import os
import warnings
import numpy as np
import pandas as pd
import scipy.ndimage as sni
from dosma.core.device import get_array_module
from dosma.core.io.format_io import ImageDataFormat
from dosma.core.med_volume import MedicalVolume
from dosma.core.quant_vals import QuantitativeValueType
from dosma.defaults import preferences
from dosma.tissues.tissue import Tissue, largest_cc
from dosma.utils import img_utils, io_utils
from dosma.utils.geometry_utils import cart2pol, circle_fit
import matplotlib.pyplot as plt
# milliseconds
BOUNDS = {
QuantitativeValueType.T2: 80.0,
QuantitativeValueType.T1_RHO: 100.0,
QuantitativeValueType.T2_STAR: 80.0,
}
__all__ = ["FemoralCartilage"]
class FemoralCartilage(Tissue):
"""Handles analysis and visualization for femoral cartilage.
This class extends functionality from `Tissue`.
For visualization, the femoral cartilage is unrolled onto a 2D plane using angular binning [1].
References:
[1] Monu UD, Jordan CD, Samuelson BL, Hargreaves BA, Gold GE, McWalter EJ.
Cluster analysis of quantitative MRI T2 and :math:`T1\\rho` relaxation times of
cartilage identifies differences between healthy and ACL-injured individuals at 3T."
Osteoarthritis and cartilage 2017;25(4):513-520.
"""
ID = 1
STR_ID = "fc"
FULL_NAME = "femoral cartilage"
# Expected quantitative values
T1_EXPECTED = 1200 # milliseconds
# Keys correspond to integer representing bit location for each region
# bit string: 'T D S M L A C P' (stored as integer)
# Coronal Keys
_POSTERIOR_KEY = 2 ** 0
_CENTRAL_KEY = 2 ** 1
_ANTERIOR_KEY = 2 ** 2
_CORONAL_KEYS = [_POSTERIOR_KEY, _CENTRAL_KEY, _ANTERIOR_KEY]
# Sagittal Keys
_MEDIAL_KEY = 2 ** 3
_LATERAL_KEY = 2 ** 4
_SAGITTAL_KEYS = [_MEDIAL_KEY, _LATERAL_KEY]
# Axial Keys
_DEEP_KEY = 2 ** 5
_SUPERFICIAL_KEY = 2 ** 6
_TOTAL_AXIAL_KEY = 2 ** 7
_AXIAL_KEYS = [_DEEP_KEY, _SUPERFICIAL_KEY, _TOTAL_AXIAL_KEY]
# Do not change order of below.
# Order reflects order of _CORONAL_KEYS, _SAGITTAL_KEYS, _AXIAL_KEYS
_AXIAL_NAMES = ["deep", "superficial", "total"]
_SAGITTAL_NAMES = ["medial", "lateral"]
_CORONAL_NAMES = ["posterior", "central", "anterior"]
ML_BOUNDARY = None
ACP_BOUNDARY = None
def __init__(self, weights_dir=None, medial_to_lateral=None):
super().__init__(weights_dir=weights_dir)
self.regions_mask = None
self.theta_bins = None
self.medial_to_lateral = medial_to_lateral
def split_regions(
self, base_map: np.ndarray, thickness_divisor=0.5, num_bins=72, theta=(-270, 90)
):
"""Split volume into anatomical regions.
Pixels corresponding to femoral cartilage are divided across 3 planes:
- Coronal: Posterior, Central, or Anterior
- Sagittal: Medial, Lateral
- Axial: Deep, Superficial
For example, a pixel could correspond to the Posterior Lateral Deep region of
femoral cartilage.
Args:
base_map (np.ndarray): 3D numpy array typically corresponding to volume to split.
Returns:
np.ndarray: 4D numpy array (region, height, width, depth).
Saved in variable ``self.regions``.
