[030aeb]: / dosma / core / registration.py

Download this file

558 lines (482 with data), 21.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import itertools
import logging
import multiprocessing as mp
import os
import platform
import shutil
import subprocess
import sys
import uuid
import warnings
from functools import partial
from typing import Dict, Sequence, Union
from nipype.interfaces.elastix import ApplyWarp, Registration
from nipype.interfaces.elastix.registration import RegistrationOutputSpec
from tqdm import tqdm
from tqdm.contrib.concurrent import process_map
from dosma import file_constants as fc
from dosma.core.device import cpu_device
from dosma.core.io.nifti_io import NiftiReader, NiftiWriter
from dosma.core.med_volume import MedicalVolume
from dosma.defaults import preferences
from dosma.utils import env
__all__ = ["register", "apply_warp", "symlink_elastix", "unlink_elastix"]
MedVolOrPath = Union[MedicalVolume, str]
_logger = logging.getLogger(__name__)
def register(
target: MedVolOrPath,
moving: Union[MedVolOrPath, Sequence[MedVolOrPath]],
parameters: Union[str, Sequence[str]],
output_path: str,
target_mask: MedVolOrPath = None,
moving_masks: Union[MedVolOrPath, Sequence[MedVolOrPath]] = None,
sequential: bool = False,
collate: bool = True,
num_workers: int = 0,
num_threads: int = 1,
show_pbar: bool = False,
return_volumes: bool = False,
rtype: type = dict,
**kwargs,
):
"""Register moving image(s) to the target.
``MedVolOrPath`` is a shorthand for ``Union[MedicalVolume, str, Path]``.
It indicates the argument can be either a ``MedicalVolume`` or a path to a nifti file.
Args:
target (`MedicalVolume` or `str`): The target/fixed image.
moving (MedicalVolume(s) or str(s)): The moving/source image(s).
parameters (str(s)): Elastix parameter files to use.
output_path (str): Output directory to store files.
target_mask (MedicalVolume or str, optional): The target/fixed mask.
moving_masks (MedicalVolume(s) or str(s), optional): The moving mask(s).
If only one specified, the mask will be used for all moving images.
sequential (bool, optional): If `True`, apply parameter files sequentially.
collate (bool, optional): If `True`, will collate outputs from sequential registration
into single RegistrationOutputSpec instance. If `sequential=False`, this argument
is ignored.
num_workers (int, optional): Number of workers to use for reading and writing data and
for registration.
num_threads (int, optional): Number of threads to use for registration.
Note total number of threads used will be ``num_workers * num_threads``.
show_pbar (bool, optional): If `True`, show progress bar during registration.
Note the progress bar will not be shown for intermediate reading/writing.
return_volumes (bool, optional): If `True`, registered volumes will also be returned.
By default, only the output namespaces (RegistrationOutputSpec) of the registrations are
returned.
rtype (type, optional): The return type. Either `dict` or `tuple`.
kwargs: Keyword arguments used to initialize `nipype.interfaces.elastix.Registration`.
Returns:
Dict or Tuple:
Type specified by ``rtype``. If ``rtype=dict``, returns dict with keys ``'outputs'``
and ``'volumes'`` (if ``return_volumes=True``). If ``rtype=tuple``, returns
``(outputs, volumes or None)``. Length of ``outputs`` and ``volumes`` depends on
number of images specified in ``moving``:
outputs (Sequence[RegistrationOutputSpec]): The output objects from
elastix registration, one for each moving image. Each object is effectively
a namespace with four main attributes:
- 'transform' (List[str]): Paths to transform files produced using registration.
- 'warped_file' (str): Path to the final registered image.
- 'warped_files' (List[str]): Paths to all intermediate images created
if multiple parameter files used.
volumes (Sequence[MedicalVolume]): Registered volumes.
