270 lines (269 with data), 7.1 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"id": "748b57ba-2925-414f-bed0-15f0483ad8a0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'Videos Test'\t\t labeled_dataset_drive.csv\n",
"'Videos Test.zip'\t single_extracted_landmarks.csv\n",
" dataset_cluttered.zip\t single_extracted_landmarks_ambiguous.csv\n",
" dataset_photos\t\t single_extracted_landmarks_bad.csv\n",
" dataset_videos\t\t single_extracted_landmarks_inclass.csv\n",
" extracted_landmarks.csv single_extracted_landmarks_inclass_front.csv\n",
" extracted_landmarks_test.csv videos\n",
" labeled_dataset.csv\n"
]
}
],
"source": [
"!ls ../assets"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c7b5e954-4b22-4d55-8f33-235e427fe4ea",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "03546cdf-4be5-4e52-8032-61cbf3e71992",
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('../assets/labeled_dataset.csv')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "d44d30ae-9231-466c-ad0c-b7c062c46566",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>video</th>\n",
" <th>group</th>\n",
" <th>frame</th>\n",
" <th>landmarks</th>\n",
" <th>Label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>video_15.mp4</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>[ 334.75 178.55 0.98386 339....</td>\n",
" <td>bad</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>video_15.mp4</td>\n",
" <td>1</td>\n",
" <td>11</td>\n",
" <td>[ 329.95 181.47 0.99063 334....</td>\n",
" <td>bad</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>video_15.mp4</td>\n",
" <td>1</td>\n",
" <td>17</td>\n",
" <td>[ 329.7 182.92 0.99079 334...</td>\n",
" <td>bad</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>video_15.mp4</td>\n",
" <td>1</td>\n",
" <td>23</td>\n",
" <td>[ 329.32 187.55 0.98055 334....</td>\n",
" <td>bad</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>video_15.mp4</td>\n",
" <td>1</td>\n",
" <td>29</td>\n",
" <td>[ 331.31 194.96 0.985 335....</td>\n",
" <td>bad</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" video group frame \\\n",
"0 video_15.mp4 1 5 \n",
"1 video_15.mp4 1 11 \n",
"2 video_15.mp4 1 17 \n",
"3 video_15.mp4 1 23 \n",
"4 video_15.mp4 1 29 \n",
"\n",
" landmarks Label \n",
"0 [ 334.75 178.55 0.98386 339.... bad \n",
"1 [ 329.95 181.47 0.99063 334.... bad \n",
"2 [ 329.7 182.92 0.99079 334... bad \n",
"3 [ 329.32 187.55 0.98055 334.... bad \n",
"4 [ 331.31 194.96 0.985 335.... bad "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "cca6bb1c-9bcf-4aec-9603-5825aac9ea29",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f7117be5010>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(['video', 'group'])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "810fa636-8e7f-4b20-8853-085fad815eba",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Label\n",
"good 54.928407\n",
"bad 45.071593\n",
"Name: proportion, dtype: float64"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['Label'].value_counts(normalize=True)*100"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "48bfad57-b974-4b3c-ae6f-ed655cca9d57",
"metadata": {},
"outputs": [],
"source": [
"video_group_counts = data.groupby(['video', 'group']).size().reset_index(name='count')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d94e6709-d3e2-4e3f-b7c7-7b21df17084c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count\n",
"10 0.900606\n",
"5 0.012727\n",
"7 0.012727\n",
"3 0.012121\n",
"2 0.012121\n",
"4 0.011515\n",
"1 0.010909\n",
"6 0.010303\n",
"9 0.008485\n",
"8 0.008485\n",
"Name: proportion, dtype: float64"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"video_group_counts['count'].value_counts(normalize=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5fc30d0-412b-4de9-95b9-d7761e226989",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}