"""
dtheta = 360 / num_bins
theta_min, theta_max = tuple(theta)
mask = self.__mask__.volume
mask = mask * np.nan_to_num(base_map)
height, width, num_slices = mask.shape
# STEP 1: PROJECTING AND CYLINDRICAL FIT
segmented_t2maps_projected = np.max(mask, 2) # Project segmented T2maps on sagittal axis
non_zero_element = np.nonzero(segmented_t2maps_projected)
xc_fit, yc_fit, R_fit = circle_fit(
non_zero_element[1], non_zero_element[0]
) # fit a circle to projected cartilage tissue
# STEP 2: SLICE BY SLICE BINNING
yv, xv = np.meshgrid(range(height), range(width), indexing="ij")
rho, theta = cart2pol(xv - xc_fit, yc_fit - yv)
theta = (theta >= 90) * (theta - 360) + (theta < 90) * theta # range: [-270, 90)
assert (np.min(theta) >= theta_min) and (
np.max(theta) < theta_max
), "Expected Theta range is [{:d}, {:d}) degrees. Received min: {:d} max: {:d})".format(
theta_min, theta_max, np.min(theta), np.max(theta)
)
theta_bins = np.floor((theta - theta_min) / dtheta)
# STEP 3: COMPUTE THRESHOLD RADII
# TODO: This step takes a long time
rhos_threshold_volume = np.zeros(mask.shape)
for curr_slice in range(num_slices):
mask_slice = mask[..., curr_slice]
for curr_bin in range(num_bins):
rhos_valid = rho[np.logical_and(mask_slice > 0, theta_bins == curr_bin)]
if len(rhos_valid) == 0:
continue
rho_min = np.min(rhos_valid)
rho_max = np.max(rhos_valid)
rho_threshold = thickness_divisor * (rho_max - rho_min) + rho_min
rhos_threshold_volume[theta_bins == curr_bin, curr_slice] = rho_threshold
regions_volume = np.asarray(np.zeros(mask.shape), dtype=np.uint16)
# anterior/central/posterior division
# Central region occupies middle 30 degrees, anterior on left, posterior on right
anterior_region = self._ANTERIOR_KEY * (theta < -105)
central_region = self._CENTRAL_KEY * np.logical_and((theta >= -105), (theta < -75))
posterior_region = self._POSTERIOR_KEY * (theta >= -75)
acp_map = anterior_region + central_region + posterior_region
acp_volume = np.asarray(np.stack([acp_map] * num_slices, axis=-1), dtype=np.uint16)
regions_volume += acp_volume
# medial/lateral division
# take into account scanning direction
center_of_mass = sni.measurements.center_of_mass(mask)
com_slicewise = center_of_mass[-1]
ml_volume = np.asarray(np.zeros(mask.shape), dtype=np.uint16)
if self.medial_to_lateral:
ml_volume[..., : int(np.ceil(com_slicewise))] = self._MEDIAL_KEY
ml_volume[..., int(np.ceil(com_slicewise)) :] = self._LATERAL_KEY
else:
ml_volume[..., : int(np.ceil(com_slicewise))] = self._LATERAL_KEY
ml_volume[..., int(np.ceil(com_slicewise)) :] = self._MEDIAL_KEY
regions_volume += ml_volume
# deep/superficial division
rho_volume = np.stack([rho] * num_slices, axis=-1)
deep_volume = (rho_volume <= rhos_threshold_volume) * self._DEEP_KEY
superficial_volume = (rho_volume >= rhos_threshold_volume) * self._SUPERFICIAL_KEY
ds_volume = np.asarray(
deep_volume + superficial_volume + self._TOTAL_AXIAL_KEY, dtype=np.uint16
)
regions_volume += ds_volume
ml_boundary = int(np.ceil(com_slicewise))
acp_boundary = [
int(np.floor((-105 - theta_min) / dtheta)),
int(np.floor((-75 - theta_min) / dtheta)),
]
return regions_volume, theta_bins, ml_boundary, acp_boundary
def unroll(self, qv_map: np.ndarray, regions_mask: np.ndarray, theta_bins):
"""Unroll femoral cartilage 3D quantitative value (qv) maps to 2D for visualization.
The function multiplies a 3D segmentation mask to a 3D qv map to produce a 3D femoral
cartilage qv (fc_qv) map. It then fits a circle to the collapsed sagittal projection
of the fc_qv map. Each slice is binned into bins of 5 degree sizes
The unrolled map is then divided into deep and superficial cartilage.
