|
a |
|
b/dosma/scan_sequences/scan_io.py |
|
|
1 |
import inspect |
|
|
2 |
import os |
|
|
3 |
import warnings |
|
|
4 |
from abc import ABC |
|
|
5 |
from pathlib import Path |
|
|
6 |
from typing import Any, Dict, Optional, Sequence, Set, Union |
|
|
7 |
|
|
|
8 |
import pydicom |
|
|
9 |
|
|
|
10 |
from dosma.core.io import format_io_utils as fio_utils |
|
|
11 |
from dosma.core.io.dicom_io import DicomReader |
|
|
12 |
from dosma.core.io.format_io import ImageDataFormat |
|
|
13 |
from dosma.core.med_volume import MedicalVolume |
|
|
14 |
from dosma.defaults import preferences |
|
|
15 |
from dosma.tissues.tissue import Tissue |
|
|
16 |
from dosma.utils import io_utils |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
def _contains_type(value, types): |
|
|
20 |
"""Returns ``True`` if any value is an instance of ``types``.""" |
|
|
21 |
if isinstance(value, types): |
|
|
22 |
return True |
|
|
23 |
if not isinstance(value, str) and isinstance(value, (Sequence, Set)) and len(value) > 0: |
|
|
24 |
return any(_contains_type(x, types) for x in value) |
|
|
25 |
elif isinstance(value, Dict): |
|
|
26 |
return _contains_type(value.keys(), types) or _contains_type(value.values(), types) |
|
|
27 |
return isinstance(value, types) |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
class ScanIOMixin(ABC): |
|
|
31 |
# This is just a summary on variables used in this abstract class, |
|
|
32 |
# the proper values/initialization should be done in child class. |
|
|
33 |
NAME: str |
|
|
34 |
__DEFAULT_SPLIT_BY__: Optional[str] |
|
|
35 |
_from_file_args: Dict[str, Any] |
|
|
36 |
|
|
|
37 |
@classmethod |
|
|
38 |
def from_dicom( |
|
|
39 |
cls, |
|
|
40 |
dir_or_files, |
|
|
41 |
group_by=None, |
|
|
42 |
ignore_ext: bool = False, |
|
|
43 |
num_workers: int = 0, |
|
|
44 |
verbose: bool = False, |
|
|
45 |
**kwargs, |
|
|
46 |
): |
|
|
47 |
"""Load scan from dicom files. |
|
|
48 |
|
|
|
49 |
Args: |
|
|
50 |
dir_or_files (str): The path to dicom directory or files. |
|
|
51 |
group_by: DICOM field tag name or tag number used to group dicoms. Defaults |
|
|
52 |
to scan's ``__DEFAULT_SPLIT_BY__``. |
|
|
53 |
ignore_ext (bool, optional): If `True`, ignore extension (`.dcm`) |
|
|
54 |
when loading dicoms from directory. |
|
|
55 |
num_workers (int, optional): Number of workers to use for loading. |
|
|
56 |
verbose (bool, optional): If ``True``, enable verbose logging for dicom loading. |
|
|
57 |
kwargs: Other keywords required to construct scan. |
|
|
58 |
|
|
|
59 |
Returns: |
|
|
60 |
The scan. |
|
|
61 |
""" |
|
|
62 |
dr = DicomReader(num_workers, verbose) |
|
|
63 |
if group_by is None: |
|
|
64 |
group_by = cls.__DEFAULT_SPLIT_BY__ |
|
|
65 |
volumes = dr.load(dir_or_files, group_by, ignore_ext) |
|
|
66 |
|
|
|
67 |
if isinstance(dir_or_files, (str, Path, os.PathLike)): |
|
|
68 |
dir_or_files = os.path.abspath(dir_or_files) |
|
|
69 |
else: |
|
|
70 |
dir_or_files = type(dir_or_files)([os.path.abspath(x) for x in dir_or_files]) |
|
|
71 |
|
|
|
72 |
scan = cls(volumes, **kwargs) |
|
|
73 |
scan._from_file_args = { |
|
|
74 |
"dir_or_files": dir_or_files, |
|
|
75 |
