Diff of /docs/source/models.rst [000000] .. [030aeb]

Switch to unified view

a b/docs/source/models.rst
1
.. _seg_models:
2
3
Models (dosma.models)
4
================================================================================
5
DOSMA currently supports pre-trained deep learning models for segmenting, each described in detail below.
6
Model aliases are string fields used to distinguish/specify particular models in DOSMA (command-line
7
argument :code:`--model`).
8
9
All models are open-sourced under the GNU General Public License v3.0 license.
10
If you use these models, please reference both DOSMA and the original work.
11
12
.. automodule::
13
   dosma.models
14
15
.. autosummary::
16
   :toctree: generated
17
   :nosignatures:
18
19
   dosma.models.OAIUnet2D
20
   dosma.models.IWOAIOAIUnet2D
21
   dosma.models.IWOAIOAIUnet2DNormalized
22
   dosma.models.StanfordQDessUNet2D
23
24
25
OAI 2D U-Net
26
--------------------------------------------------------------------------------
27
A 2D U-Net trained on a downsampled rendition of the OAI iMorphics DESS dataset :cite:`chaudhari2018open`.
28
Inputs are zero-mean, unit standard deviation normalized before segmentation.
29
30
Aliases: :code:`oai-unet2d`, :code:`oai_unet2d`
31
32
33
IWOAI Segmentation Challenge - Team 6 2D U-Net
34
--------------------------------------------------------------------------------
35
This model was submitted by Team 6 to the 2019 International Workshop on Osteoarthritis Segmentation
36
:cite:`desai2020international`.
37
It consists of a 2D U-Net trained on the standardized OAI training dataset.
38
39
Note, inputs are not normalized before segmentation and therefore may be difficult to generalize to
40
DESS scans with different parameters than the OAI.
41
42
Aliases: :code:`iwoai-2019-t6`
43
44
45
IWOAI Segmentation Challenge - Team 6 2D U-Net (Normalized)
46
--------------------------------------------------------------------------------
47
This model is a duplicate of the `iwoai-2019-t6` network (above), but differs in that it uses
48
zero-mean, unit standard deviation normalized inputs. This may make the network more robust to
49
different DESS scan parameters and/or scanner vendors.
50
51
While this model was not submitted to the IWOAI challenge, the architecture, training parameters, and dataset are
52
identical to the Team 6 submission. Performance on the standardized OAI test set was similar to the original network
53
submitted by Team 6 (see table below).
54
55
Aliases: :code:`iwoai-2019-t6-normalized`
56
57
.. table:: Average (standard deviation) performance summary on OAI test set.
58
           Coefficient of variation is calculated as root-mean-square value.
59
60
    =========  ===================  ==================  ====================  ===============
61
    ..         Femoral Cartilage    Tibial Cartilage    Patellar Cartilage    Meniscus
62
    =========  ===================  ==================  ====================  ===============
63
    Dice       0.906 +/- 0.014      0.881 +/- 0.033     0.857 +/- 0.080       0.870 +/- 0.032
64
    VOE        0.171 +/- 0.023      0.211 +/- 0.052     0.242 +/- 0.108       0.229 +/- 0.049
65
    RMS-CV     0.019 +/- 0.011      0.048 +/- 0.029     0.076 +/- 0.061       0.045 +/- 0.025
66
    ASSD (mm)  0.174 +/- 0.020      0.270 +/- 0.166     0.243 +/- 0.106       0.344 +/- 0.111
67
    =========  ===================  ==================  ====================  ===============
68
69
70
SKM-TEA qDESS Knee Segmentation - 2D U-net
71
--------------------------------------------------------------------------------
72
This collection of models are trained on the `SKM-TEA dataset <https://github.com/StanfordMIMI/skm-tea>`_
73
(previously known as the *2021 Stanford qDESS Knee Dataset*).
74
Details of the different models that are trained are shown in the training configurations
75
distributed with the weights.
76
77
78
   *  ``qDESS_2021_v1-rms-unet2d-pc_fc_tc_men_weights.h5``: This is the baseline
79
      RSS model trained on the SKM-TEA v1 dataset.
80
      Though the same hyperparameters were used, this model (trained with Tensorflow/Keras)
81
      performs better than the PyTorch implementation specified in the main paper.
82
      Results are shown in the table below.
83
   *  ``qDESS_2021_v0_0_1-rms-pc_fc_tc_men_weights.h5``: This model is trained on the
84
      2021 Stanford qDESS knee dataset (v0.0.1).
85
   *  ``qDESS_2021_v0_0_1-traintest-rms-pc_fc_tc_men_weights.h5``: This model
86
      is trained on both the train and test set of the 2021 Stanford qDESS knee
87
      dataset (v0.0.1).
88
89
Aliases: :code:`stanford-qdess-2021-unet2d`, :code:`skm-tea-unet2d`
90
91
92
.. table:: Mean +/- standard deviation performance summary on SKM-TEA v1 dataset.
93
94
   =========  ===================  ==================  ====================  ===============
95
   ..         Femoral Cartilage    Tibial Cartilage    Patellar Cartilage    Meniscus
96
   =========  ===================  ==================  ====================  ===============
97
   Dice       0.882 +/- 0.033      0.865 +/- 0.035     0.879 +/- 0.103       0.847 +/- 0.068
98
   VOE        0.210 +/- 0.052      0.237 +/- 0.053     0.205 +/- 0.121       0.261 +/- 0.092
99
   CV         0.051 +/- 0.033      0.053 +/- 0.037     0.049 +/- 0.077       0.052 +/- 0.052
100
   ASSD (mm)  0.265 +/- 0.114      0.354 +/- 0.250     0.477 +/- 0.720       0.485 +/- 0.307
101
   =========  ===================  ==================  ====================  ===============