Args:
qv_map (np.ndarray): 3D array (slices last) of sagittal knee describing
quantitative parameter values regions_mask (np.ndarray): regions_mask
Returns:
tuple: (row, column) format
1. 2D Total unrolled cartilage (slices, degrees) - average of superficial
and deep layers
2. Superficial unrolled cartilage (slices, degrees) - superficial layer
3. Deep unrolled cartilage (slices, degrees) - deep layer
"""
num_bins = len(np.unique(theta_bins))
mask = self.__mask__.volume
if qv_map.shape != mask.shape:
raise ValueError("t2_map and mask must have same shape")
if len(qv_map.shape) != 3:
raise ValueError("t2_map and mask must be 3D")
# assert self.regions_mask is not None, (
# "region_mask not initialized. Should be initialized when mask is set"
# )
num_slices = qv_map.shape[-1]
qv_map = np.nan_to_num(qv_map)
qv_map = np.multiply(mask, qv_map) # apply binary mask
qv_map[
qv_map <= 0
] = np.nan # wherever qv_map is 0, either no cartilage or qv=0 ms, which is impractical
# theta_bins = self.theta_bins # binning with theta
# regions_mask = self.regions_mask
Unrolled_Cartilage = np.zeros([num_bins, num_slices])
Sup_layer = np.zeros([num_bins, num_slices])
Deep_layer = np.zeros([num_bins, num_slices])
for slice_ind in range(num_slices):
qv_slice = qv_map[..., slice_ind]
curr_slice = regions_mask[..., slice_ind]
# if slice is all NaNs, then don't analyze
if np.sum(np.isnan(qv_slice)) == qv_slice.shape[0] * qv_slice.shape[1]:
continue
for curr_bin in range(num_bins):
qv_bin = qv_slice[theta_bins == curr_bin]
if np.sum(np.isnan(qv_bin)) == len(qv_bin):
continue
Unrolled_Cartilage[curr_bin, slice_ind] = np.nanmean(qv_bin)
qv_superficial = qv_slice[
np.logical_and(
theta_bins == curr_bin,
self.__binarize_region_mask__(curr_slice, self._SUPERFICIAL_KEY),
)
]
qv_deep = qv_slice[
np.logical_and(
theta_bins == curr_bin,
self.__binarize_region_mask__(curr_slice, self._DEEP_KEY),
)
]
qv_superficial = np.nan_to_num(qv_superficial)
qv_deep = np.nan_to_num(qv_deep)
qv_sup_mean = np.mean(qv_superficial[qv_superficial > 0])
qv_deep_mean = np.mean(qv_deep[qv_deep > 0])
Sup_layer[curr_bin, slice_ind] = qv_sup_mean
Deep_layer[curr_bin, slice_ind] = qv_deep_mean
Unrolled_Cartilage[Unrolled_Cartilage == 0] = np.nan
Sup_layer[Sup_layer == 0] = np.nan
Deep_layer[Deep_layer == 0] = np.nan
return Unrolled_Cartilage, Sup_layer, Deep_layer
def __calc_quant_vals__(self, quant_map: MedicalVolume, map_type):
"""Calculate quantitative values per region and 2D visualizations
1. Save 2D figure (deep, superficial, total) information to use with matplotlib
(title, data, xlabel, ylabel, filename)
2. Save 2D dataframes in format
[['DMA', 'DMC', 'DMP'], ['DLA', 'DLC', 'DLP'],
['SMA', 'SMC', 'SMP'], ['SLA', 'SLC', 'SLP'],
['TMA', 'TMC', 'TMP'], ['TLA', 'TLC', 'TLP']]
D=deep, S=superficial, T=total,
M=medial, L=lateral,
A=anterior, C=central, P=posterior
Args:
quant_map (MedicalVolume): 3D volumes of quantitative values.
Volume should have ``np.nan`` values for all pixels unable to be calculated.
map_type (QuantitativeValueType): Type of quantitative value to analyze.