"ignore_ext": ignore_ext, |
|
|
76 |
"group_by": group_by, |
|
|
77 |
"_type": "dicom", |
|
|
78 |
} |
|
|
79 |
|
|
|
80 |
return scan |
|
|
81 |
|
|
|
82 |
@classmethod |
|
|
83 |
def from_dict(cls, data: Dict[str, Any], force: bool = False): |
|
|
84 |
"""Loads class from data dictionary. |
|
|
85 |
|
|
|
86 |
Args: |
|
|
87 |
data (Dict): The data. |
|
|
88 |
force (bool, optional): If ``True``, writes attributes even if they do not exist. |
|
|
89 |
Use with caution. |
|
|
90 |
|
|
|
91 |
Returns: |
|
|
92 |
The scan |
|
|
93 |
|
|
|
94 |
Examples: |
|
|
95 |
>>> scan = ... # some scan |
|
|
96 |
>>> filepath = scan.save("/path/to/base/directory") |
|
|
97 |
>>> scan_from_saved = type(scan).from_dict(io_utils.load_pik(filepath)) |
|
|
98 |
>>> scan_from_dict = type(scan).from_dict(scan.__dict__) |
|
|
99 |
""" |
|
|
100 |
# TODO: Add check for deprecated and converted attribute names. |
|
|
101 |
data = cls._convert_attr_name(data) |
|
|
102 |
|
|
|
103 |
# TODO: Convert metadata to appropriate type. |
|
|
104 |
# Converting metadata type is important when loading MedicalVolume data (for example). |
|
|
105 |
# The data is stored as a path, but should be loaded as a MedicalVolume. |
|
|
106 |
data = cls.load_custom_data(data) |
|
|
107 |
|
|
|
108 |
signature = inspect.signature(cls) |
|
|
109 |
init_metadata = {k: v for k, v in data.items() if k in signature.parameters} |
|
|
110 |
scan = cls(**init_metadata) |
|
|
111 |
for k in init_metadata.keys(): |
|
|
112 |
data.pop(k) |
|
|
113 |
|
|
|
114 |
for k, v in data.items(): |
|
|
115 |
if not hasattr(scan, k) and not force: |
|
|
116 |
warnings.warn(f"{cls.__name__} does not have attribute {k}. Skipping...") |
|
|
117 |
continue |
|
|
118 |
scan.__setattr__(k, v) |
|
|
119 |
|
|
|
120 |
return scan |
|
|
121 |
|
|
|
122 |
def save( |
|
|
123 |
self, |
|
|
124 |
path: str, |
|
|
125 |
save_custom: bool = False, |
|
|
126 |
image_data_format: ImageDataFormat = None, |
|
|
127 |
num_workers: int = 0, |
|
|
128 |
): |
|
|
129 |
"""Saves scan data to disk with option for custom saving. |
|
|
130 |
|
|
|
131 |
Custom saving may be useful to reduce redundant saving and/or save data in standard |
|
|
132 |
compatible formats (e.g. medical images - nifti/dicom), which are not feasible with |
|
|
133 |
python serialization libraries, like pickle. |
|
|
134 |
|
|
|
135 |
When ``save_custom=True``, this method overloads standard pickling with customizable |
|
|
136 |
saving by first saving data in customizable way (e.g. MedicalVolume -> Nifti file), |
|
|
137 |
and then pickling the reference to the saved object (e.g. Nifti filepath). |
|
|
138 |
|
|
|
139 |
Currently certain custom saving of objects such as ``pydicom.FileDataset`` and |
|
|
140 |
:cls:`Tissue` objects are not supported. |
|
|
141 |
|
|
|
142 |
To load the data, do the following: |
|
|
143 |
|
|
|
144 |
>>> filepath = scan.save("/path/to/directory", save_custom=True) |
|
|
145 |
>>> scan_loaded = type(scan).load(io_utils.load_pik(filepath)) |
|
|
146 |
|
|
|
147 |
Args: |
|
|
148 |
path (str): Directory where data is stored. |
|
|
149 |
data_format (ImageDataFormat, optional): Format to save data. |
