|
a |
|
b/dosma/tissues/meniscus.py |
|
|
1 |
"""Analysis for meniscus. |
|
|
2 |
|
|
|
3 |
Attributes: |
|
|
4 |
BOUNDS (dict): Upper bounds for quantitative values. |
|
|
5 |
""" |
|
|
6 |
|
|
|
7 |
import itertools |
|
|
8 |
import os |
|
|
9 |
import warnings |
|
|
10 |
|
|
|
11 |
import numpy as np |
|
|
12 |
import pandas as pd |
|
|
13 |
import scipy.ndimage as sni |
|
|
14 |
|
|
|
15 |
from dosma.core.device import get_array_module |
|
|
16 |
from dosma.core.med_volume import MedicalVolume |
|
|
17 |
from dosma.core.quant_vals import T2, QuantitativeValueType |
|
|
18 |
from dosma.defaults import preferences |
|
|
19 |
from dosma.tissues.tissue import Tissue, largest_cc |
|
|
20 |
from dosma.utils import io_utils |
|
|
21 |
|
|
|
22 |
import matplotlib.pyplot as plt |
|
|
23 |
|
|
|
24 |
# milliseconds |
|
|
25 |
BOUNDS = { |
|
|
26 |
QuantitativeValueType.T2: 60.0, |
|
|
27 |
QuantitativeValueType.T1_RHO: 100.0, |
|
|
28 |
QuantitativeValueType.T2_STAR: 50.0, |
|
|
29 |
} |
|
|
30 |
|
|
|
31 |
__all__ = ["Meniscus"] |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
class Meniscus(Tissue): |
|
|
35 |
"""Handles analysis and visualization for meniscus. |
|
|
36 |
|
|
|
37 |
This class extends functionality from `Tissue`. |
|
|
38 |
|
|
|
39 |
For visualization, the meniscus is unrolled across the axial plane. |
|
|
40 |
""" |
|
|
41 |
|
|
|
42 |
ID = 2 |
|
|
43 |
STR_ID = "men" |
|
|
44 |
FULL_NAME = "meniscus" |
|
|
45 |
|
|
|
46 |
# Expected quantitative values |
|
|
47 |
T1_EXPECTED = 1000 # milliseconds |
|
|
48 |
|
|
|
49 |
# Coronal Keys |
|
|
50 |
_ANTERIOR_KEY = 0 |
|
|
51 |
_POSTERIOR_KEY = 1 |
|
|
52 |
_CORONAL_KEYS = [_ANTERIOR_KEY, _POSTERIOR_KEY] |
|
|
53 |
|
|
|
54 |
# Saggital Keys |
|
|
55 |
_MEDIAL_KEY = 0 |
|
|
56 |
_LATERAL_KEY = 1 |
|
|
57 |
_SAGGITAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY] |
|
|
58 |
|
|
|
59 |
# Axial Keys |
|
|
60 |
_SUPERIOR_KEY = 0 |
|
|
61 |
_INFERIOR_KEY = 1 |
|
|
62 |
_TOTAL_AXIAL_KEY = -1 |
|
|
63 |
|
|
|
64 |
def __init__( |
|
|
65 |
self, weights_dir: str = None, medial_to_lateral: bool = None, split_ml_only: bool = False |
|
|
66 |
): |
|
|
67 |
super().__init__(weights_dir=weights_dir, medial_to_lateral=medial_to_lateral) |
|
|
68 |
|
|
|
69 |
self.split_ml_only = split_ml_only |
|
|
70 |
self.regions_mask = None |
|
|
71 |
|
|
|
72 |
def unroll_axial(self, quant_map: np.ndarray): |
|
|
73 |
"""Unroll meniscus in axial direction. |
|
|
74 |
|
|
|
75 |
Args: |
|
|
76 |
quant_map (np.ndarray): Map to roll out. |
|
|
77 |
|
|
|
78 |
""" |
|
|
79 |
mask = self.__mask__.volume |
|
|
80 |
|
|
|
81 |
assert ( |
|
|
82 |
self.regions_mask is not None |
|
|
83 |
), "region_mask not initialized. Should be initialized when mask is set" |
|
|
84 |
region_mask_sup_inf = self.regions_mask[..., 0] |
|
|
85 |
|
|
|
86 |
superior = (region_mask_sup_inf == self._SUPERIOR_KEY) * mask * quant_map |
|
|
87 |
superior[superior == 0] = np.nan |
|
|
88 |
superior = np.nanmean(superior, axis=0) |
|
|
89 |
|
|
|
90 |
inferior = (region_mask_sup_inf == self._INFERIOR_KEY) * mask * quant_map |
|
|
