"""Analysis for patellar cartilage.
Attributes:
BOUNDS (dict): Upper bounds for quantitative values.
"""
import itertools
import os
import warnings
import numpy as np
import pandas as pd
import scipy.ndimage as sni
from dosma.core.device import get_array_module
from dosma.core.quant_vals import QuantitativeValueType
from dosma.defaults import preferences
from dosma.tissues.tissue import Tissue, largest_cc
from dosma.utils import io_utils
import matplotlib.pyplot as plt
# milliseconds
BOUNDS = {
QuantitativeValueType.T2: 60.0,
QuantitativeValueType.T1_RHO: 100.0,
QuantitativeValueType.T2_STAR: 50.0,
}
__all__ = ["PatellarCartilage"]
class PatellarCartilage(Tissue):
"""Handles analysis and visualization for patellar cartilage."""
ID = 3
STR_ID = "pc"
FULL_NAME = "patellar cartilage"
# Expected quantitative values
T1_EXPECTED = 1000 # milliseconds
# Region Keys
_ANTERIOR_KEY = 0
_POSTERIOR_KEY = 1
_CORONAL_KEYS = [_ANTERIOR_KEY, _POSTERIOR_KEY]
_MEDIAL_KEY = 0
_LATERAL_KEY = 1
_SAGITTAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY]
_REGION_DEEP_KEY = 0
_REGION_SUPERFICIAL_KEY = 1
_TOTAL_AXIAL_KEY = -1
def __init__(self, weights_dir: str = None, medial_to_lateral: bool = None):
super().__init__(weights_dir=weights_dir, medial_to_lateral=medial_to_lateral)
self.regions_mask = None
def unroll_coronal(self, quant_map: np.ndarray):
"""Unroll patellar cartilage in the coronal direction.
Because patellar cartilage is flat, "unrolling" is projecting the patellar
cartilage onto the coronal axis.
Args:
quant_map (np.ndarray):
"""
mask = self.__mask__.volume
assert (
self.regions_mask is not None
), "region_mask not initialized. Should be initialized when mask is set"
region_mask_deep_superficial = self.regions_mask[..., 0]
superficial = (
(region_mask_deep_superficial == self._REGION_SUPERFICIAL_KEY) * mask * quant_map
)
superficial[superficial == 0] = np.nan
superficial = np.nanmean(superficial, axis=2)
deep = (region_mask_deep_superficial == self._REGION_DEEP_KEY) * mask * quant_map
deep[deep == 0] = np.nan
deep = np.nanmean(deep, axis=2)
total = mask * quant_map
total[total == 0] = np.nan
total = np.nanmean(total, axis=2)
return total, superficial, deep
def split_regions(self, base_map):
"""Split patellar cartilage into deep/superficial regions.
For patellar cartilage, the superficial/deep transition occurs in
the anterior/posterior (A/P) direction. The boundary is determined
for each non-zero 1D column spanning independently by the local
center-of-mass (COM). The medial/lateral (M/L) plane is computed
using the global COM.
Args:
base_map (ndarray): Binary 3D mask with orientation (SI, AP, ML/LM).
If `self.medial_to_lateral`, last dimension should be ML.
"""
if np.sum(base_map) == 0:
warnings.warn("No mask for `%s` was found." % self.FULL_NAME)
# Superficial/Deep (A/P)
locs = base_map.sum(axis=1).nonzero()
voxels = base_map[locs[0], :, locs[1]]
com_sup_inf = np.asarray(
[
int(np.ceil(sni.measurements.center_of_mass(voxels[i, :])[0]))
for i in range(voxels.shape[0])
]
)
region_mask_sup_deep = np.full(base_map.shape, self._REGION_DEEP_KEY)
for i in range(len(com_sup_inf)):
region_mask_sup_deep[
locs[0][i], : com_sup_inf[i], locs[1][i]
] = self._REGION_SUPERFICIAL_KEY
# M/L
cum_ml = np.nonzero(base_map.sum(axis=(0, 1)))[0] # noqa: F841
# midpoint_ml = int(np.ceil((np.min(cum_ml) + np.max(cum_ml)) / 2))
midpoint_ml = int(np.ceil(sni.measurements.center_of_mass(base_map)[2]))
region_mask_med_lat = np.full(base_map.shape, self._LATERAL_KEY)
medial_span = slice(0, midpoint_ml) if self.medial_to_lateral else slice(midpoint_ml, None)
region_mask_med_lat[:, :, medial_span] = self._MEDIAL_KEY
self.regions_mask = np.stack([region_mask_sup_deep, region_mask_med_lat], axis=-1)
def __calc_quant_vals__(self, quant_map, map_type):
subject_pid = self.pid
super().__calc_quant_vals__(quant_map, map_type)
assert (
self.regions_mask is not None
), "region_mask not initialized. Should be initialized when mask is set"
quant_map_volume = quant_map.volume
mask = self.__mask__.volume
quant_map_volume = mask * quant_map_volume