|
|
150 |
Defaults to ``preferences.image_data_format``. |
|
|
151 |
save_custom (bool, optional): If ``True``, saves data in custom way specified |
|
|
152 |
by :meth:`save_custom_data` in format specified by ``data_format``. For |
|
|
153 |
example, for default classes this will save :cls:`MedicalVolume` data |
|
|
154 |
to nifti/dicom files as specified by ``image_data_format``. |
|
|
155 |
image_data_format (ImageDataFormat, optional): The data format to save |
|
|
156 |
:cls:`MedicalVolume` data. Only used if save_custom is ``True``. |
|
|
157 |
num_workers (int, bool): Number of workers for saving custom data. |
|
|
158 |
Only used if save_custom is ``True``. |
|
|
159 |
|
|
|
160 |
Returns: |
|
|
161 |
str: The path to the pickled file. |
|
|
162 |
""" |
|
|
163 |
if image_data_format is None: |
|
|
164 |
image_data_format = preferences.image_data_format |
|
|
165 |
|
|
|
166 |
save_dirpath = path # self._save_dir(path) |
|
|
167 |
os.makedirs(save_dirpath, exist_ok=True) |
|
|
168 |
filepath = os.path.join(save_dirpath, "%s.data" % self.NAME) |
|
|
169 |
|
|
|
170 |
metadata: Dict = {} |
|
|
171 |
for attr in self.__serializable_variables__(): |
|
|
172 |
metadata[attr] = self.__getattribute__(attr) |
|
|
173 |
|
|
|
174 |
if save_custom: |
|
|
175 |
metadata = self._save( |
|
|
176 |
metadata, save_dirpath, image_data_format=image_data_format, num_workers=num_workers |
|
|
177 |
) |
|
|
178 |
|
|
|
179 |
io_utils.save_pik(filepath, metadata) |
|
|
180 |
return filepath |
|
|
181 |
|
|
|
182 |
@classmethod |
|
|
183 |
def load(cls, path_or_data: Union[str, Dict], num_workers: int = 0): |
|
|
184 |
"""Load scan. |
|
|
185 |
|
|
|
186 |
This method overloads the :func:`from_dict` method by supporting loading from a file |
|
|
187 |
in addition to the data dictionary. If loading and constructing a scan using |
|
|
188 |
:func:`from_dict` fails, defaults to loading data from original dicoms |
|
|
189 |
(if ``self._from_file_args`` is initialized). |
|
|
190 |
|
|
|
191 |
Args: |
|
|
192 |
path_or_data (Union[str, Dict]): Pickle file to load or data dictionary. |
|
|
193 |
num_workers (int, optional): Number of workers to use for loading. |
|
|
194 |
|
|
|
195 |
Returns: |
|
|
196 |
ScanSequence: Of type ``cls``. |
|
|
197 |
|
|
|
198 |
Raises: |
|
|
199 |
ValueError: If ``scan`` cannot be constructed. |
|
|
200 |
""" |
|
|
201 |
if isinstance(path_or_data, (str, Path, os.PathLike)): |
|
|
202 |
if os.path.isdir(path_or_data): |
|
|
203 |
path_or_data = os.path.join(path_or_data, f"{cls.NAME}.data") |
|
|
204 |
|
|
|
205 |
if not os.path.isfile(path_or_data): |
|
|
206 |
raise FileNotFoundError(f"File {path_or_data} does not exist") |
|
|
207 |
data = io_utils.load_pik(path_or_data) |
|
|
208 |
else: |
|
|
209 |
data = path_or_data |
|
|
210 |
|
|
|
211 |
try: |
|
|
212 |
scan = cls.from_dict(data) |
|
|
213 |
return scan |
|
|
214 |
except Exception: |
|
|
215 |
warnings.warn( |
|
|
216 |
f"Failed to load {cls.__name__} from data. Trying to load from dicom file." |
|
|
217 |
) |
|
|
218 |
|
|
|
219 |
data = cls._convert_attr_name(data) |
|
|
220 |
data = cls.load_custom_data(data, num_workers=num_workers) |
