|
a |
|
b/dosma/tissues/femoral_cartilage.py |
|
|
1 |
import os |
|
|
2 |
import warnings |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import pandas as pd |
|
|
6 |
import scipy.ndimage as sni |
|
|
7 |
|
|
|
8 |
from dosma.core.device import get_array_module |
|
|
9 |
from dosma.core.io.format_io import ImageDataFormat |
|
|
10 |
from dosma.core.med_volume import MedicalVolume |
|
|
11 |
from dosma.core.quant_vals import QuantitativeValueType |
|
|
12 |
from dosma.defaults import preferences |
|
|
13 |
from dosma.tissues.tissue import Tissue, largest_cc |
|
|
14 |
from dosma.utils import img_utils, io_utils |
|
|
15 |
from dosma.utils.geometry_utils import cart2pol, circle_fit |
|
|
16 |
|
|
|
17 |
import matplotlib.pyplot as plt |
|
|
18 |
|
|
|
19 |
# milliseconds |
|
|
20 |
BOUNDS = { |
|
|
21 |
QuantitativeValueType.T2: 80.0, |
|
|
22 |
QuantitativeValueType.T1_RHO: 100.0, |
|
|
23 |
QuantitativeValueType.T2_STAR: 80.0, |
|
|
24 |
} |
|
|
25 |
|
|
|
26 |
__all__ = ["FemoralCartilage"] |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
class FemoralCartilage(Tissue): |
|
|
30 |
"""Handles analysis and visualization for femoral cartilage. |
|
|
31 |
|
|
|
32 |
This class extends functionality from `Tissue`. |
|
|
33 |
|
|
|
34 |
For visualization, the femoral cartilage is unrolled onto a 2D plane using angular binning [1]. |
|
|
35 |
|
|
|
36 |
References: |
|
|
37 |
[1] Monu UD, Jordan CD, Samuelson BL, Hargreaves BA, Gold GE, McWalter EJ. |
|
|
38 |
Cluster analysis of quantitative MRI T2 and :math:`T1\\rho` relaxation times of |
|
|
39 |
cartilage identifies differences between healthy and ACL-injured individuals at 3T." |
|
|
40 |
Osteoarthritis and cartilage 2017;25(4):513-520. |
|
|
41 |
""" |
|
|
42 |
|
|
|
43 |
ID = 1 |
|
|
44 |
STR_ID = "fc" |
|
|
45 |
FULL_NAME = "femoral cartilage" |
|
|
46 |
|
|
|
47 |
# Expected quantitative values |
|
|
48 |
T1_EXPECTED = 1200 # milliseconds |
|
|
49 |
|
|
|
50 |
# Keys correspond to integer representing bit location for each region |
|
|
51 |
# bit string: 'T D S M L A C P' (stored as integer) |
|
|
52 |
# Coronal Keys |
|
|
53 |
_POSTERIOR_KEY = 2 ** 0 |
|
|
54 |
_CENTRAL_KEY = 2 ** 1 |
|
|
55 |
_ANTERIOR_KEY = 2 ** 2 |
|
|
56 |
_CORONAL_KEYS = [_POSTERIOR_KEY, _CENTRAL_KEY, _ANTERIOR_KEY] |
|
|
57 |
|
|
|
58 |
# Sagittal Keys |
|
|
59 |
_MEDIAL_KEY = 2 ** 3 |
|
|
60 |
_LATERAL_KEY = 2 ** 4 |
|
|
61 |
_SAGITTAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY] |
|
|
62 |
|
|
|
63 |
# Axial Keys |
|
|
64 |
_DEEP_KEY = 2 ** 5 |
|
|
65 |
_SUPERFICIAL_KEY = 2 ** 6 |
|
|
66 |
_TOTAL_AXIAL_KEY = 2 ** 7 |
|
|
67 |
_AXIAL_KEYS = [_DEEP_KEY, _SUPERFICIAL_KEY, _TOTAL_AXIAL_KEY] |
|
|
68 |
|
|
|
69 |
# Do not change order of below. |
|
|
70 |
# Order reflects order of _CORONAL_KEYS, _SAGITTAL_KEYS, _AXIAL_KEYS |
|
|
71 |
_AXIAL_NAMES = ["deep", "superficial", "total"] |
|
|
72 |
_SAGITTAL_NAMES = ["medial", "lateral"] |
|
|
73 |
