |
QuantitativeValueType.T1_RHO: 100.0, |
|
|
26 |
QuantitativeValueType.T2_STAR: 50.0, |
|
|
27 |
} |
|
|
28 |
|
|
|
29 |
__all__ = ["PatellarCartilage"] |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
class PatellarCartilage(Tissue): |
|
|
33 |
"""Handles analysis and visualization for patellar cartilage.""" |
|
|
34 |
|
|
|
35 |
ID = 3 |
|
|
36 |
STR_ID = "pc" |
|
|
37 |
FULL_NAME = "patellar cartilage" |
|
|
38 |
|
|
|
39 |
# Expected quantitative values |
|
|
40 |
T1_EXPECTED = 1000 # milliseconds |
|
|
41 |
|
|
|
42 |
# Region Keys |
|
|
43 |
_ANTERIOR_KEY = 0 |
|
|
44 |
_POSTERIOR_KEY = 1 |
|
|
45 |
_CORONAL_KEYS = [_ANTERIOR_KEY, _POSTERIOR_KEY] |
|
|
46 |
|
|
|
47 |
_MEDIAL_KEY = 0 |
|
|
48 |
_LATERAL_KEY = 1 |
|
|
49 |
_SAGITTAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY] |
|
|
50 |
|
|
|
51 |
_REGION_DEEP_KEY = 0 |
|
|
52 |
_REGION_SUPERFICIAL_KEY = 1 |
|
|
53 |
_TOTAL_AXIAL_KEY = -1 |
|
|
54 |
|
|
|
55 |
def __init__(self, weights_dir: str = None, medial_to_lateral: bool = None): |
|
|
56 |
super().__init__(weights_dir=weights_dir, medial_to_lateral=medial_to_lateral) |
|
|
57 |
|
|
|
58 |
self.regions_mask = None |
|
|
59 |
|
|
|
60 |
def unroll_coronal(self, quant_map: np.ndarray): |
|
|
61 |
"""Unroll patellar cartilage in the coronal direction. |
|
|
62 |
|
|
|
63 |
Because patellar cartilage is flat, "unrolling" is projecting the patellar |
|
|
64 |
cartilage onto the coronal axis. |
|
|
65 |
|
|
|
66 |
Args: |
|
|
67 |
quant_map (np.ndarray): |
|
|
68 |
""" |
|
|
69 |
mask = self.__mask__.volume |
|
|
70 |
|
|
|
71 |
assert ( |
|
|
72 |
self.regions_mask is not None |
|
|
73 |
), "region_mask not initialized. Should be initialized when mask is set" |
|
|
74 |
region_mask_deep_superficial = self.regions_mask[..., 0] |
|
|
75 |
|
|
|
76 |
superficial = ( |
|
|
77 |
(region_mask_deep_superficial == self._REGION_SUPERFICIAL_KEY) * mask * quant_map |
|
|
78 |
) |
|
|
79 |
superficial[superficial == 0] = np.nan |
|
|
80 |
superficial = np.nanmean(superficial, axis=2) |
|
|
81 |
|
|
|
82 |
deep = (region_mask_deep_superficial == self._REGION_DEEP_KEY) * mask * quant_map |
|
|
83 |
deep[deep == 0] = np.nan |
|
|
84 |
deep = np.nanmean(deep, axis=2) |
|
|
85 |
|
|
|
86 |
total = mask * quant_map |
|
|
87 |
total[total == 0] = np.nan |
|
|
88 |
total = np.nanmean(total, axis=2) |
|
|
89 |
|
|
|
90 |
return total, superficial, deep |
|
|
91 |
|
|
|
92 |
def split_regions(self, base_map): |
|
|
93 |
"""Split patellar cartilage into deep/superficial regions. |
|
|
94 |
|
|
|
95 |
For patellar cartilage, the superficial/deep transition occurs in |
|
|
96 |
the anterior/posterior (A/P) direction. The boundary is determined |
|
|
97 |