"""
super().__calc_quant_vals__(quant_map, map_type)
# assert self.regions_mask is not None, (
# "region_mask not initialized. Should be initialized when mask is set"
# )
# We have to call this every time we load a new quantitative map
# mask = segmentation_mask * clipped_quant_map
regions_mask, theta_bins, ml_boundary, acp_boundary = self.split_regions(quant_map.volume)
if self.ML_BOUNDARY is None:
self.ML_BOUNDARY = ml_boundary
if self.ACP_BOUNDARY is None:
self.ACP_BOUNDARY = acp_boundary
total, superficial, deep = self.unroll(quant_map.volume, regions_mask, theta_bins)
assert total.shape == deep.shape
assert deep.shape == superficial.shape
# regions_mask = self.regions_mask
mask = self.__mask__.volume
subject_pid = self.pid
pd_header = ["Subject", "Location", "Side", "Region", "Mean", "Std", "Median", "# Voxels"]
pd_list = []
# Replace strings with values - eg. DMA = 'deep, medial, anterior'
# tissue_values = [['DMA', 'DMC', 'DMP'], ['DLA', 'DLC', 'DLP'],
# ['SMA', 'SMC', 'SMP'], ['SLA', 'SLC', 'SLP'],
# ['TMA', 'TMC', 'TMP'], ['TLA', 'TLC', 'TLP']]
# tissue_values = []
for axial_ind in range(len(self._AXIAL_KEYS)):
axial = self._AXIAL_KEYS[axial_ind]
for sagittal_ind in range(len(self._SAGITTAL_KEYS)):
sagittal = self._SAGITTAL_KEYS[sagittal_ind]
for coronal_ind in range(len(self._CORONAL_KEYS)):
coronal = self._CORONAL_KEYS[coronal_ind]
curr_region_mask = self.__binarize_region_mask__(
regions_mask, (axial | coronal | sagittal)
)
curr_region_mask = curr_region_mask * mask * quant_map.volume
# discard all values that are <= 0
qv_region_vals = curr_region_mask[curr_region_mask > 0]
num_voxels = len(qv_region_vals)
c_mean = np.nanmean(qv_region_vals)
c_std = np.nanstd(qv_region_vals)
c_median = np.nanmedian(qv_region_vals)
row_info = [
subject_pid,
self._AXIAL_NAMES[axial_ind],
self._SAGITTAL_NAMES[sagittal_ind],
self._CORONAL_NAMES[coronal_ind],
c_mean,
c_std,
c_median,
num_voxels,
]
pd_list.append(row_info)
df = pd.DataFrame(pd_list, columns=pd_header)
qv_name = map_type.name
maps = [
{
"title": "{} deep".format(qv_name),
"data": deep,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "{}_deep".format(qv_name),
"raw_data_filename": "{}_deep.data".format(qv_name),
},
{
"title": "{} superficial".format(qv_name),
"data": superficial,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "{}_superficial".format(qv_name),
"raw_data_filename": "{}_superficial.data".format(qv_name),
},
{
"title": "{} total".format(qv_name),
"data": total,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"filename": "{}_total".format(qv_name),
"raw_data_filename": "{}_total.data".format(qv_name),
},
]
self.__store_quant_vals__(maps, df, map_type)
def set_mask(
self, mask: MedicalVolume, use_largest_cc: bool = True, split_regions: bool = True
):
"""Set mask for tissue.
Mask is cleaned by selecting the largest connected component from the mask.
Femoral cartilage is expected to be single connected tissue.
Args:
mask (MedicalVolume): Binary mask of segmented tissue.
"""
xp = get_array_module(mask.A)
if use_largest_cc:
msk = xp.asarray(largest_cc(mask.A), dtype=xp.uint8)
else:
msk = xp.asarray(mask.A, dtype=xp.uint8)
mask_copy = mask._partial_clone(volume=msk)
super().set_mask(mask_copy)
if split_regions:
(
self.regions_mask,
self.theta_bins,
self.ML_BOUNDARY,
self.ACP_BOUNDARY,
) = self.split_regions( # noqa: E501
self.__mask__.volume
)
def __save_quant_data__(self, dirpath: str):
"""Save quantitative data and 2D visualizations of femoral cartilage.
Check which quantitative values (T2, T1rho, etc) are defined for femoral cartilage
and analyze these:
1. Save 2D total, superficial, and deep visualization maps.
2. Save {'medial', 'lateral'}, {'anterior', 'central', 'posterior'},
q{'deep', 'superficial'} data to excel file
Args:
dirpath (str): Directory path to tissue data.