deep_superficial_map = self.regions_mask[..., 0]
med_lat_map = self.regions_mask[..., 1]
axial_names = ["superficial", "deep", "total"]
sagittal_names = ["medial", "lateral"]
pd_header = ["Subject", "Location", "Condyle", "Mean", "Std", "Median"]
pd_list = []
regions = itertools.product(
[self._REGION_SUPERFICIAL_KEY, self._REGION_DEEP_KEY, self._TOTAL_AXIAL_KEY],
[self._MEDIAL_KEY, self._LATERAL_KEY],
)
for axial, sagittal in regions:
if axial == self._TOTAL_AXIAL_KEY:
axial_map = np.asarray(
deep_superficial_map == self._REGION_SUPERFICIAL_KEY, dtype=np.float32
) + np.asarray(deep_superficial_map == self._REGION_DEEP_KEY, dtype=np.float32)
axial_map = np.asarray(axial_map, dtype=np.bool)
else:
axial_map = deep_superficial_map == axial
sagittal_map = med_lat_map == sagittal
curr_region_mask = quant_map_volume * axial_map * sagittal_map
curr_region_mask = curr_region_mask[curr_region_mask != 0]
# discard all values that are 0
c_mean = np.nanmean(curr_region_mask)
c_std = np.nanstd(curr_region_mask)
c_median = np.nanmedian(curr_region_mask)
row_info = [
subject_pid,
axial_names[axial],
sagittal_names[sagittal],
c_mean,
c_std,
c_median,
]
pd_list.append(row_info)
# Generate 2D unrolled matrix
total, superficial, deep = self.unroll_coronal(quant_map.volume)
df = pd.DataFrame(pd_list, columns=pd_header)
qv_name = map_type.name
maps = [
{
"title": "%s superficial" % qv_name,
"data": superficial,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_superficial" % qv_name,
"raw_data_filename": "%s_superficial.data" % qv_name,
},
{
"title": "%s deep" % qv_name,
"data": deep,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_deep" % qv_name,
"raw_data_filename": "%s_deep.data" % qv_name,
},
{
"title": "%s total" % qv_name,
"data": total,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_total" % qv_name,
"raw_data_filename": "%s_total.data" % qv_name,
},
]
self.__store_quant_vals__(maps, df, map_type)
def set_mask(self, mask, use_largest_cc: bool = True):
xp = get_array_module(mask.A)
if use_largest_cc:
msk = xp.asarray(largest_cc(mask.A), dtype=xp.uint8)
else:
msk = xp.asarray(mask.A, dtype=xp.uint8)
mask_copy = mask._partial_clone(volume=msk)
super().set_mask(mask_copy)
self.split_regions(self.__mask__.volume)
def __save_quant_data__(self, dirpath):
"""Save quantitative data and 2D visualizations of patellar cartilage
Check which quantitative values (T2, T1rho, etc) are defined for
patellar cartilage and analyze these:
1. Save 2D total, superficial, and deep visualization maps
2. Save {'medial', 'lateral'}, {'anterior', 'posterior'},
{'superior', 'inferior', 'total'} data to excel file
:param dirpath: base filepath to save data
"""
q_names = []
dfs = []
for quant_val in QuantitativeValueType:
if quant_val.name not in self.quant_vals.keys():
continue
q_names.append(quant_val.name)
q_val = self.quant_vals[quant_val.name]
dfs.append(q_val[1])
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower()))
for q_map_data in q_val[0]:
filepath = os.path.join(q_name_dirpath, q_map_data["filename"])
xlabel = ""
ylabel = ""
title = q_map_data["title"]
data_map = q_map_data["data"]
axs_bounds = self.__get_axis_bounds__(data_map, leave_buffer=True)
plt.clf()
upper_bound = BOUNDS[quant_val]
if preferences.visualization_use_vmax:
# Hard bounds - clipping
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
# Try to use a soft bounds
if np.sum(data_map <= upper_bound) == 0:
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
warnings.warn(
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale."
% (quant_val.name, upper_bound)
)
plt.imshow(data_map, cmap="jet")
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.ylim(axs_bounds[0])
plt.gca().invert_yaxis()
plt.xlim(axs_bounds[1])
# plt.axis('tight')
clb = plt.colorbar()
clb.ax.set_ylabel("(ms)")
plt.savefig(filepath)
# Save data
raw_data_filepath = os.path.join(
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"]
)
io_utils.save_pik(raw_data_filepath, data_map)
if len(dfs) > 0:
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names)