|
|
221 |
|
|
|
222 |
scan = None |
|
|
223 |
if "_from_file_args" in data: |
|
|
224 |
dicom_args = data.pop("_from_file_args") |
|
|
225 |
assert dicom_args.pop("_type") == "dicom" |
|
|
226 |
scan = cls.from_dicom(**dicom_args, num_workers=num_workers) |
|
|
227 |
elif "dicom_path" in data: |
|
|
228 |
# Backwards compatibility |
|
|
229 |
dicom_path = data.pop("dicom_path") |
|
|
230 |
ignore_ext = data.pop("ignore_ext", False) |
|
|
231 |
group_by = data.pop("split_by", cls.__DEFAULT_SPLIT_BY__) |
|
|
232 |
scan = cls.from_dicom( |
|
|
233 |
dicom_path, ignore_ext=ignore_ext, group_by=group_by, num_workers=num_workers |
|
|
234 |
) |
|
|
235 |
|
|
|
236 |
if scan is None: |
|
|
237 |
raise ValueError(f"Data is insufficient to construct {cls.__name__}") |
|
|
238 |
|
|
|
239 |
for k, v in data.items(): |
|
|
240 |
if not hasattr(scan, k): |
|
|
241 |
warnings.warn(f"{cls.__name__} does not have attribute {k}. Skipping...") |
|
|
242 |
continue |
|
|
243 |
scan.__setattr__(k, v) |
|
|
244 |
|
|
|
245 |
return scan |
|
|
246 |
|
|
|
247 |
def save_data( |
|
|
248 |
self, base_save_dirpath: str, data_format: ImageDataFormat = preferences.image_data_format |
|
|
249 |
): |
|
|
250 |
"""Deprecated: Alias for :func:`self.save`.""" |
|
|
251 |
warnings.warn( |
|
|
252 |
"save_data is deprecated since v0.0.13 and will no longer be " |
|
|
253 |
"available in v0.1. Use `save` instead.", |
|
|
254 |
DeprecationWarning, |
|
|
255 |
) |
|
|
256 |
return self.save(base_save_dirpath, data_format) |
|
|
257 |
|
|
|
258 |
def _save( |
|
|
259 |
self, |
|
|
260 |
metadata: Dict[str, Any], |
|
|
261 |
save_dir: str, |
|
|
262 |
fname_fmt: Dict[Union[str, type], str] = None, |
|
|
263 |
**kwargs, |
|
|
264 |
): |
|
|
265 |
if fname_fmt is None: |
|
|
266 |
fname_fmt = {} |
|
|
267 |
|
|
|
268 |
default_fname_fmt = {MedicalVolume: "image-{}"} |
|
|
269 |
for k, v in default_fname_fmt.items(): |
|
|
270 |
if k not in fname_fmt: |
|
|
271 |
fname_fmt[k] = v |
|
|
272 |
|
|
|
273 |
for attr in metadata.keys(): |
|
|
274 |
val = metadata[attr] |
|
|
275 |
path = fname_fmt.get(attr, None) |
|
|
276 |
|
|
|
277 |
if path is None: |
|
|
278 |
path = os.path.abspath(os.path.join(save_dir, attr)) |
|
|
279 |
if not os.path.isabs(path): |
|
|
280 |
path = os.path.join(save_dir, attr, path) |
|
|
281 |
try: |
|
|
282 |
metadata[attr] = self.save_custom_data(val, path, fname_fmt, **kwargs) |
|
|
283 |
except Exception as e: |
|
|
284 |
raise RuntimeError(f"Failed to save metadata {attr} - {e}") |
|
|
285 |
|
|
|
286 |
return metadata |
|
|
287 |
|
|
|
288 |
def save_custom_data( |
|
|
289 |
self, metadata, paths, fname_fmt: Dict[Union[str, type], str] = None, **kwargs |
|
|
290 |
): |
|
|
291 |
""" |
|
|
292 |
Finds all attributes of type MedicalVolume or Sequence/Mapping to MedicalVolume |
|
|
293 |
and saves them. |
|
|
294 |
""" |
|
|
295 |
if isinstance(metadata, (Dict, Sequence, Set)): |
|
|
296 |
if isinstance(paths, str): |
|
|
297 |
paths = [paths] * len(metadata) |
|
|
298 |
else: |
|
|
299 |
assert len(paths) == len(metadata) |
|
|
300 |
|
|
|
301 |
if isinstance(metadata, Dict): |