"""
assert issubclass(rtype, (Dict, Sequence)) # `rtype` must be dict or tuple
has_output_path = bool(output_path)
if not output_path:
output_path = os.path.join(
env.temp_dir(), f"register-{str(uuid.uuid1())}-{str(uuid.uuid4())}"
)
moving = [moving] if isinstance(moving, (MedicalVolume, str)) else moving
moving_masks = (
[moving_masks]
if moving_masks is None or isinstance(moving_masks, (MedicalVolume, str))
else moving_masks
)
if len(moving_masks) > 1 and len(moving) != len(moving_masks):
raise ValueError(
"Got {} moving images but {} moving masks".format(len(moving), len(moving_masks))
)
files = [target, target_mask] + moving + moving_masks
if any(isinstance(f, MedicalVolume) and f.device != cpu_device for f in files):
raise RuntimeError("MedicalVolume data must be on CPU")
# Write medical volumes (if any) to nifti file for use with elastix.
tmp_dir = os.path.join(output_path, "tmp")
default_files = (
["target", "target-mask"]
+ [f"moving-{idx}" for idx in range(len(moving))]
+ [f"moving-mask-{idx}" for idx in range(len(moving_masks))]
) # noqa
assert len(default_files) == len(files), default_files # should be 1-to-1 with # args provided
vols = [(idx, v) for idx, v in enumerate(files) if isinstance(v, MedicalVolume)]
idxs, vols = [x[0] for x in vols], [x[1] for x in vols]
# Temporary directory must be created prior to writing data
# due to issues with creating directories in multiprocessing settings.
os.makedirs(tmp_dir, exist_ok=True)
if len(vols) > 0:
filepaths = [os.path.join(tmp_dir, f"{default_files[idx]}.nii.gz") for idx in idxs]
if num_workers > 0:
with mp.Pool(min(num_workers, len(vols))) as p:
out = p.starmap_async(_write, zip(vols, filepaths))
out.wait()
else:
for vol, fp in zip(vols, filepaths):
_write(vol, fp)
for idx, fp in zip(idxs, filepaths):
files[idx] = fp
# Assign file paths to respective variables.
target, moving = files[0], files[2 : 2 + len(moving)]
target_mask, moving_masks = files[1], files[2 + len(moving) :]
if len(moving_masks) == 1:
moving_masks = moving_masks * len(moving)
all_outputs = {}
# Perform registration.
reg_out_paths = [os.path.join(output_path, f"moving-{idx}") for idx in range(len(moving))]
reg_args = list(zip(moving, moving_masks, reg_out_paths))
if num_workers > 0:
func = partial(
_elastix_register_mp,
target=target,
parameters=parameters,
target_mask=target_mask,
sequential=sequential,
collate=collate,
num_threads=num_threads,
**kwargs,
)
max_workers = min(num_workers, len(reg_args))
out = process_map(
func, reg_args, max_workers=max_workers, tqdm_class=tqdm, disable=not show_pbar
)
else:
out = []
for mvg, mvg_mask, out_path in tqdm(reg_args, disable=not show_pbar):
_out = _elastix_register(
target,
mvg,
parameters,
out_path,
target_mask,
mvg_mask,
sequential,
collate,
num_threads,
**kwargs,
)
out.append(_out)
all_outputs["outputs"] = tuple(out)
# Load volumes.
if return_volumes:
filepaths = [x[-1].warped_file if isinstance(x, Sequence) else x.warped_file for x in out]
if num_workers > 0:
with mp.Pool(min(num_workers, len(filepaths))) as p:
vols = p.map(_read, filepaths)
else:
vols = []
for fp in filepaths:
vols.append(_read(fp))
all_outputs["volume"] = tuple(vols)
# Clean up.
for _dir in [tmp_dir, output_path if not has_output_path else None]:
if not _dir or not os.path.isdir(_dir):
continue
shutil.rmtree(_dir)
if issubclass(rtype, dict):
out = rtype(all_outputs)
elif issubclass(rtype, Sequence):
out = rtype([all_outputs["outputs"], all_outputs.get("volume", None)])
else:
assert False # Should have type checking earlier.
