|
a |
|
b/docs/source/models.rst |
|
|
1 |
.. _seg_models: |
|
|
2 |
|
|
|
3 |
Models (dosma.models) |
|
|
4 |
================================================================================ |
|
|
5 |
DOSMA currently supports pre-trained deep learning models for segmenting, each described in detail below. |
|
|
6 |
Model aliases are string fields used to distinguish/specify particular models in DOSMA (command-line |
|
|
7 |
argument :code:`--model`). |
|
|
8 |
|
|
|
9 |
All models are open-sourced under the GNU General Public License v3.0 license. |
|
|
10 |
If you use these models, please reference both DOSMA and the original work. |
|
|
11 |
|
|
|
12 |
.. automodule:: |
|
|
13 |
dosma.models |
|
|
14 |
|
|
|
15 |
.. autosummary:: |
|
|
16 |
:toctree: generated |
|
|
17 |
:nosignatures: |
|
|
18 |
|
|
|
19 |
dosma.models.OAIUnet2D |
|
|
20 |
dosma.models.IWOAIOAIUnet2D |
|
|
21 |
dosma.models.IWOAIOAIUnet2DNormalized |
|
|
22 |
dosma.models.StanfordQDessUNet2D |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
OAI 2D U-Net |
|
|
26 |
-------------------------------------------------------------------------------- |
|
|
27 |
A 2D U-Net trained on a downsampled rendition of the OAI iMorphics DESS dataset :cite:`chaudhari2018open`. |
|
|
28 |
Inputs are zero-mean, unit standard deviation normalized before segmentation. |
|
|
29 |
|
|
|
30 |
Aliases: :code:`oai-unet2d`, :code:`oai_unet2d` |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
IWOAI Segmentation Challenge - Team 6 2D U-Net |
|
|
34 |
-------------------------------------------------------------------------------- |
|
|
35 |
This model was submitted by Team 6 to the 2019 International Workshop on Osteoarthritis Segmentation |
|
|
36 |
:cite:`desai2020international`. |
|
|
37 |
It consists of a 2D U-Net trained on the standardized OAI training dataset. |
|
|
38 |
|
|
|
39 |
Note, inputs are not normalized before segmentation and therefore may be difficult to generalize to |
|
|
40 |
DESS scans with different parameters than the OAI. |
|
|
41 |
|
|
|
42 |
Aliases: :code:`iwoai-2019-t6` |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
IWOAI Segmentation Challenge - Team 6 2D U-Net (Normalized) |
|
|
46 |
-------------------------------------------------------------------------------- |
|
|
47 |
This model is a duplicate of the `iwoai-2019-t6` network (above), but differs in that it uses |
|
|
48 |
zero-mean, unit standard deviation normalized inputs. This may make the network more robust to |
|
|
49 |
different DESS scan parameters and/or scanner vendors. |
|
|
50 |
|
|
|
51 |
While this model was not submitted to the IWOAI challenge, the architecture, training parameters, and dataset are |
|
|
52 |
identical to the Team 6 submission. Performance on the standardized OAI test set was similar to the original network |
|
|
53 |
submitted by Team 6 (see table below). |
|
|
54 |
|
|
|
55 |
Aliases: :code:`iwoai-2019-t6-normalized` |
|
|
56 |
|
|
|
57 |
.. table:: Average (standard deviation) performance summary on OAI test set. |
|
|
58 |
Coefficient of variation is calculated as root-mean-square value. |
|
|
59 |
|
|
|
60 |
========= =================== ================== ==================== =============== |
|
|
61 |
.. Femoral Cartilage Tibial Cartilage Patellar Cartilage Meniscus |
|
|
62 |
========= =================== ================== ==================== =============== |
|
|
63 |
Dice 0.906 +/- 0.014 0.881 +/- 0.033 0.857 +/- 0.080 0.870 +/- 0.032 |
|
|
64 |
VOE 0.171 +/- 0.023 0.211 +/- 0.052 0.242 +/- 0.108 0.229 +/- 0.049 |
|
|
65 |
RMS-CV 0.019 +/- 0.011 0.048 +/- 0.029 0.076 +/- 0.061 0.045 +/- 0.025 |
|
|
66 |
ASSD (mm) 0.174 +/- 0.020 0.270 +/- 0.166 0.243 +/- 0.106 0.344 +/- 0.111 |
|
|
67 |
========= =================== ================== ==================== =============== |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
SKM-TEA qDESS Knee Segmentation - 2D U-net |
|
|
71 |
-------------------------------------------------------------------------------- |
|
|
72 |
This collection of models are trained on the `SKM-TEA dataset <https://github.com/StanfordMIMI/skm-tea>`_ |
|
|
73 |
(previously known as the *2021 Stanford qDESS Knee Dataset*). |
|
|
74 |
Details of the different models that are trained are shown in the training configurations |
|
|
75 |
distributed with the weights. |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
* ``qDESS_2021_v1-rms-unet2d-pc_fc_tc_men_weights.h5``: This is the baseline |
|
|
79 |
RSS model trained on the SKM-TEA v1 dataset. |
|
|
80 |
Though the same hyperparameters were used, this model (trained with Tensorflow/Keras) |
|
|
81 |
performs better than the PyTorch implementation specified in the main paper. |
|
|
82 |
Results are shown in the table below. |
|
|
83 |
* ``qDESS_2021_v0_0_1-rms-pc_fc_tc_men_weights.h5``: This model is trained on the |
|
|
84 |
2021 Stanford qDESS knee dataset (v0.0.1). |
|
|
85 |
* ``qDESS_2021_v0_0_1-traintest-rms-pc_fc_tc_men_weights.h5``: This model |
|
|
86 |
is trained on both the train and test set of the 2021 Stanford qDESS knee |
|
|
87 |
dataset (v0.0.1). |
|
|
88 |
|
|
|
89 |
Aliases: :code:`stanford-qdess-2021-unet2d`, :code:`skm-tea-unet2d` |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
.. table:: Mean +/- standard deviation performance summary on SKM-TEA v1 dataset. |
|
|
93 |
|
|
|
94 |
========= =================== ================== ==================== =============== |
|
|
95 |
.. Femoral Cartilage Tibial Cartilage Patellar Cartilage Meniscus |
|
|
96 |
========= =================== ================== ==================== =============== |
|
|
97 |
Dice 0.882 +/- 0.033 0.865 +/- 0.035 0.879 +/- 0.103 0.847 +/- 0.068 |
|
|
98 |
VOE 0.210 +/- 0.052 0.237 +/- 0.053 0.205 +/- 0.121 0.261 +/- 0.092 |
|
|
99 |
CV 0.051 +/- 0.033 0.053 +/- 0.037 0.049 +/- 0.077 0.052 +/- 0.052 |
|
|
100 |
ASSD (mm) 0.265 +/- 0.114 0.354 +/- 0.250 0.477 +/- 0.720 0.485 +/- 0.307 |
|
|
101 |
========= =================== ================== ==================== =============== |