91 |
inferior[inferior == 0] = np.nan |
|
|
92 |
inferior = np.nanmean(inferior, axis=0) |
|
|
93 |
|
|
|
94 |
total = mask * quant_map |
|
|
95 |
total[total == 0] = np.nan |
|
|
96 |
total = np.nanmean(total, axis=0) |
|
|
97 |
|
|
|
98 |
return total, superior, inferior |
|
|
99 |
|
|
|
100 |
def split_regions(self, base_map): |
|
|
101 |
"""Split meniscus into subregions. |
|
|
102 |
|
|
|
103 |
Center-of-mass (COM) is used to subdivide into |
|
|
104 |
anterior/posterior, superior/inferior, and medial/lateral regions. |
|
|
105 |
|
|
|
106 |
Note: |
|
|
107 |
The anterior/posterior and superior/inferior subdivision may causes issues |
|
|
108 |
with tilted mensici. This will be addressed in a later release. To avoid |
|
|
109 |
computing metrics on these regions, set ``self.split_ml_only=True``. |
|
|
110 |
""" |
|
|
111 |
center_of_mass = sni.measurements.center_of_mass(base_map) # zero indexed |
|
|
112 |
|
|
|
113 |
com_sup_inf = int(np.ceil(center_of_mass[0])) |
|
|
114 |
com_ant_post = int(np.ceil(center_of_mass[1])) |
|
|
115 |
com_med_lat = int(np.ceil(center_of_mass[2])) |
|
|
116 |
|
|
|
117 |
region_mask_sup_inf = np.zeros(base_map.shape) |
|
|
118 |
region_mask_sup_inf[:com_sup_inf, :, :] = self._SUPERIOR_KEY |
|
|
119 |
region_mask_sup_inf[com_sup_inf:, :, :] = self._INFERIOR_KEY |
|
|
120 |
|
|
|
121 |
region_mask_ant_post = np.zeros(base_map.shape) |
|
|
122 |
region_mask_ant_post[:, :com_ant_post, :] = self._ANTERIOR_KEY |
|
|
123 |
region_mask_ant_post[:, com_ant_post:, :] = self._POSTERIOR_KEY |
|
|
124 |
|
|
|
125 |
region_mask_med_lat = np.zeros(base_map.shape) |
|
|
126 |
region_mask_med_lat[:, :, :com_med_lat] = ( |
|
|
127 |
self._MEDIAL_KEY if self.medial_to_lateral else self._LATERAL_KEY |
|
|
128 |
) |
|
|
129 |
region_mask_med_lat[:, :, com_med_lat:] = ( |
|
|
130 |
self._LATERAL_KEY if self.medial_to_lateral else self._MEDIAL_KEY |
|
|
131 |
) |
|
|
132 |
|
|
|
133 |
self.regions_mask = np.stack( |
|
|
134 |
[region_mask_sup_inf, region_mask_ant_post, region_mask_med_lat], axis=-1 |
|
|
135 |
) |
|
|
136 |
|
|
|
137 |
def __calc_quant_vals__(self, quant_map: MedicalVolume, map_type: QuantitativeValueType): |
|
|
138 |
subject_pid = self.pid |
|
|
139 |
|
|
|
140 |
# Reformats the quantitative map to the appropriate orientation. |
|
|
141 |
super().__calc_quant_vals__(quant_map, map_type) |
|
|
142 |
|
|
|
143 |
assert ( |
|
|
144 |
self.regions_mask is not None |
|
|
145 |
), "region_mask not initialized. Should be initialized when mask is set" |
|
|
146 |
|
|
|
147 |
region_mask = self.regions_mask |
|
|
148 |
axial_region_mask = self.regions_mask[..., 0] |
|
|
149 |
coronal_region_mask = self.regions_mask[..., 1] |
|
|
150 |
sagittal_region_mask = self.regions_mask[..., 2] |
|
|
151 |
|
|
|
152 |
# Combine region mask into categorical mask. |
|
|
153 |
axial_categories = [ |
|
|
154 |
(self._SUPERIOR_KEY, "superior"), |
|
|
155 |
(self._INFERIOR_KEY, "inferior"), |
|
|
156 |
(-1, "total"), |
|
|
157 |
] |
|
|
158 |
coronal_categories = [ |
|
|
159 |
(self._ANTERIOR_KEY, "anterior"), |
|
|
160 |