for each non-zero 1D column spanning independently by the local |
|
|
98 |
center-of-mass (COM). The medial/lateral (M/L) plane is computed |
|
|
99 |
using the global COM. |
|
|
100 |
|
|
|
101 |
Args: |
|
|
102 |
base_map (ndarray): Binary 3D mask with orientation (SI, AP, ML/LM). |
|
|
103 |
If `self.medial_to_lateral`, last dimension should be ML. |
|
|
104 |
""" |
|
|
105 |
if np.sum(base_map) == 0: |
|
|
106 |
warnings.warn("No mask for `%s` was found." % self.FULL_NAME) |
|
|
107 |
|
|
|
108 |
# Superficial/Deep (A/P) |
|
|
109 |
locs = base_map.sum(axis=1).nonzero() |
|
|
110 |
voxels = base_map[locs[0], :, locs[1]] |
|
|
111 |
com_sup_inf = np.asarray( |
|
|
112 |
[ |
|
|
113 |
int(np.ceil(sni.measurements.center_of_mass(voxels[i, :])[0])) |
|
|
114 |
for i in range(voxels.shape[0]) |
|
|
115 |
] |
|
|
116 |
) |
|
|
117 |
region_mask_sup_deep = np.full(base_map.shape, self._REGION_DEEP_KEY) |
|
|
118 |
for i in range(len(com_sup_inf)): |
|
|
119 |
region_mask_sup_deep[ |
|
|
120 |
locs[0][i], : com_sup_inf[i], locs[1][i] |
|
|
121 |
] = self._REGION_SUPERFICIAL_KEY |
|
|
122 |
|
|
|
123 |
# M/L |
|
|
124 |
cum_ml = np.nonzero(base_map.sum(axis=(0, 1)))[0] # noqa: F841 |
|
|
125 |
# midpoint_ml = int(np.ceil((np.min(cum_ml) + np.max(cum_ml)) / 2)) |
|
|
126 |
midpoint_ml = int(np.ceil(sni.measurements.center_of_mass(base_map)[2])) |
|
|
127 |
region_mask_med_lat = np.full(base_map.shape, self._LATERAL_KEY) |
|
|
128 |
medial_span = slice(0, midpoint_ml) if self.medial_to_lateral else slice(midpoint_ml, None) |
|
|
129 |
region_mask_med_lat[:, :, medial_span] = self._MEDIAL_KEY |
|
|
130 |
|
|
|
131 |
self.regions_mask = np.stack([region_mask_sup_deep, region_mask_med_lat], axis=-1) |
|
|
132 |
|
|
|
133 |
def __calc_quant_vals__(self, quant_map, map_type): |
|
|
134 |
subject_pid = self.pid |
|
|
135 |
|
|
|
136 |
super().__calc_quant_vals__(quant_map, map_type) |
|
|
137 |
|
|
|
138 |
assert ( |
|
|
139 |
self.regions_mask is not None |
|
|
140 |
), "region_mask not initialized. Should be initialized when mask is set" |
|
|
141 |
|
|
|
142 |
quant_map_volume = quant_map.volume |
|
|
143 |
mask = self.__mask__.volume |
|
|
144 |
quant_map_volume = mask * quant_map_volume |
|
|
145 |
|
|
|
146 |
deep_superficial_map = self.regions_mask[..., 0] |
|
|
147 |
med_lat_map = self.regions_mask[..., 1] |
|
|
148 |
|
|
|
149 |
axial_names = ["superficial", "deep", "total"] |
|
|
150 |
sagittal_names = ["medial", "lateral"] |
|
|
151 |
|
|
|
152 |
pd_header = ["Subject", "Location", "Condyle", "Mean", "Std", "Median"] |
|
|
153 |
pd_list = [] |
|
|
154 |
|
|
|
155 |
regions = itertools.product( |
|
|
156 |
[self._REGION_SUPERFICIAL_KEY, self._REGION_DEEP_KEY, self._TOTAL_AXIAL_KEY], |
|
|
157 |