_CORONAL_NAMES = ["posterior", "central", "anterior"] |
|
|
74 |
|
|
|
75 |
ML_BOUNDARY = None |
|
|
76 |
ACP_BOUNDARY = None |
|
|
77 |
|
|
|
78 |
def __init__(self, weights_dir=None, medial_to_lateral=None): |
|
|
79 |
super().__init__(weights_dir=weights_dir) |
|
|
80 |
|
|
|
81 |
self.regions_mask = None |
|
|
82 |
self.theta_bins = None |
|
|
83 |
|
|
|
84 |
self.medial_to_lateral = medial_to_lateral |
|
|
85 |
|
|
|
86 |
def split_regions( |
|
|
87 |
self, base_map: np.ndarray, thickness_divisor=0.5, num_bins=72, theta=(-270, 90) |
|
|
88 |
): |
|
|
89 |
"""Split volume into anatomical regions. |
|
|
90 |
|
|
|
91 |
Pixels corresponding to femoral cartilage are divided across 3 planes: |
|
|
92 |
- Coronal: Posterior, Central, or Anterior |
|
|
93 |
- Sagittal: Medial, Lateral |
|
|
94 |
- Axial: Deep, Superficial |
|
|
95 |
|
|
|
96 |
For example, a pixel could correspond to the Posterior Lateral Deep region of |
|
|
97 |
femoral cartilage. |
|
|
98 |
|
|
|
99 |
Args: |
|
|
100 |
base_map (np.ndarray): 3D numpy array typically corresponding to volume to split. |
|
|
101 |
|
|
|
102 |
Returns: |
|
|
103 |
np.ndarray: 4D numpy array (region, height, width, depth). |
|
|
104 |
Saved in variable ``self.regions``. |
|
|
105 |
""" |
|
|
106 |
dtheta = 360 / num_bins |
|
|
107 |
theta_min, theta_max = tuple(theta) |
|
|
108 |
|
|
|
109 |
mask = self.__mask__.volume |
|
|
110 |
|
|
|
111 |
mask = mask * np.nan_to_num(base_map) |
|
|
112 |
|
|
|
113 |
height, width, num_slices = mask.shape |
|
|
114 |
|
|
|
115 |
# STEP 1: PROJECTING AND CYLINDRICAL FIT |
|
|
116 |
segmented_t2maps_projected = np.max(mask, 2) # Project segmented T2maps on sagittal axis |
|
|
117 |
non_zero_element = np.nonzero(segmented_t2maps_projected) |
|
|
118 |
|
|
|
119 |
xc_fit, yc_fit, R_fit = circle_fit( |
|
|
120 |
non_zero_element[1], non_zero_element[0] |
|
|
121 |
) # fit a circle to projected cartilage tissue |
|
|
122 |
|
|
|
123 |
# STEP 2: SLICE BY SLICE BINNING |
|
|
124 |
yv, xv = np.meshgrid(range(height), range(width), indexing="ij") |
|
|
125 |
|
|
|
126 |
rho, theta = cart2pol(xv - xc_fit, yc_fit - yv) |
|
|
127 |
theta = (theta >= 90) * (theta - 360) + (theta < 90) * theta # range: [-270, 90) |
|
|
128 |
|
|
|
129 |
assert (np.min(theta) >= theta_min) and ( |
|
|
130 |
np.max(theta) < theta_max |
|
|
131 |
), "Expected Theta range is [{:d}, {:d}) degrees. Received min: {:d} max: {:d})".format( |
|
|
132 |
theta_min, theta_max, np.min(theta), np.max(theta) |
|
|
133 |
) |
|
|
134 |
|
|
|
135 |
theta_bins = np.floor((theta - theta_min) / dtheta) |
|
|
136 |
|
|
|
137 |
# STEP 3: COMPUTE THRESHOLD RADII |
|
|
138 |
# TODO: This step takes a long time |
|
|
139 |
rhos_threshold_volume = np.zeros(mask.shape) |
|
|
140 |
for curr_slice in range(num_slices): |
|
|
141 |
mask_slice = mask[..., curr_slice] |
|
|
142 |
|
|
|
143 |
for curr_bin in range(num_bins): |
|
|
144 |
rhos_valid = rho[np.logical_and(mask_slice > 0, theta_bins == curr_bin)] |