"""
q_names = []
dfs = []
for quant_val in QuantitativeValueType:
if quant_val.name not in self.quant_vals.keys():
continue
q_names.append(quant_val.name)
q_val = self.quant_vals[quant_val.name]
dfs.append(q_val[1])
q_name_dirpath = io_utils.mkdirs(os.path.join(dirpath, quant_val.name.lower()))
for q_map_data in q_val[0]:
filepath = os.path.join(q_name_dirpath, q_map_data["filename"])
xlabel = "Slice"
ylabel = "Angle (binned)"
title = q_map_data["title"]
data_map = q_map_data["data"]
plt.clf()
upper_bound = BOUNDS[quant_val]
if preferences.visualization_use_vmax:
# Hard bounds - clipping
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
# Try to use a soft bounds
if np.sum(data_map <= upper_bound) == 0:
plt.imshow(data_map, cmap="jet", vmin=0.0, vmax=BOUNDS[quant_val])
else:
warnings.warn(
"%s: Pixel value exceeded upper bound (%0.1f). Using normalized scale."
% (quant_val.name, upper_bound)
)
plt.imshow(data_map, cmap="jet")
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title)
clb = plt.colorbar()
clb.ax.set_title("(ms)")
plt.savefig(filepath)
# Save data
raw_data_filepath = os.path.join(
q_name_dirpath, "raw_data", q_map_data["raw_data_filename"]
)
io_utils.save_pik(raw_data_filepath, data_map)
if len(dfs) > 0:
io_utils.save_tables(os.path.join(dirpath, "data.xlsx"), dfs, q_names)
def save_data(self, save_dirpath, data_format: ImageDataFormat = preferences.image_data_format):
super().save_data(save_dirpath, data_format=data_format)
save_dirpath = self.__save_dirpath__(save_dirpath)
if self.regions_mask is None:
return
sagital_region_mask, coronal_region_mask = self.__split_mask__()
# Save region map - add by 1 because no key can be 0
coronal_region_mask = (coronal_region_mask + 1) * 10
sagital_region_mask = sagital_region_mask + 1
joined_mask = coronal_region_mask + sagital_region_mask
labels = [
"medial posterior",
"medial central",
"medial anterior",
"lateral posterior",
"lateral central",
"lateral anterior",
]
plt_dict = {
"labels": labels,
"xlabel": "Slice",
"ylabel": "Angle (binned)",
"title": "Unrolled Regions",
}
img_utils.write_regions(
os.path.join(save_dirpath, "region_map"), joined_mask, plt_dict=plt_dict
)
def __binarize_region_mask__(self, region_mask, roi):
return np.asarray(np.bitwise_and(region_mask, roi) == roi, dtype=np.bool)
def __split_mask__(self):
assert (
self.ML_BOUNDARY is not None and self.ACP_BOUNDARY is not None
), "medial/lateral and anterior/central/posterior boundaries should be specified"
# split into regions
unrolled_total, _, _ = self.unroll(
np.asarray(self.__mask__.volume, dtype=np.float32), self.regions_mask, self.theta_bins
)
acp_division_unrolled = np.zeros(unrolled_total.shape)
ac_threshold = self.ACP_BOUNDARY[0]
cp_threshold = self.ACP_BOUNDARY[1]
acp_division_unrolled[:ac_threshold, :] = self._ANTERIOR_KEY
acp_division_unrolled[ac_threshold:cp_threshold, :] = self._CENTRAL_KEY
acp_division_unrolled[cp_threshold:, :] = self._POSTERIOR_KEY
ml_division_unrolled = np.zeros(unrolled_total.shape)
if self.medial_to_lateral:
ml_division_unrolled[..., : self.ML_BOUNDARY] = self._MEDIAL_KEY
ml_division_unrolled[..., self.ML_BOUNDARY :] = self._LATERAL_KEY
else:
ml_division_unrolled[..., : self.ML_BOUNDARY] = self._LATERAL_KEY
ml_division_unrolled[..., self.ML_BOUNDARY :] = self._MEDIAL_KEY
acp_division_unrolled[np.isnan(unrolled_total)] = np.nan
ml_division_unrolled[np.isnan(unrolled_total)] = np.nan
return acp_division_unrolled, ml_division_unrolled