[self._MEDIAL_KEY, self._LATERAL_KEY], |
|
|
158 |
) |
|
|
159 |
for axial, sagittal in regions: |
|
|
160 |
if axial == self._TOTAL_AXIAL_KEY: |
|
|
161 |
axial_map = np.asarray( |
|
|
162 |
deep_superficial_map == self._REGION_SUPERFICIAL_KEY, dtype=np.float32 |
|
|
163 |
) + np.asarray(deep_superficial_map == self._REGION_DEEP_KEY, dtype=np.float32) |
|
|
164 |
axial_map = np.asarray(axial_map, dtype=np.bool) |
|
|
165 |
else: |
|
|
166 |
axial_map = deep_superficial_map == axial |
|
|
167 |
|
|
|
168 |
sagittal_map = med_lat_map == sagittal |
|
|
169 |
|
|
|
170 |
curr_region_mask = quant_map_volume * axial_map * sagittal_map |
|
|
171 |
curr_region_mask = curr_region_mask[curr_region_mask != 0] |
|
|
172 |
|
|
|
173 |
# discard all values that are 0 |
|
|
174 |
c_mean = np.nanmean(curr_region_mask) |
|
|
175 |
c_std = np.nanstd(curr_region_mask) |
|
|
176 |
c_median = np.nanmedian(curr_region_mask) |
|
|
177 |
|
|
|
178 |
row_info = [ |
|
|
179 |
subject_pid, |
|
|
180 |
axial_names[axial], |
|
|
181 |
sagittal_names[sagittal], |
|
|
182 |
c_mean, |
|
|
183 |
c_std, |
|
|
184 |
c_median, |
|
|
185 |
] |
|
|
186 |
|
|
|
187 |
pd_list.append(row_info) |
|
|
188 |
|
|
|
189 |
# Generate 2D unrolled matrix |
|
|
190 |
total, superficial, deep = self.unroll_coronal(quant_map.volume) |
|
|
191 |
|
|
|
192 |
df = pd.DataFrame(pd_list, columns=pd_header) |
|
|
193 |
qv_name = map_type.name |
|
|
194 |
maps = [ |
|
|
195 |
{ |
|
|
196 |
"title": "%s superficial" % qv_name, |
|
|
197 |
"data": superficial, |
|
|
198 |
"xlabel": "Slice", |
|
|
199 |
"ylabel": "Angle (binned)", |
|
|
200 |
"filename": "%s_superficial" % qv_name, |
|
|
201 |
"raw_data_filename": "%s_superficial.data" % qv_name, |
|
|
202 |
}, |
|
|
203 |
{ |
|
|
204 |
"title": "%s deep" % qv_name, |
|
|
205 |
"data": deep, |
|
|
206 |
"xlabel": "Slice", |
|
|
207 |
"ylabel": "Angle (binned)", |
|
|
208 |
"filename": "%s_deep" % qv_name, |
|
|
209 |
"raw_data_filename": "%s_deep.data" % qv_name, |
|
|
210 |
}, |
|
|
211 |
{ |
|
|
212 |
"title": "%s total" % qv_name, |
|
|
213 |
"data": total, |
|
|
214 |
"xlabel": "Slice", |
|
|
215 |
"ylabel": "Angle (binned)", |
|
|
216 |
"filename": "%s_total" % qv_name, |
|
|
217 |
"raw_data_filename": "%s_total.data" % qv_name, |
|
|
218 |
}, |
|
|
219 |
] |
|
|
220 |
|
|
|
221 |
self.__store_quant_vals__(maps, df, map_type) |
|
|
222 |
|
|
|
223 |
def set_mask(self, mask, use_largest_cc: bool = True): |
|
|
224 |
xp = get_array_module(mask.A) |
|
|
225 |
if use_largest_cc: |
|
|
226 |
msk = xp.asarray(largest_cc(mask.A), dtype=xp.uint8) |
|
|
227 |
else: |
|
|
228 |
msk = xp.asarray(mask.A, dtype=xp.uint8) |
|
|
229 |
mask_copy = mask._partial_clone(volume=msk) |
|
|
230 |
super().set_mask(mask_copy) |