|
|
145 |
if len(rhos_valid) == 0: |
|
|
146 |
continue |
|
|
147 |
|
|
|
148 |
rho_min = np.min(rhos_valid) |
|
|
149 |
rho_max = np.max(rhos_valid) |
|
|
150 |
|
|
|
151 |
rho_threshold = thickness_divisor * (rho_max - rho_min) + rho_min |
|
|
152 |
rhos_threshold_volume[theta_bins == curr_bin, curr_slice] = rho_threshold |
|
|
153 |
|
|
|
154 |
regions_volume = np.asarray(np.zeros(mask.shape), dtype=np.uint16) |
|
|
155 |
|
|
|
156 |
# anterior/central/posterior division |
|
|
157 |
# Central region occupies middle 30 degrees, anterior on left, posterior on right |
|
|
158 |
anterior_region = self._ANTERIOR_KEY * (theta < -105) |
|
|
159 |
central_region = self._CENTRAL_KEY * np.logical_and((theta >= -105), (theta < -75)) |
|
|
160 |
posterior_region = self._POSTERIOR_KEY * (theta >= -75) |
|
|
161 |
acp_map = anterior_region + central_region + posterior_region |
|
|
162 |
acp_volume = np.asarray(np.stack([acp_map] * num_slices, axis=-1), dtype=np.uint16) |
|
|
163 |
regions_volume += acp_volume |
|
|
164 |
|
|
|
165 |
# medial/lateral division |
|
|
166 |
# take into account scanning direction |
|
|
167 |
center_of_mass = sni.measurements.center_of_mass(mask) |
|
|
168 |
com_slicewise = center_of_mass[-1] |
|
|
169 |
ml_volume = np.asarray(np.zeros(mask.shape), dtype=np.uint16) |
|
|
170 |
|
|
|
171 |
if self.medial_to_lateral: |
|
|
172 |
ml_volume[..., : int(np.ceil(com_slicewise))] = self._MEDIAL_KEY |
|
|
173 |
ml_volume[..., int(np.ceil(com_slicewise)) :] = self._LATERAL_KEY |
|
|
174 |
else: |
|
|
175 |
ml_volume[..., : int(np.ceil(com_slicewise))] = self._LATERAL_KEY |
|
|
176 |
ml_volume[..., int(np.ceil(com_slicewise)) :] = self._MEDIAL_KEY |
|
|
177 |
regions_volume += ml_volume |
|
|
178 |
|
|
|
179 |
# deep/superficial division |
|
|
180 |
rho_volume = np.stack([rho] * num_slices, axis=-1) |
|
|
181 |
deep_volume = (rho_volume <= rhos_threshold_volume) * self._DEEP_KEY |
|
|
182 |
superficial_volume = (rho_volume >= rhos_threshold_volume) * self._SUPERFICIAL_KEY |
|
|
183 |
ds_volume = np.asarray( |
|
|
184 |
deep_volume + superficial_volume + self._TOTAL_AXIAL_KEY, dtype=np.uint16 |
|
|
185 |
) |
|
|
186 |
|
|
|
187 |
regions_volume += ds_volume |
|
|
188 |
ml_boundary = int(np.ceil(com_slicewise)) |
|
|
189 |
acp_boundary = [ |
|
|
190 |
int(np.floor((-105 - theta_min) / dtheta)), |
|
|
191 |
int(np.floor((-75 - theta_min) / dtheta)), |
|
|
192 |
] |
|
|
193 |
|
|
|
194 |
return regions_volume, theta_bins, ml_boundary, acp_boundary |
|
|
195 |
|
|
|
196 |
def unroll(self, qv_map: np.ndarray, regions_mask: np.ndarray, theta_bins): |
|
|
197 |
"""Unroll femoral cartilage 3D quantitative value (qv) maps to 2D for visualization. |
|
|
198 |
|
|
|
199 |
The function multiplies a 3D segmentation mask to a 3D qv map to produce a 3D femoral |
|
|
200 |
cartilage qv (fc_qv) map. It then fits a circle to the collapsed sagittal projection |
|
|
201 |
of the fc_qv map. Each slice is binned into bins of 5 degree sizes |