(self._POSTERIOR_KEY, "posterior"), |
|
|
161 |
(-1, "total"), |
|
|
162 |
] |
|
|
163 |
sagittal_categories = [(self._MEDIAL_KEY, "medial"), (self._LATERAL_KEY, "lateral")] |
|
|
164 |
if self.split_ml_only: |
|
|
165 |
axial_categories = [x for x in axial_categories if x[0] == -1] |
|
|
166 |
coronal_categories = [x for x in coronal_categories if x[0] == -1] |
|
|
167 |
|
|
|
168 |
categorical_mask = np.zeros(region_mask.shape[:-1]) |
|
|
169 |
base_mask = self.__mask__.A.astype(np.bool) |
|
|
170 |
labels = {} |
|
|
171 |
for idx, ( |
|
|
172 |
(axial, axial_name), |
|
|
173 |
(coronal, coronal_name), |
|
|
174 |
(sagittal, sagittal_name), |
|
|
175 |
) in enumerate( |
|
|
176 |
itertools.product(axial_categories, coronal_categories, sagittal_categories) |
|
|
177 |
): |
|
|
178 |
label = idx + 1 |
|
|
179 |
axial_map = np.asarray([True]) if axial == -1 else axial_region_mask == axial |
|
|
180 |
coronal_map = np.asarray([True]) if coronal == -1 else coronal_region_mask == coronal |
|
|
181 |
sagittal_map = sagittal_region_mask == sagittal |
|
|
182 |
categorical_mask[base_mask & axial_map & coronal_map & sagittal_map] = label |
|
|
183 |
labels[label] = f"{axial_name}-{coronal_name}-{sagittal_name}" |
|
|
184 |
|
|
|
185 |
# TODO: Change this to be any arbitrary quantitative value type. |
|
|
186 |
# Note, it does not matter what we wrap it in because the underlying operations |
|
|
187 |
# are not specific to the value type. |
|
|
188 |
t2 = T2(quant_map) |
|
|
189 |
categorical_mask = MedicalVolume(categorical_mask, affine=quant_map.affine) |
|
|
190 |
df = t2.to_metrics(categorical_mask, labels=labels, bounds=(0, np.inf), closed="neither") |
|
|
191 |
df.insert(0, "Subject", subject_pid) |
|
|
192 |
|
|
|
193 |
total, superior, inferior = self.unroll_axial(quant_map.volume) |
|
|
194 |
qv_name = map_type.name |
|
|
195 |
maps = [ |
|
|
196 |
{ |
|
|
197 |
"title": "%s superior" % qv_name, |
|
|
198 |
"data": superior, |
|
|
199 |
"xlabel": "Slice", |
|
|
200 |
"ylabel": "Angle (binned)", |
|
|
201 |
"filename": "%s_superior" % qv_name, |
|
|
202 |
"raw_data_filename": "%s_superior.data" % qv_name, |
|
|
203 |
}, |
|
|
204 |
{ |
|
|
205 |
"title": "%s inferior" % qv_name, |
|
|
206 |
"data": inferior, |
|
|
207 |
"xlabel": "Slice", |
|
|
208 |
"ylabel": "Angle (binned)", |
|
|
209 |
"filename": "%s_inferior" % qv_name, |
|
|
210 |
"raw_data_filename": "%s_inferior.data" % qv_name, |
|
|
211 |
}, |
|
|
212 |
{ |
|
|
213 |
"title": "%s total" % qv_name, |
|
|
214 |
"data": total, |
|
|
215 |
"xlabel": "Slice", |
|
|
216 |
"ylabel": "Angle (binned)", |
|
|
217 |
"filename": "%s_total" % qv_name, |
|
|
218 |
"raw_data_filename": "%s_total.data" % qv_name, |
|
|
219 |
}, |
|
|
220 |
] |
|
|
221 |
|
|
|
222 |
self.__store_quant_vals__(maps, df, map_type) |
|
|
223 |
|
|
|
224 |
def __calc_quant_vals_old__(self, quant_map, map_type): |
|
|
225 |
subject_pid = self.pid |
|
|
226 |
|
|
|
227 |
super().__calc_quant_vals__(quant_map, map_type) |
|
|
228 |
|
|
|
229 |
assert ( |
|
|
230 |
self.regions_mask is not None |
|
|
231 |
), "region_mask not initialized. Should be initialized when mask is set" |