|
|
231 |
|
|
|
232 |
self.split_regions(self.__mask__.volume) |
|
|
233 |
|
|
|
234 |
def __save_quant_data__(self, dirpath): |
|
|
235 |
"""Save quantitative data and 2D visualizations of patellar cartilage |
|
|
236 |
|
|
|
237 |
Check which quantitative values (T2, T1rho, etc) are defined for |
|
|
238 |
patellar cartilage and analyze these: |
|
|
239 |
|
|
|
240 |
1. Save 2D total, superficial, and deep visualization maps |
|
|
241 |
2. Save {'medial', 'lateral'}, {'anterior', 'posterior'}, |
|
|
242 |
{'superior', 'inferior', 'total'} data to excel file |
|
|
243 |
|
|
|
244 |
:param dirpath: base filepath to save data |
|
|
245 |
""" |
|
|
246 |
q_names = [] |
|
|
247 |
dfs = [] |
|
|
248 |
|
|
|
249 |
for quant_val in QuantitativeValueType: |
|
|
250 |
if quant_val.name not in self.quant_vals.keys(): |
|
|
251 |
continue |
|
|
252 |
|
|
|
253 |
q_names.append(quant_val.name) |
|
|
254 |
q_val = self.quant_vals[quant_val.name] |
|
|
255 |
dfs.append(q_val[1]) |
|
|
256 |
|
|
|
257 |
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower())) |
|
|
258 |
for q_map_data in q_val[0]: |
|
|
259 |
filepath = os.path.join(q_name_dirpath, q_map_data["filename"]) |
|
|
260 |
xlabel = "" |
|
|
261 |
ylabel = "" |
|
|
262 |
title = q_map_data["title"] |
|
|
263 |
data_map = q_map_data["data"] |
|
|
264 |
|
|
|
265 |
axs_bounds = self.__get_axis_bounds__(data_map, leave_buffer=True) |
|
|
266 |
|
|
|
267 |
plt.clf() |
|
|
268 |
|
|
|
269 |
upper_bound = BOUNDS[quant_val] |
|
|
270 |
if preferences.visualization_use_vmax: |
|
|
271 |
# Hard bounds - clipping |
|
|
272 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
273 |
else: |
|
|
274 |
# Try to use a soft bounds |
|
|
275 |
if np.sum(data_map <= upper_bound) == 0: |
|
|
276 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
277 |
else: |
|
|
278 |
warnings.warn( |
|
|
279 |
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale." |
|
|
280 |
% (quant_val.name, upper_bound) |
|
|
281 |
) |
|
|
282 |
plt.imshow(data_map, cmap="jet") |
|
|
283 |
|
|
|
284 |
plt.xlabel(xlabel) |
|
|
285 |
plt.ylabel(ylabel) |
|
|
286 |
plt.title(title) |
|
|
287 |
plt.ylim(axs_bounds[0]) |
|
|
288 |
plt.gca().invert_yaxis() |
|
|
289 |
plt.xlim(axs_bounds[1]) |
|
|
290 |
# plt.axis('tight') |
|
|
291 |
clb = plt.colorbar() |
|
|
292 |
clb.ax.set_ylabel("(ms)") |
|
|
293 |
plt.savefig(filepath) |
|
|
294 |
|
|
|
295 |
# Save data |
|
|
296 |
raw_data_filepath = os.path.join( |
|
|
297 |
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"] |
|
|
298 |
) |
|
|
299 |
io_utils.save_pik(raw_data_filepath, data_map) |
|
|
300 |
|
|
|
301 |
if len(dfs) > 0: |
|
|
302 |
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names) |