|
|
202 |
|
|
|
203 |
The unrolled map is then divided into deep and superficial cartilage. |
|
|
204 |
|
|
|
205 |
Args: |
|
|
206 |
qv_map (np.ndarray): 3D array (slices last) of sagittal knee describing |
|
|
207 |
quantitative parameter values regions_mask (np.ndarray): regions_mask |
|
|
208 |
Returns: |
|
|
209 |
tuple: (row, column) format |
|
|
210 |
1. 2D Total unrolled cartilage (slices, degrees) - average of superficial |
|
|
211 |
and deep layers |
|
|
212 |
2. Superficial unrolled cartilage (slices, degrees) - superficial layer |
|
|
213 |
3. Deep unrolled cartilage (slices, degrees) - deep layer |
|
|
214 |
""" |
|
|
215 |
num_bins = len(np.unique(theta_bins)) |
|
|
216 |
|
|
|
217 |
mask = self.__mask__.volume |
|
|
218 |
|
|
|
219 |
if qv_map.shape != mask.shape: |
|
|
220 |
raise ValueError("t2_map and mask must have same shape") |
|
|
221 |
|
|
|
222 |
if len(qv_map.shape) != 3: |
|
|
223 |
raise ValueError("t2_map and mask must be 3D") |
|
|
224 |
|
|
|
225 |
# assert self.regions_mask is not None, ( |
|
|
226 |
# "region_mask not initialized. Should be initialized when mask is set" |
|
|
227 |
# ) |
|
|
228 |
|
|
|
229 |
num_slices = qv_map.shape[-1] |
|
|
230 |
|
|
|
231 |
qv_map = np.nan_to_num(qv_map) |
|
|
232 |
qv_map = np.multiply(mask, qv_map) # apply binary mask |
|
|
233 |
qv_map[ |
|
|
234 |
qv_map <= 0 |
|
|
235 |
] = np.nan # wherever qv_map is 0, either no cartilage or qv=0 ms, which is impractical |
|
|
236 |
|
|
|
237 |
# theta_bins = self.theta_bins # binning with theta |
|
|
238 |
|
|
|
239 |
# regions_mask = self.regions_mask |
|
|
240 |
|
|
|
241 |
Unrolled_Cartilage = np.zeros([num_bins, num_slices]) |
|
|
242 |
Sup_layer = np.zeros([num_bins, num_slices]) |
|
|
243 |
Deep_layer = np.zeros([num_bins, num_slices]) |
|
|
244 |
|
|
|
245 |
for slice_ind in range(num_slices): |
|
|
246 |
qv_slice = qv_map[..., slice_ind] |
|
|
247 |
curr_slice = regions_mask[..., slice_ind] |
|
|
248 |
|
|
|
249 |
# if slice is all NaNs, then don't analyze |
|
|
250 |
if np.sum(np.isnan(qv_slice)) == qv_slice.shape[0] * qv_slice.shape[1]: |
|
|
251 |
continue |
|
|
252 |
|
|
|
253 |
for curr_bin in range(num_bins): |
|
|
254 |
qv_bin = qv_slice[theta_bins == curr_bin] |
|
|
255 |
if np.sum(np.isnan(qv_bin)) == len(qv_bin): |
|
|
256 |
continue |
|
|
257 |
|
|
|
258 |
Unrolled_Cartilage[curr_bin, slice_ind] = np.nanmean(qv_bin) |
|
|
259 |
|
|
|
260 |
qv_superficial = qv_slice[ |
|
|
261 |
np.logical_and( |
|
|
262 |
theta_bins == curr_bin, |
|
|
263 |
self.__binarize_region_mask__(curr_slice, self._SUPERFICIAL_KEY), |
|
|
264 |
) |
|
|
265 |
] |
|
|
266 |
qv_deep = qv_slice[ |
|
|
267 |
np.logical_and( |
|
|
268 |
theta_bins == curr_bin, |
|
|
269 |
self.__binarize_region_mask__(curr_slice, self._DEEP_KEY), |
|
|
270 |
) |
|
|
271 |
] |
|
|
272 |
|
|
|
273 |
qv_superficial = np.nan_to_num(qv_superficial) |
|
|
274 |
qv_deep = np.nan_to_num(qv_deep) |
|
|
275 |
