[030aeb]: / dosma / tissues / patellar_cartilage.py

Download this file

303 lines (242 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""Analysis for patellar cartilage.
Attributes:
BOUNDS (dict): Upper bounds for quantitative values.
"""
import itertools
import os
import warnings
import numpy as np
import pandas as pd
import scipy.ndimage as sni
from dosma.core.device import get_array_module
from dosma.core.quant_vals import QuantitativeValueType
from dosma.defaults import preferences
from dosma.tissues.tissue import Tissue, largest_cc
from dosma.utils import io_utils
import matplotlib.pyplot as plt
# milliseconds
BOUNDS = {
QuantitativeValueType.T2: 60.0,
QuantitativeValueType.T1_RHO: 100.0,
QuantitativeValueType.T2_STAR: 50.0,
}
__all__ = ["PatellarCartilage"]
class PatellarCartilage(Tissue):
"""Handles analysis and visualization for patellar cartilage."""
ID = 3
STR_ID = "pc"
FULL_NAME = "patellar cartilage"
# Expected quantitative values
T1_EXPECTED = 1000 # milliseconds
# Region Keys
_ANTERIOR_KEY = 0
_POSTERIOR_KEY = 1
_CORONAL_KEYS = [_ANTERIOR_KEY, _POSTERIOR_KEY]
_MEDIAL_KEY = 0
_LATERAL_KEY = 1
_SAGITTAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY]
_REGION_DEEP_KEY = 0
_REGION_SUPERFICIAL_KEY = 1
_TOTAL_AXIAL_KEY = -1
def __init__(self, weights_dir: str = None, medial_to_lateral: bool = None):
super().__init__(weights_dir=weights_dir, medial_to_lateral=medial_to_lateral)
self.regions_mask = None
def unroll_coronal(self, quant_map: np.ndarray):
"""Unroll patellar cartilage in the coronal direction.
Because patellar cartilage is flat, "unrolling" is projecting the patellar
cartilage onto the coronal axis.
Args:
quant_map (np.ndarray):
"""
mask = self.__mask__.volume
assert (
self.regions_mask is not None
), "region_mask not initialized. Should be initialized when mask is set"
region_mask_deep_superficial = self.regions_mask[..., 0]
superficial = (
(region_mask_deep_superficial == self._REGION_SUPERFICIAL_KEY) * mask * quant_map
)
superficial[superficial == 0] = np.nan
superficial = np.nanmean(superficial, axis=2)
deep = (region_mask_deep_superficial == self._REGION_DEEP_KEY) * mask * quant_map
deep[deep == 0] = np.nan
deep = np.nanmean(deep, axis=2)
total = mask * quant_map
total[total == 0] = np.nan
total = np.nanmean(total, axis=2)
return total, superficial, deep
def split_regions(self, base_map):
"""Split patellar cartilage into deep/superficial regions.
For patellar cartilage, the superficial/deep transition occurs in
the anterior/posterior (A/P) direction. The boundary is determined
for each non-zero 1D column spanning independently by the local
center-of-mass (COM). The medial/lateral (M/L) plane is computed
using the global COM.
Args:
base_map (ndarray): Binary 3D mask with orientation (SI, AP, ML/LM).
If `self.medial_to_lateral`, last dimension should be ML.
"""
if np.sum(base_map) == 0:
warnings.warn("No mask for `%s` was found." % self.FULL_NAME)
# Superficial/Deep (A/P)
locs = base_map.sum(axis=1).nonzero()
voxels = base_map[locs[0], :, locs[1]]
com_sup_inf = np.asarray(
[
int(np.ceil(sni.measurements.center_of_mass(voxels[i, :])[0]))
for i in range(voxels.shape[0])
]
)
region_mask_sup_deep = np.full(base_map.shape, self._REGION_DEEP_KEY)
for i in range(len(com_sup_inf)):
region_mask_sup_deep[
locs[0][i], : com_sup_inf[i], locs[1][i]
] = self._REGION_SUPERFICIAL_KEY
# M/L
cum_ml = np.nonzero(base_map.sum(axis=(0, 1)))[0] # noqa: F841
# midpoint_ml = int(np.ceil((np.min(cum_ml) + np.max(cum_ml)) / 2))
midpoint_ml = int(np.ceil(sni.measurements.center_of_mass(base_map)[2]))
region_mask_med_lat = np.full(base_map.shape, self._LATERAL_KEY)
medial_span = slice(0, midpoint_ml) if self.medial_to_lateral else slice(midpoint_ml, None)
region_mask_med_lat[:, :, medial_span] = self._MEDIAL_KEY
self.regions_mask = np.stack([region_mask_sup_deep, region_mask_med_lat], axis=-1)
def __calc_quant_vals__(self, quant_map, map_type):
subject_pid = self.pid
super().__calc_quant_vals__(quant_map, map_type)
assert (
self.regions_mask is not None
), "region_mask not initialized. Should be initialized when mask is set"
quant_map_volume = quant_map.volume