|
|
232 |
|
|
|
233 |
quant_map_volume = quant_map.volume |
|
|
234 |
mask = self.__mask__.volume |
|
|
235 |
|
|
|
236 |
quant_map_volume = mask * quant_map_volume |
|
|
237 |
|
|
|
238 |
axial_region_mask = self.regions_mask[..., 0] |
|
|
239 |
sagittal_region_mask = self.regions_mask[..., 1] |
|
|
240 |
coronal_region_mask = self.regions_mask[..., 2] |
|
|
241 |
|
|
|
242 |
axial_names = ["superior", "inferior", "total"] |
|
|
243 |
coronal_names = ["medial", "lateral"] |
|
|
244 |
sagittal_names = ["anterior", "posterior"] |
|
|
245 |
|
|
|
246 |
pd_header = ["Subject", "Location", "Side", "Region", "Mean", "Std", "Median"] |
|
|
247 |
pd_list = [] |
|
|
248 |
|
|
|
249 |
for axial in [self._SUPERIOR_KEY, self._INFERIOR_KEY, self._TOTAL_AXIAL_KEY]: |
|
|
250 |
if axial == self._TOTAL_AXIAL_KEY: |
|
|
251 |
axial_map = np.asarray( |
|
|
252 |
axial_region_mask == self._SUPERIOR_KEY, dtype=np.float32 |
|
|
253 |
) + np.asarray(axial_region_mask == self._INFERIOR_KEY, dtype=np.float32) |
|
|
254 |
axial_map = np.asarray(axial_map, dtype=np.bool) |
|
|
255 |
else: |
|
|
256 |
axial_map = axial_region_mask == axial |
|
|
257 |
|
|
|
258 |
for coronal in [self._MEDIAL_KEY, self._LATERAL_KEY]: |
|
|
259 |
for sagittal in [self._ANTERIOR_KEY, self._POSTERIOR_KEY]: |
|
|
260 |
curr_region_mask = ( |
|
|
261 |
quant_map_volume |
|
|
262 |
* (coronal_region_mask == coronal) |
|
|
263 |
* (sagittal_region_mask == sagittal) |
|
|
264 |
* axial_map |
|
|
265 |
) |
|
|
266 |
curr_region_mask[curr_region_mask == 0] = np.nan |
|
|
267 |
# discard all values that are 0 |
|
|
268 |
c_mean = np.nanmean(curr_region_mask) |
|
|
269 |
c_std = np.nanstd(curr_region_mask) |
|
|
270 |
c_median = np.nanmedian(curr_region_mask) |
|
|
271 |
|
|
|
272 |
row_info = [ |
|
|
273 |
subject_pid, |
|
|
274 |
axial_names[axial], |
|
|
275 |
coronal_names[coronal], |
|
|
276 |
sagittal_names[sagittal], |
|
|
277 |
c_mean, |
|
|
278 |
c_std, |
|
|
279 |
c_median, |
|
|
280 |
] |
|
|
281 |
|
|
|
282 |
pd_list.append(row_info) |
|
|
283 |
|
|
|
284 |
# Generate 2D unrolled matrix |
|
|
285 |
total, superior, inferior = self.unroll_axial(quant_map.volume) |
|
|
286 |
|
|
|
287 |
df = pd.DataFrame(pd_list, columns=pd_header) |
|
|
288 |
qv_name = map_type.name |
|
|
289 |
maps = [ |
|
|
290 |
{ |
|
|
291 |
"title": "%s superior" % qv_name, |
|
|
292 |
"data": superior, |
|
|
293 |
"xlabel": "Slice", |
|
|
294 |
"ylabel": "Angle (binned)", |
|
|
295 |
"filename": "%s_superior" % qv_name, |
|
|
296 |
"raw_data_filename": "%s_superior.data" % qv_name, |
|
|
297 |
}, |
|
|
298 |
{ |
|
|
299 |
"title": "%s inferior" % qv_name, |
|
|
300 |
"data": inferior, |
|
|
301 |
"xlabel": "Slice", |
|
|
302 |
"ylabel": "Angle (binned)", |
|
|
303 |
"filename": "%s_inferior" % qv_name, |
|
|
304 |
"raw_data_filename": "%s_inferior.data" % qv_name, |
|
|
305 |
}, |
|
|
306 |
{ |
|
|
307 |
"title": "%s total" % qv_name, |
|
|
308 |
"data": total, |
|
|
309 |
"xlabel": "Slice", |
|
|
310 |
"ylabel": "Angle (binned)", |
|
|
311 |
"filename": "%s_total" % qv_name, |
|
|