return out
def apply_warp(
moving: Union[MedVolOrPath, Sequence[MedVolOrPath]],
transform: Union[str, Sequence[str]] = None,
out_registration: RegistrationOutputSpec = None,
output_path: Union[str, Sequence[str]] = None,
rtype: type = MedicalVolume,
num_threads: int = 1,
show_pbar: bool = False,
num_workers: int = 0,
) -> MedVolOrPath:
"""Apply transform(s) to moving image using transformix.
Use transformix to apply a transform on an input image. The transform(s) is/are
specified in the transform-parameter file(s).
Args:
moving (MedicalVolume(s) or str(s)): The moving/source image to transform.
transform (str(s)): Paths to transform files to be used by transformix.
If multiple files provided, transforms will be applied sequentially.
If `None`, will be determined by `out_registration.transform`.
out_registration (RegistrationOutputSpec(s)): Outputs from elastix registration
using nipype. Must be specified if `transform` is None.
output_path (str): Output directory to store files.
rtype (type, optional): Return type - either `MedicalVolume` or `str`.
If `str`, `output_path` must be specified. Defaults to `MedicalVolume`.
num_threads (int, optional): Number of threads to use for registration.
If `None`, defaults to 1.
show_pbar (bool, optional): If `True`, show progress bar when applying transforms.
Return:
MedVolOrPath: The medical volume or nifti file corresponding to the volume.
See `rtype` for details.
"""
single_vol = isinstance(moving, (MedicalVolume, os.PathLike))
if single_vol:
if num_workers > 0:
_logger.warning("Ignoring `num_workers` - only single volume was detected")
return _apply_warp(
moving=moving,
transform=transform,
out_registration=out_registration,
output_path=output_path,
rtype=rtype,
num_threads=num_threads,
show_pbar=show_pbar,
)
num_volumes = len(moving)
seq_type = type(moving)
if not output_path:
output_path = [None] * num_volumes
elif isinstance(output_path, (str, os.PathLike)):
output_path = [os.path.join(output_path, f"image-{idx}") for idx in range(num_volumes)]
elif not isinstance(output_path, Sequence) or len(output_path) != num_volumes:
raise ValueError(
"`output_path` must be a directory or list of directories " "of same length as `moving`"
)
warp_args = list(zip(moving, output_path))
if num_workers > 0:
func = partial(
_apply_warp_mp,
transform=transform,
out_registration=out_registration,
rtype=rtype,
num_threads=num_threads,
show_pbar=False,
)
max_workers = min(num_workers, len(warp_args))
out = process_map(
func, warp_args, max_workers=max_workers, tqdm_class=tqdm, disable=not show_pbar
)
else:
out = []
for mvg, out_path in tqdm(warp_args, disable=not show_pbar):
_out = _apply_warp(
moving=mvg,
output_path=out_path,
transform=transform,
out_registration=out_registration,
rtype=rtype,
num_threads=num_threads,
show_pbar=False,
)
out.append(_out)
return seq_type(out)
def symlink_elastix(path: str = None, lib_only: bool = True, force: bool = False):
"""Symlinks elastix/transformix files to the dosma library.
Args:
path (str, optional): Path to elastix folder. This folder should
contain two folders `bin` and `lib`. If `None`, determined
using `which elastix`. This will overwrite existing linked
files. path cannot be automatically determined on Windows.
lib_only (bool, optional): If `True`, only links contents of `lib`
folder.
force (bool, optional): If `True`, unlinks existing files before relinking.
Note this operation is not atomic.
Note:
Setting elastix paths this way is not recommended unless you
are using a MacOS (Darwin) platform, where there are known
path issues with elastix (https://github.com/almarklein/pyelastix/issues/9).