mask = self.__mask__.volume
quant_map_volume = mask * quant_map_volume
deep_superficial_map = self.regions_mask[..., 0]
med_lat_map = self.regions_mask[..., 1]
axial_names = ["superficial", "deep", "total"]
sagittal_names = ["medial", "lateral"]
pd_header = ["Subject", "Location", "Condyle", "Mean", "Std", "Median"]
pd_list = []
regions = itertools.product(
[self._REGION_SUPERFICIAL_KEY, self._REGION_DEEP_KEY, self._TOTAL_AXIAL_KEY],
[self._MEDIAL_KEY, self._LATERAL_KEY],
)
for axial, sagittal in regions:
if axial == self._TOTAL_AXIAL_KEY:
axial_map = np.asarray(
deep_superficial_map == self._REGION_SUPERFICIAL_KEY, dtype=np.float32
) + np.asarray(deep_superficial_map == self._REGION_DEEP_KEY, dtype=np.float32)
axial_map = np.asarray(axial_map, dtype=np.bool)
else:
axial_map = deep_superficial_map == axial
sagittal_map = med_lat_map == sagittal
curr_region_mask = quant_map_volume * axial_map * sagittal_map
curr_region_mask = curr_region_mask[curr_region_mask != 0]
# discard all values that are 0
c_mean = np.nanmean(curr_region_mask)
c_std = np.nanstd(curr_region_mask)
c_median = np.nanmedian(curr_region_mask)
row_info = [
subject_pid,
axial_names[axial],
sagittal_names[sagittal],
c_mean,
c_std,
c_median,
]
pd_list.append(row_info)
# Generate 2D unrolled matrix
total, superficial, deep = self.unroll_coronal(quant_map.volume)
df = pd.DataFrame(pd_list, columns=pd_header)
qv_name = map_type.name
maps = [
{
"title": "%s superficial" % qv_name,
"data": superficial,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_superficial" % qv_name,
"raw_data_filename": "%s_superficial.data" % qv_name,
},
{
"title": "%s deep" % qv_name,
"data": deep,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_deep" % qv_name,
"raw_data_filename": "%s_deep.data" % qv_name,
},
{
"title": "%s total" % qv_name,
"data": total,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "%s_total" % qv_name,
"raw_data_filename": "%s_total.data" % qv_name,
},
]
self.__store_quant_vals__(maps, df, map_type)
def set_mask(self, mask, use_largest_cc: bool = True):
xp = get_array_module(mask.A)
if use_largest_cc:
msk = xp.asarray(largest_cc(mask.A), dtype=xp.uint8)
else:
msk = xp.asarray(mask.A, dtype=xp.uint8)
mask_copy = mask._partial_clone(volume=msk)
super().set_mask(mask_copy)
self.split_regions(self.__mask__.volume)
def __save_quant_data__(self, dirpath):
"""Save quantitative data and 2D visualizations of patellar cartilage
Check which quantitative values (T2, T1rho, etc) are defined for
patellar cartilage and analyze these:
1. Save 2D total, superficial, and deep visualization maps
2. Save {'medial', 'lateral'}, {'anterior', 'posterior'},
{'superior', 'inferior', 'total'} data to excel file
:param dirpath: base filepath to save data
"""
q_names = []
dfs = []
for quant_val in QuantitativeValueType:
if quant_val.name not in self.quant_vals.keys():
continue
q_names.append(quant_val.name)
q_val = self.quant_vals[quant_val.name]
dfs.append(q_val[1])
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower()))
for q_map_data in q_val[0]:
filepath = os.path.join(q_name_dirpath, q_map_data["filename"])
xlabel = ""
ylabel = ""
title = q_map_data["title"]
data_map = q_map_data["data"]
axs_bounds = self.__get_axis_bounds__(data_map, leave_buffer=True)
plt.clf()
upper_bound = BOUNDS[quant_val]
if preferences.visualization_use_vmax:
# Hard bounds - clipping
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
# Try to use a soft bounds
if np.sum(data_map <= upper_bound) == 0:
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
warnings.warn(
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale."
% (quant_val.name, upper_bound)
)
plt.imshow(data_map, cmap="jet")
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
plt.ylim(axs_bounds[0])
plt.gca().invert_yaxis()
plt.xlim(axs_bounds[1])
# plt.axis('tight')
clb = plt.colorbar()
clb.ax.set_ylabel("(ms)")
plt.savefig(filepath)
# Save data
raw_data_filepath = os.path.join(
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"]
)
io_utils.save_pik(raw_data_filepath, data_map)
if len(dfs) > 0:
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names)