312 |
"raw_data_filename": "%s_total.data" % qv_name, |
|
|
313 |
}, |
|
|
314 |
] |
|
|
315 |
|
|
|
316 |
self.__store_quant_vals__(maps, df, map_type) |
|
|
317 |
|
|
|
318 |
def set_mask(self, mask: MedicalVolume, use_largest_ccs: bool = False, ml_only: bool = False): |
|
|
319 |
xp = get_array_module(mask.A) |
|
|
320 |
if use_largest_ccs: |
|
|
321 |
msk = xp.asarray(largest_cc(mask.A, num=2), dtype=xp.uint8) |
|
|
322 |
else: |
|
|
323 |
msk = xp.asarray(mask.A, dtype=xp.uint8) |
|
|
324 |
mask_copy = mask._partial_clone(volume=msk) |
|
|
325 |
super().set_mask(mask_copy) |
|
|
326 |
|
|
|
327 |
self.split_regions(self.__mask__.volume) |
|
|
328 |
|
|
|
329 |
def __save_quant_data__(self, dirpath): |
|
|
330 |
"""Save quantitative data and 2D visualizations of meniscus |
|
|
331 |
|
|
|
332 |
Check which quantitative values (T2, T1rho, etc) are defined for meniscus and analyze these |
|
|
333 |
1. Save 2D total, superficial, and deep visualization maps |
|
|
334 |
2. Save {'medial', 'lateral'}, {'anterior', 'posterior'}, |
|
|
335 |
{'superior', 'inferior', 'total'} data to excel file. |
|
|
336 |
|
|
|
337 |
Args: |
|
|
338 |
dirpath (str): Directory path to tissue data. |
|
|
339 |
""" |
|
|
340 |
q_names = [] |
|
|
341 |
dfs = [] |
|
|
342 |
|
|
|
343 |
for quant_val in QuantitativeValueType: |
|
|
344 |
if quant_val.name not in self.quant_vals.keys(): |
|
|
345 |
continue |
|
|
346 |
|
|
|
347 |
q_names.append(quant_val.name) |
|
|
348 |
q_val = self.quant_vals[quant_val.name] |
|
|
349 |
dfs.append(q_val[1]) |
|
|
350 |
|
|
|
351 |
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower())) |
|
|
352 |
for q_map_data in q_val[0]: |
|
|
353 |
filepath = os.path.join(q_name_dirpath, q_map_data["filename"]) |
|
|
354 |
xlabel = "Slice" |
|
|
355 |
ylabel = "" |
|
|
356 |
title = q_map_data["title"] |
|
|
357 |
data_map = q_map_data["data"] |
|
|
358 |
|
|
|
359 |
plt.clf() |
|
|
360 |
|
|
|
361 |
upper_bound = BOUNDS[quant_val] |
|
|
362 |
|
|
|
363 |
if preferences.visualization_use_vmax: |
|
|
364 |
# Hard bounds - clipping |
|
|
365 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
366 |
else: |
|
|
367 |
# Try to use a soft bounds |
|
|
368 |
if np.sum(data_map <= upper_bound) == 0: |
|
|
369 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
370 |
else: |
|
|
371 |
warnings.warn( |
|
|
372 |
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale." |
|
|
373 |
% (quant_val.name, upper_bound) |
|
|
374 |
) |
|
|
375 |
plt.imshow(data_map, cmap="jet") |
|
|
376 |
|
|
|
377 |
plt.xlabel(xlabel) |
|
|
378 |
plt.ylabel(ylabel) |
|
|
379 |
plt.title(title) |
|
|
380 |
clb = plt.colorbar() |
|
|
381 |
clb.ax.set_title("(ms)") |
|
|
382 |
plt.axis("tight") |
|
|
383 |
|
|
|
384 |
plt.savefig(filepath) |
|
|
385 |
|
|
|
386 |
# Save data |
|
|
387 |
raw_data_filepath = os.path.join( |
|
|
388 |
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"] |
|
|
389 |
) |
|
|
390 |
io_utils.save_pik(raw_data_filepath, data_map) |
|
|
391 |
|
|
|
392 |
if len(dfs) > 0: |
|
|
393 |
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names) |