|
|
302 |
keys = metadata.keys() |
|
|
303 |
if isinstance(paths, Dict): |
|
|
304 |
paths = [paths[k] for k in keys] |
|
|
305 |
paths = [os.path.join(_path, f"{k}") for k, _path in zip(keys, paths)] |
|
|
306 |
values = self.save_custom_data(metadata.values(), paths, fname_fmt, **kwargs) |
|
|
307 |
metadata = {k: v for k, v in zip(keys, values)} |
|
|
308 |
elif not isinstance(metadata, str) and isinstance(metadata, (Sequence, Set)): |
|
|
309 |
values = list(metadata) |
|
|
310 |
paths = [os.path.join(_path, "{:03d}".format(i)) for i, _path in enumerate(paths)] |
|
|
311 |
values = [ |
|
|
312 |
self.save_custom_data(_x, _path, fname_fmt, **kwargs) |
|
|
313 |
for _x, _path in zip(values, paths) |
|
|
314 |
] |
|
|
315 |
if not isinstance(values, type(metadata)): |
|
|
316 |
metadata = type(metadata)(values) |
|
|
317 |
else: |
|
|
318 |
metadata = values |
|
|
319 |
else: |
|
|
320 |
formatter = [fname_fmt.get(x) for x in type(metadata).__mro__] |
|
|
321 |
formatter = [x for x in formatter if x is not None] |
|
|
322 |
if len(formatter) == 0: |
|
|
323 |
formatter = None |
|
|
324 |
else: |
|
|
325 |
formatter = formatter[0] |
|
|
326 |
metadata = self._save_custom_data_base(metadata, paths, formatter, **kwargs) |
|
|
327 |
|
|
|
328 |
return metadata |
|
|
329 |
|
|
|
330 |
def _save_custom_data_base(self, metadata, path, formatter: str = None, **kwargs): |
|
|
331 |
"""The base condition for :meth:`save_custom_data`. |
|
|
332 |
|
|
|
333 |
Args: |
|
|
334 |
metadata (Any): The data to save. |
|
|
335 |
path (str): The path to save the data. |
|
|
336 |
formatter (str, optional): If provided, this formatted string |
|
|
337 |
will be used to format ``path``. |
|
|
338 |
""" |
|
|
339 |
out = {"__dtype__": type(metadata)} |
|
|
340 |
# TODO: Add support for num workers. |
|
|
341 |
# num_workers = kwargs.pop("num_workers", 0) |
|
|
342 |
|
|
|
343 |
if formatter: |
|
|
344 |
path = os.path.join(os.path.dirname(path), formatter.format(os.path.basename(path))) |
|
|
345 |
|
|
|
346 |
if isinstance(metadata, MedicalVolume): |
|
|
347 |
image_data_format = kwargs.get("image_data_format", preferences.image_data_format) |
|
|
348 |
# TODO: Once, `files` property added to MedicalVolume, check if property is |
|
|
349 |
# set before doing saving. |
|
|
350 |
path = fio_utils.convert_image_data_format(path, image_data_format) |
|
|
351 |
metadata.save_volume(path, data_format=image_data_format) |
|
|
352 |
out["__value__"] = path |
|
|
353 |
else: |
|
|
354 |
out = metadata |
|
|
355 |
|
|
|
356 |
return metadata |
|
|
357 |
|
|
|
358 |
@classmethod |
|
|
359 |
def _convert_attr_name(cls, data: Dict[str, Any]): |
|
|
360 |
return data |
|
|
361 |
|
|
|
362 |
@classmethod |
|
|
363 |
def load_custom_data(cls, data: Any, **kwargs): |
|
|
364 |
"""Recursively converts data to appropriate types. |
|
|
365 |
|
|
|
366 |
By default, this loads all :class:`MedicalVolume` objects from their corresponding paths. |
|
|
367 |
|
|
|
368 |
Args: |
|
|
369 |
data (Any): The data. Can either be the dictionary or the metadata value. |
|
|
370 |
If the data corresponds to a custom type, it should have the following |