|
|
|
276 |
qv_sup_mean = np.mean(qv_superficial[qv_superficial > 0]) |
|
|
277 |
qv_deep_mean = np.mean(qv_deep[qv_deep > 0]) |
|
|
278 |
Sup_layer[curr_bin, slice_ind] = qv_sup_mean |
|
|
279 |
Deep_layer[curr_bin, slice_ind] = qv_deep_mean |
|
|
280 |
|
|
|
281 |
Unrolled_Cartilage[Unrolled_Cartilage == 0] = np.nan |
|
|
282 |
Sup_layer[Sup_layer == 0] = np.nan |
|
|
283 |
Deep_layer[Deep_layer == 0] = np.nan |
|
|
284 |
|
|
|
285 |
return Unrolled_Cartilage, Sup_layer, Deep_layer |
|
|
286 |
|
|
|
287 |
def __calc_quant_vals__(self, quant_map: MedicalVolume, map_type): |
|
|
288 |
"""Calculate quantitative values per region and 2D visualizations |
|
|
289 |
|
|
|
290 |
1. Save 2D figure (deep, superficial, total) information to use with matplotlib |
|
|
291 |
(title, data, xlabel, ylabel, filename) |
|
|
292 |
|
|
|
293 |
2. Save 2D dataframes in format |
|
|
294 |
[['DMA', 'DMC', 'DMP'], ['DLA', 'DLC', 'DLP'], |
|
|
295 |
['SMA', 'SMC', 'SMP'], ['SLA', 'SLC', 'SLP'], |
|
|
296 |
['TMA', 'TMC', 'TMP'], ['TLA', 'TLC', 'TLP']] |
|
|
297 |
|
|
|
298 |
D=deep, S=superficial, T=total, |
|
|
299 |
M=medial, L=lateral, |
|
|
300 |
A=anterior, C=central, P=posterior |
|
|
301 |
|
|
|
302 |
Args: |
|
|
303 |
quant_map (MedicalVolume): 3D volumes of quantitative values. |
|
|
304 |
Volume should have ``np.nan`` values for all pixels unable to be calculated. |
|
|
305 |
map_type (QuantitativeValueType): Type of quantitative value to analyze. |
|
|
306 |
""" |
|
|
307 |
|
|
|
308 |
super().__calc_quant_vals__(quant_map, map_type) |
|
|
309 |
|
|
|
310 |
# assert self.regions_mask is not None, ( |
|
|
311 |
# "region_mask not initialized. Should be initialized when mask is set" |
|
|
312 |
# ) |
|
|
313 |
|
|
|
314 |
# We have to call this every time we load a new quantitative map |
|
|
315 |
# mask = segmentation_mask * clipped_quant_map |
|
|
316 |
regions_mask, theta_bins, ml_boundary, acp_boundary = self.split_regions(quant_map.volume) |
|
|
317 |
if self.ML_BOUNDARY is None: |
|
|
318 |
self.ML_BOUNDARY = ml_boundary |
|
|
319 |
if self.ACP_BOUNDARY is None: |
|
|
320 |
self.ACP_BOUNDARY = acp_boundary |
|
|
321 |
|
|
|
322 |
total, superficial, deep = self.unroll(quant_map.volume, regions_mask, theta_bins) |
|
|
323 |
|
|
|
324 |
assert total.shape == deep.shape |
|
|
325 |
assert deep.shape == superficial.shape |
|
|
326 |
|
|
|
327 |
# regions_mask = self.regions_mask |
|
|
328 |
mask = self.__mask__.volume |
|
|
329 |
|
|
|
330 |
subject_pid = self.pid |
|
|
331 |
pd_header = ["Subject", "Location", "Side", "Region", "Mean", "Std", "Median", "# Voxels"] |
|
|
332 |
pd_list = [] |
|
|
333 |
|
|
|
334 |
# Replace strings with values - eg. DMA = 'deep, medial, anterior' |
|
|
335 |
# tissue_values = [['DMA', 'DMC', 'DMP'], ['DLA', 'DLC', 'DLP'], |
|
|
336 |
# ['SMA', 'SMC', 'SMP'], ['SLA', 'SLC', 'SLP'], |
|
|
337 |
# ['TMA', 'TMC', 'TMP'], ['TLA', 'TLC', 'TLP']] |
|
|
338 |
# tissue_values = [] |
|
|
339 |
