--- a +++ b/docs/source/models.rst @@ -0,0 +1,101 @@ +.. _seg_models: + +Models (dosma.models) +================================================================================ +DOSMA currently supports pre-trained deep learning models for segmenting, each described in detail below. +Model aliases are string fields used to distinguish/specify particular models in DOSMA (command-line +argument :code:`--model`). + +All models are open-sourced under the GNU General Public License v3.0 license. +If you use these models, please reference both DOSMA and the original work. + +.. automodule:: + dosma.models + +.. autosummary:: + :toctree: generated + :nosignatures: + + dosma.models.OAIUnet2D + dosma.models.IWOAIOAIUnet2D + dosma.models.IWOAIOAIUnet2DNormalized + dosma.models.StanfordQDessUNet2D + + +OAI 2D U-Net +-------------------------------------------------------------------------------- +A 2D U-Net trained on a downsampled rendition of the OAI iMorphics DESS dataset :cite:`chaudhari2018open`. +Inputs are zero-mean, unit standard deviation normalized before segmentation. + +Aliases: :code:`oai-unet2d`, :code:`oai_unet2d` + + +IWOAI Segmentation Challenge - Team 6 2D U-Net +-------------------------------------------------------------------------------- +This model was submitted by Team 6 to the 2019 International Workshop on Osteoarthritis Segmentation +:cite:`desai2020international`. +It consists of a 2D U-Net trained on the standardized OAI training dataset. + +Note, inputs are not normalized before segmentation and therefore may be difficult to generalize to +DESS scans with different parameters than the OAI. + +Aliases: :code:`iwoai-2019-t6` + + +IWOAI Segmentation Challenge - Team 6 2D U-Net (Normalized) +-------------------------------------------------------------------------------- +This model is a duplicate of the `iwoai-2019-t6` network (above), but differs in that it uses +zero-mean, unit standard deviation normalized inputs. This may make the network more robust to +different DESS scan parameters and/or scanner vendors. + +While this model was not submitted to the IWOAI challenge, the architecture, training parameters, and dataset are +identical to the Team 6 submission. Performance on the standardized OAI test set was similar to the original network +submitted by Team 6 (see table below). + +Aliases: :code:`iwoai-2019-t6-normalized` + +.. table:: Average (standard deviation) performance summary on OAI test set. + Coefficient of variation is calculated as root-mean-square value. + + ========= =================== ================== ==================== =============== + .. Femoral Cartilage Tibial Cartilage Patellar Cartilage Meniscus + ========= =================== ================== ==================== =============== + Dice 0.906 +/- 0.014 0.881 +/- 0.033 0.857 +/- 0.080 0.870 +/- 0.032 + VOE 0.171 +/- 0.023 0.211 +/- 0.052 0.242 +/- 0.108 0.229 +/- 0.049 + RMS-CV 0.019 +/- 0.011 0.048 +/- 0.029 0.076 +/- 0.061 0.045 +/- 0.025 + ASSD (mm) 0.174 +/- 0.020 0.270 +/- 0.166 0.243 +/- 0.106 0.344 +/- 0.111 + ========= =================== ================== ==================== =============== + + +SKM-TEA qDESS Knee Segmentation - 2D U-net +-------------------------------------------------------------------------------- +This collection of models are trained on the `SKM-TEA dataset <https://github.com/StanfordMIMI/skm-tea>`_ +(previously known as the *2021 Stanford qDESS Knee Dataset*). +Details of the different models that are trained are shown in the training configurations +distributed with the weights. + + + * ``qDESS_2021_v1-rms-unet2d-pc_fc_tc_men_weights.h5``: This is the baseline + RSS model trained on the SKM-TEA v1 dataset. + Though the same hyperparameters were used, this model (trained with Tensorflow/Keras) + performs better than the PyTorch implementation specified in the main paper. + Results are shown in the table below. + * ``qDESS_2021_v0_0_1-rms-pc_fc_tc_men_weights.h5``: This model is trained on the + 2021 Stanford qDESS knee dataset (v0.0.1). + * ``qDESS_2021_v0_0_1-traintest-rms-pc_fc_tc_men_weights.h5``: This model + is trained on both the train and test set of the 2021 Stanford qDESS knee + dataset (v0.0.1). + +Aliases: :code:`stanford-qdess-2021-unet2d`, :code:`skm-tea-unet2d` + + +.. table:: Mean +/- standard deviation performance summary on SKM-TEA v1 dataset. + + ========= =================== ================== ==================== =============== + .. Femoral Cartilage Tibial Cartilage Patellar Cartilage Meniscus + ========= =================== ================== ==================== =============== + Dice 0.882 +/- 0.033 0.865 +/- 0.035 0.879 +/- 0.103 0.847 +/- 0.068 + VOE 0.210 +/- 0.052 0.237 +/- 0.053 0.205 +/- 0.121 0.261 +/- 0.092 + CV 0.051 +/- 0.033 0.053 +/- 0.037 0.049 +/- 0.077 0.052 +/- 0.052 + ASSD (mm) 0.265 +/- 0.114 0.354 +/- 0.250 0.477 +/- 0.720 0.485 +/- 0.307 + ========= =================== ================== ==================== =============== \ No newline at end of file