For linux and windows machines, using the setup described in the elastix
guide is sufficient.
"""
system = platform.system().lower()
assert system in ["windows", "darwin", "linux"]
if system != "darwin":
warnings.warn(
f"Symlinking elastix/transformix paths not recommended for {system} " f"machines"
)
if path is None:
if system == "windows":
raise ValueError("`path` cannot be determined automatically on Windows")
try:
out = subprocess.check_output(["which", "elastix"]).decode("ascii").strip("\n")
path = os.path.dirname(os.path.dirname(out))
except subprocess.CalledProcessError:
raise ValueError(
"Path to `elastix` not intialized. "
"Use `export PATH=/path/to/elastix/folder:$PATH`"
)
assert os.path.isdir(path), path # must be a directory
dirs = {"lib": [x for x in os.listdir(os.path.join(path, "lib")) if x.startswith("libANNlib")]}
if not lib_only:
dirs["bin"] = ["elastix", "transformix"]
for dirname, files in dirs.items():
for file in files:
src = os.path.join(path, dirname, file)
tgt = os.path.join(fc._DOSMA_ELASTIX_FOLDER, file)
if os.path.exists(tgt):
if force:
os.remove(tgt)
else:
raise FileExistsError(
f"File {tgt} exists. "
f"Use `unlink_elastix` or `force` to unlink the file."
)
os.symlink(src, tgt)
def unlink_elastix():
"""Unlinks all elastix/transformix files in the dosma library."""
for x in os.listdir(fc._DOSMA_ELASTIX_FOLDER):
x = os.path.join(fc._DOSMA_ELASTIX_FOLDER, x)
if os.path.islink(x):
os.remove(x)
def _elastix_register(
target: str,
moving: str,
parameters: Sequence[str],
output_path: str,
target_mask: str = None,
moving_mask: str = None,
sequential=False,
collate=True,
num_threads=None,
use_mask: Sequence[bool] = None,
**kwargs,
):
def _register(_moving, _parameters, _output_path, _use_mask=None):
if isinstance(_parameters, str):
_parameters = [_parameters]
if _use_mask is None:
_use_mask = target_mask is not None or moving_mask is not None
_output_path = os.path.abspath(_output_path)
os.makedirs(_output_path, exist_ok=True)
elastix_path = _local_exe("elastix")
cwd = _local_lib_dir()
reg = Registration()
if elastix_path:
reg._cmd = elastix_path
reg.inputs.fixed_image = os.path.abspath(target)
reg.inputs.moving_image = os.path.abspath(_moving)
reg.inputs.parameters = [os.path.abspath(p) for p in _parameters]
reg.inputs.output_path = os.path.abspath(_output_path)
reg.terminal_output = preferences.nipype_logging
if num_threads:
reg.inputs.num_threads = num_threads
if _use_mask and target_mask is not None:
reg.inputs.fixed_mask = os.path.abspath(target_mask)
if _use_mask and moving_mask is not None:
reg.inputs.moving_mask = os.path.abspath(moving_mask)
for k, v in kwargs.items():
setattr(reg.inputs, k, v)
return reg.run(cwd=cwd).outputs
def _collate_outputs(_outs):
"""
Concatenates fields that are sequential and takes final output
for fields that are not.
"""
if len(_outs) == 1:
return _outs[0]
_result = _outs[0]
fields = list(_outs[0].__dict__.keys())
for _fld in fields:
_res_val = getattr(_result, _fld)
if not isinstance(_res_val, str) and isinstance(_res_val, Sequence):
val = list(itertools.chain.from_iterable([getattr(x, _fld) for x in _outs]))
else:
val = getattr(_outs[-1], _fld)
setattr(_result, _fld, val)
return _result
if use_mask is not None:
assert sequential # use_mask can only be specified when sequential is specified
if sequential:
outs, mvg = [], moving
for idx, param in enumerate(parameters):
_use_mask = None if use_mask is None else use_mask[idx]
_out = _register(mvg, param, os.path.join(output_path, f"param{idx}"), _use_mask)
outs.append(_out)
mvg = _out.warped_file
out = _collate_outputs(outs) if collate else outs
return out
else:
return _register(moving, parameters, output_path)
def _elastix_register_mp(args, **kwargs):
"""Reorder arguments for multiprocessing support."""