|
|
|
340 |
for axial_ind in range(len(self._AXIAL_KEYS)): |
|
|
341 |
axial = self._AXIAL_KEYS[axial_ind] |
|
|
342 |
|
|
|
343 |
for sagittal_ind in range(len(self._SAGITTAL_KEYS)): |
|
|
344 |
sagittal = self._SAGITTAL_KEYS[sagittal_ind] |
|
|
345 |
for coronal_ind in range(len(self._CORONAL_KEYS)): |
|
|
346 |
coronal = self._CORONAL_KEYS[coronal_ind] |
|
|
347 |
|
|
|
348 |
curr_region_mask = self.__binarize_region_mask__( |
|
|
349 |
regions_mask, (axial | coronal | sagittal) |
|
|
350 |
) |
|
|
351 |
curr_region_mask = curr_region_mask * mask * quant_map.volume |
|
|
352 |
|
|
|
353 |
# discard all values that are <= 0 |
|
|
354 |
qv_region_vals = curr_region_mask[curr_region_mask > 0] |
|
|
355 |
|
|
|
356 |
num_voxels = len(qv_region_vals) |
|
|
357 |
|
|
|
358 |
c_mean = np.nanmean(qv_region_vals) |
|
|
359 |
c_std = np.nanstd(qv_region_vals) |
|
|
360 |
c_median = np.nanmedian(qv_region_vals) |
|
|
361 |
|
|
|
362 |
row_info = [ |
|
|
363 |
subject_pid, |
|
|
364 |
self._AXIAL_NAMES[axial_ind], |
|
|
365 |
self._SAGITTAL_NAMES[sagittal_ind], |
|
|
366 |
self._CORONAL_NAMES[coronal_ind], |
|
|
367 |
c_mean, |
|
|
368 |
c_std, |
|
|
369 |
c_median, |
|
|
370 |
num_voxels, |
|
|
371 |
] |
|
|
372 |
|
|
|
373 |
pd_list.append(row_info) |
|
|
374 |
|
|
|
375 |
df = pd.DataFrame(pd_list, columns=pd_header) |
|
|
376 |
qv_name = map_type.name |
|
|
377 |
maps = [ |
|
|
378 |
{ |
|
|
379 |
"title": "{} deep".format(qv_name), |
|
|
380 |
"data": deep, |
|
|
381 |
"xlabel": "Slice", |
|
|
382 |
"ylabel": "Angle (binned)", |
|
|
383 |
"filename": "{}_deep".format(qv_name), |
|
|
384 |
"raw_data_filename": "{}_deep.data".format(qv_name), |
|
|
385 |
}, |
|
|
386 |
{ |
|
|
387 |
"title": "{} superficial".format(qv_name), |
|
|
388 |
"data": superficial, |
|
|
389 |
"xlabel": "Slice", |
|
|
390 |
"ylabel": "Angle (binned)", |
|
|
391 |
"filename": "{}_superficial".format(qv_name), |
|
|
392 |
"raw_data_filename": "{}_superficial.data".format(qv_name), |
|
|
393 |
}, |
|
|
394 |
{ |
|
|
395 |
"title": "{} total".format(qv_name), |
|
|
396 |
"data": total, |
|
|
397 |
"xlabel": "Slice", |
|
|
398 |
"ylabel": "Angle (binned)", |
|
|
399 |
"filename": "{}_total".format(qv_name), |
|
|
400 |
"raw_data_filename": "{}_total.data".format(qv_name), |
|
|
401 |
}, |
|
|
402 |
] |
|
|
403 |
|
|
|
404 |
self.__store_quant_vals__(maps, df, map_type) |
|
|
405 |
|
|
|
406 |
def set_mask( |
|
|
407 |
self, mask: MedicalVolume, use_largest_cc: bool = True, split_regions: bool = True |
|
|
408 |
): |
|
|
409 |
"""Set mask for tissue. |
|
|
410 |
|
|
|
411 |
Mask is cleaned by selecting the largest connected component from the mask. |
|
|
412 |
Femoral cartilage is expected to be single connected tissue. |
|
|
413 |
|
|
|
414 |
Args: |
|
|
415 |
mask (MedicalVolume): Binary mask of segmented tissue. |
|
|
416 |
""" |
|
|
417 |
xp = get_array_module(mask.A) |
|
|
418 |
if use_largest_cc: |
|
|
419 |