|
|
371 |
schema: |
|
|
372 |
|
|
|
373 |
{ |
|
|
374 |
'__dtype__': The type of the data. |
|
|
375 |
'__value__': The value from which object of type __dtype__ can be constructed. |
|
|
376 |
} |
|
|
377 |
|
|
|
378 |
**kwargs: Keyword Arguments to pass to :meth:`_load_custom_data_base`. |
|
|
379 |
|
|
|
380 |
Returns: |
|
|
381 |
Any: The loaded metadata. |
|
|
382 |
""" |
|
|
383 |
dtype = type(data) |
|
|
384 |
if isinstance(data, Dict) and "__value__" in data: |
|
|
385 |
dtype = data["__dtype__"] |
|
|
386 |
data = data["__value__"] |
|
|
387 |
|
|
|
388 |
if issubclass(dtype, Dict): |
|
|
389 |
keys = cls.load_custom_data(data.keys(), **kwargs) |
|
|
390 |
values = cls.load_custom_data(data.values(), **kwargs) |
|
|
391 |
data = {k: v for k, v in zip(keys, values)} |
|
|
392 |
elif not issubclass(dtype, str) and issubclass(dtype, (list, tuple, set)): |
|
|
393 |
data = dtype([cls.load_custom_data(x, **kwargs) for x in data]) |
|
|
394 |
else: |
|
|
395 |
data = cls._load_custom_data_base(data, dtype, **kwargs) |
|
|
396 |
|
|
|
397 |
return data |
|
|
398 |
|
|
|
399 |
@classmethod |
|
|
400 |
def _load_custom_data_base(cls, data, dtype=None, **kwargs): |
|
|
401 |
"""The base condition for :meth:`load_custom_data`. |
|
|
402 |
|
|
|
403 |
Args: |
|
|
404 |
data: |
|
|
405 |
dtype (type): The data type. |
|
|
406 |
|
|
|
407 |
Return: |
|
|
408 |
The loaded data. |
|
|
409 |
""" |
|
|
410 |
if dtype is None: |
|
|
411 |
dtype = type(data) |
|
|
412 |
|
|
|
413 |
# TODO: Add support for loading with num_workers |
|
|
414 |
num_workers = kwargs.get("num_workers", 0) |
|
|
415 |
if isinstance(data, str) and issubclass(dtype, MedicalVolume): |
|
|
416 |
data = fio_utils.generic_load(data, num_workers=num_workers) |
|
|
417 |
|
|
|
418 |
return data |
|
|
419 |
|
|
|
420 |
def __serializable_variables__( |
|
|
421 |
self, ignore_types=(pydicom.FileDataset, pydicom.Dataset, Tissue), ignore_attrs=() |
|
|
422 |
) -> Set: |
|
|
423 |
""" |
|
|
424 |
By default, all instance attributes are serialized except those |
|
|
425 |
corresponding to headers, :class:`MedicalVolume`(s), or :class:`Tissues`. |
|
|
426 |
Properties and class attributes are also not stored. Class attributes are |
|
|
427 |
indentified using the PEP8 nomenclature of all caps variables. |
|
|
428 |
|
|
|
429 |
Note: |
|
|
430 |
This method has not been profiled, but times may be large if |
|
|
431 |
the instance contains many variables. Currently this is not |
|
|
432 |
cached as attributes values can change and, as a result, must |
|
|
433 |
be inspected. |
|
|
434 |
""" |
|
|
435 |
serializable = [] |
|
|
436 |
for attr, value in self.__dict__.items(): |
|
|
437 |
if attr in ignore_attrs or _contains_type(value, ignore_types): |
|
|
438 |
continue |
|
|
439 |
if attr.startswith("temp") or attr.startswith("_temp"): |
|
|
440 |
continue |
|
|
441 |
if attr.upper() == attr or (attr.startswith("__") and attr.endswith("__")): |
|
|
442 |
continue |
|
|
443 |
if callable(value) or isinstance(value, property): |
|
|
444 |
continue |
|
|
445 |
serializable.append(attr) |
|
|
446 |
|
|
|
447 |
return set(serializable) |