moving, moving_mask, output_path = args
return _elastix_register(
moving=moving, moving_mask=moving_mask, output_path=output_path, **kwargs
)
def _apply_warp(
moving: MedVolOrPath,
output_path: str = None,
transform: Union[str, Sequence[str]] = None,
out_registration: RegistrationOutputSpec = None,
rtype: type = MedicalVolume,
num_threads: int = 1,
show_pbar: bool = False,
) -> MedVolOrPath:
assert rtype in [MedicalVolume, str], rtype # rtype must be MedicalVolume or str
has_output_path = bool(output_path)
if rtype == str and not has_output_path:
raise ValueError("`output_path` must be specified when `rtype=str`")
if not output_path:
# TODO: Add path generation that prevents collisions during multiprocessing.
# When multiprocessing executes rapidly and poor seed is set, the uuids have
# collided. To avoid this, we append the process name to the directory that is
# created.
output_path = os.path.join(
env.temp_dir(), f"apply_warp-{str(uuid.uuid1())}-{str(uuid.uuid4())}"
)
if not _is_main_process():
output_path += mp.current_process().name
output_path = os.path.abspath(output_path)
os.makedirs(output_path, exist_ok=True)
if not transform:
transform = out_registration.transform
elif isinstance(transform, str):
transform = [transform]
transform = [os.path.abspath(t) for t in transform]
mv_filepath = os.path.join(output_path, "moving.nii.gz")
if isinstance(moving, MedicalVolume):
NiftiWriter().save(moving, mv_filepath)
moving = mv_filepath
transformix_path = _local_exe("transformix") # noqa
cwd = _local_lib_dir()
for tf in tqdm(transform, disable=not show_pbar):
reg = ApplyWarp()
reg.inputs.moving_image = moving
reg.inputs.transform_file = tf
reg.inputs.output_path = output_path
reg.terminal_output = preferences.nipype_logging
reg.inputs.num_threads = num_threads
reg_output = reg.run(cwd=cwd)
moving = reg_output.outputs.warped_file
if rtype == MedicalVolume:
out = NiftiReader().load(moving)
else:
out = moving
if os.path.isfile(mv_filepath):
os.remove(mv_filepath)
if not has_output_path and os.path.isdir(output_path):
shutil.rmtree(output_path)
return out
def _apply_warp_mp(args, **kwargs):
"""Reorder arguments for multiprocessing support."""
moving, output_path = args
return _apply_warp(moving=moving, output_path=output_path, **kwargs)
def _write(vol: MedicalVolume, path: str):
"""Extracted out for multiprocessing purposes."""
NiftiWriter().save(vol, path)
def _read(path: str):
return NiftiReader().load(path)
def _local_exe(exe):
"""Returns path to local executable if exists, else None."""
assert exe in ["elastix", "transformix"]
dosma_path = os.path.join(fc._DOSMA_ELASTIX_FOLDER, exe)
if os.path.isfile(dosma_path):
return os.path.abspath(dosma_path)
def _local_lib_dir():
"""Returns path to directory with local lib file if exists, else None."""
files = [x for x in os.listdir(fc._DOSMA_ELASTIX_FOLDER) if x.startswith("libANNlib")]
if len(files) > 0:
return fc._DOSMA_ELASTIX_FOLDER
def _is_main_process():
py_version = tuple(sys.version_info[0:2])
return (py_version < (3, 8) and mp.current_process().name == "MainProcess") or (
py_version >= (3, 8) and mp.parent_process() is None
)