msk = xp.asarray(largest_cc(mask.A), dtype=xp.uint8) |
|
|
420 |
else: |
|
|
421 |
msk = xp.asarray(mask.A, dtype=xp.uint8) |
|
|
422 |
mask_copy = mask._partial_clone(volume=msk) |
|
|
423 |
|
|
|
424 |
super().set_mask(mask_copy) |
|
|
425 |
|
|
|
426 |
if split_regions: |
|
|
427 |
( |
|
|
428 |
self.regions_mask, |
|
|
429 |
self.theta_bins, |
|
|
430 |
self.ML_BOUNDARY, |
|
|
431 |
self.ACP_BOUNDARY, |
|
|
432 |
) = self.split_regions( # noqa: E501 |
|
|
433 |
self.__mask__.volume |
|
|
434 |
) |
|
|
435 |
|
|
|
436 |
def __save_quant_data__(self, dirpath: str): |
|
|
437 |
"""Save quantitative data and 2D visualizations of femoral cartilage. |
|
|
438 |
|
|
|
439 |
Check which quantitative values (T2, T1rho, etc) are defined for femoral cartilage |
|
|
440 |
and analyze these: |
|
|
441 |
|
|
|
442 |
1. Save 2D total, superficial, and deep visualization maps. |
|
|
443 |
2. Save {'medial', 'lateral'}, {'anterior', 'central', 'posterior'}, |
|
|
444 |
q{'deep', 'superficial'} data to excel file |
|
|
445 |
|
|
|
446 |
Args: |
|
|
447 |
dirpath (str): Directory path to tissue data. |
|
|
448 |
""" |
|
|
449 |
q_names = [] |
|
|
450 |
dfs = [] |
|
|
451 |
|
|
|
452 |
for quant_val in QuantitativeValueType: |
|
|
453 |
if quant_val.name not in self.quant_vals.keys(): |
|
|
454 |
continue |
|
|
455 |
|
|
|
456 |
q_names.append(quant_val.name) |
|
|
457 |
q_val = self.quant_vals[quant_val.name] |
|
|
458 |
dfs.append(q_val[1]) |
|
|
459 |
|
|
|
460 |
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower())) |
|
|
461 |
for q_map_data in q_val[0]: |
|
|
462 |
filepath = os.path.join(q_name_dirpath, q_map_data["filename"]) |
|
|
463 |
xlabel = "Slice" |
|
|
464 |
ylabel = "Angle (binned)" |
|
|
465 |
title = q_map_data["title"] |
|
|
466 |
data_map = q_map_data["data"] |
|
|
467 |
|
|
|
468 |
plt.clf() |
|
|
469 |
|
|
|
470 |
upper_bound = BOUNDS[quant_val] |
|
|
471 |
|
|
|
472 |
if preferences.visualization_use_vmax: |
|
|
473 |
# Hard bounds - clipping |
|
|
474 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
475 |
else: |
|
|
476 |
# Try to use a soft bounds |
|
|
477 |
if np.sum(data_map <= upper_bound) == 0: |
|
|
478 |
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val]) |
|
|
479 |
else: |
|
|
480 |
warnings.warn( |
|
|
481 |
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale." |
|
|
482 |
% (quant_val.name, upper_bound) |
|
|
483 |
) |
|
|
484 |
plt.imshow(data_map, cmap="jet") |
|
|
485 |
|
|
|
486 |
plt.xlabel(xlabel) |
|
|
487 |
plt.ylabel(ylabel) |
|
|
488 |
plt.title(title) |
|
|
489 |
clb = plt.colorbar() |
|
|
490 |
clb.ax.set_title("(ms)") |
|
|
491 |
|
|
|
492 |
plt.savefig(filepath) |
|
|
493 |
|
|
|
494 |
# Save data |
|
|
495 |
raw_data_filepath = os.path.join( |
|
|
496 |
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"] |
|
|
497 |
) |
|
|
498 |
io_utils.save_pik(raw_data_filepath, data_map) |
|
|
499 |
|
|
|
500 |
if len(dfs) > 0: |
|
|
501 |
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names) |
|
|
502 |
|
|
|
503 |
def save_data(self, save_dirpath, data_format: ImageDataFormat = preferences.image_data_format): |
|
|
504 |
super().save_data(save_dirpath, data_format=data_format) |
|
|
505 |
|
|
|
506 |
save_dirpath = self.__save_dirpath__(save_dirpath) |
|
|
507 |
|
|
|
508 |
if self.regions_mask is None: |
|
|
509 |
return |
|
|
510 |
|
|
|
511 |
sagital_region_mask, coronal_region_mask = self.__split_mask__() |
|
|
512 |
|
|
|
513 |
# Save region map - add by 1 because no key can be 0 |
|
|
514 |
coronal_region_mask = (coronal_region_mask + 1) * 10 |
|
|
515 |
sagital_region_mask = sagital_region_mask + 1 |
|
|
516 |
joined_mask = coronal_region_mask + sagital_region_mask |
|
|
517 |
labels = [ |
|
|
518 |
"medial posterior", |
|
|
519 |
"medial central", |
|
|
520 |
"medial anterior", |
|
|
521 |
"lateral posterior", |
|
|
522 |
"lateral central", |
|
|
523 |
"lateral anterior", |
|
|
524 |
] |
|
|
525 |
plt_dict = { |
|
|
526 |
"labels": labels, |
|
|
527 |
"xlabel": "Slice", |
|
|
528 |
"ylabel": "Angle (binned)", |
|
|
529 |
"title": "Unrolled Regions", |
|
|
530 |
} |
|
|
531 |
img_utils.write_regions( |
|
|
532 |
os.path.join(save_dirpath, "region_map"), joined_mask, plt_dict=plt_dict |
|
|
533 |
) |
|
|
534 |
|
|
|
535 |
def __binarize_region_mask__(self, region_mask, roi): |
|
|
536 |
return np.asarray(np.bitwise_and(region_mask, roi) == roi, dtype=np.bool) |
|
|
537 |
|
|
|
538 |
def __split_mask__(self): |
|
|
539 |
assert ( |
|
|
540 |
self.ML_BOUNDARY is not None and self.ACP_BOUNDARY is not None |
|
|
541 |
), "medial/lateral and anterior/central/posterior boundaries should be specified" |
|
|
542 |
|
|
|
543 |
# split into regions |
|
|
544 |
unrolled_total, _, _ = self.unroll( |
|
|
545 |
np.asarray(self.__mask__.volume, dtype=np.float32), self.regions_mask, self.theta_bins |
|
|
546 |
) |
|
|
547 |
|
|
|
548 |
acp_division_unrolled = np.zeros(unrolled_total.shape) |
|
|
549 |
|
|
|
550 |
ac_threshold = self.ACP_BOUNDARY[0] |
|
|
551 |
cp_threshold = self.ACP_BOUNDARY[1] |
|
|
552 |
acp_division_unrolled[:ac_threshold, :] = self._ANTERIOR_KEY |
|
|
553 |
acp_division_unrolled[ac_threshold:cp_threshold, :] = self._CENTRAL_KEY |
|
|
554 |
acp_division_unrolled[cp_threshold:, :] = self._POSTERIOR_KEY |
|
|
555 |
|
|
|
556 |
ml_division_unrolled = np.zeros(unrolled_total.shape) |
|
|
557 |
if self.medial_to_lateral: |
|
|
558 |
ml_division_unrolled[..., : self.ML_BOUNDARY] = self._MEDIAL_KEY |
|
|
559 |
ml_division_unrolled[..., self.ML_BOUNDARY :] = self._LATERAL_KEY |
|
|
560 |
else: |
|
|
561 |
ml_division_unrolled[..., : self.ML_BOUNDARY] = self._LATERAL_KEY |
|
|
562 |
ml_division_unrolled[..., self.ML_BOUNDARY :] = self._MEDIAL_KEY |
|
|
563 |
|
|
|
564 |
acp_division_unrolled[np.isnan(unrolled_total)] = np.nan |
|
|
565 |
ml_division_unrolled[np.isnan(unrolled_total)] = np.nan |
|
|
566 |
|
|
|
567 |
return acp_division_unrolled, ml_division_unrolled |