[a5e8ec]: / autoposture.py

Download this file

251 lines (199 with data), 11.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import argparse
import os
import sys
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import requests
from internal.prediction_client import predict_http_request
yolov7_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'vendor/yolov7')
sys.path.append(yolov7_path)
from models.experimental import attempt_load
import torch
from torchvision import transforms
from utils.datasets import letterbox
from utils.general import non_max_suppression_kpt, strip_optimizer, xyxy2xywh
from utils.plots import colors, output_to_keypoint, plot_one_box_kpt, plot_skeleton_kpts
from utils.torch_utils import select_device
# from tts.tttest import generate_audios, play_audio
import asyncio
import threading
import websockets
import json
POSEWEIGHTS = 'src_models/yolov7-w6-pose.pt'
@torch.no_grad()
def run(source, device, separation, length, multiple):
# global ap_model
separation = int(separation)
length = int(length)
frame_count = 0 #count no of frames
total_fps = 0 #count total fps
device = select_device(opt.device) #select device
model = attempt_load(POSEWEIGHTS, map_location=device) #Load model
_ = model.eval()
names = model.module.names if hasattr(model, 'module') else model.names # get class names
if source.isnumeric() :
cap = cv2.VideoCapture(int(source)) #pass video to videocapture object
else:
cap = cv2.VideoCapture(source) #pass video to videocapture object
if (cap.isOpened() == False): #check if videocapture not opened
print('Error while trying to read video. Please check path again')
raise SystemExit()
else:
frame_width = int(cap.get(3)) #get video frame width
# logic for multiple persons
people = {}
next_object_id = 0
# logic for single persons
current_sequence = []
current_score = 0
current_status = 'good'
previous_status = "None"
longevity = 0 # frames spent in the current status
# generate_audios("good"); generate_audios("bad")
# bad_audio_thread = threading.Thread(target=play_audio, args=["bad"])
empty = False
while(cap.isOpened):
ret, frame = cap.read()
if ret:
orig_image = frame
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
image = letterbox(image, (frame_width), stride=64, auto=True)[0]
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()]))
image = image.to(device)
image = image.float()
with torch.no_grad(): #get predictions
output_data, _ = model(image)
output_data = non_max_suppression_kpt(output_data, #Apply non max suppression
0.25, # Conf. Threshold.
0.65, # IoU Threshold.
nc=model.yaml['nc'], # Number of classes.
nkpt=model.yaml['nkpt'], # Number of keypoints.
kpt_label=True)
output = output_to_keypoint(output_data)
if multiple:
if len(output) == 0:
if not empty:
print("Wiping data, waiting for objects to appear in frame")
people = {}
next_object_id = 0
empty = True
else:
empty = False
else:
if output.shape[0] > 0:
if frame_count % separation == 0:
landmarks = output[0, 7:].T
current_sequence += [landmarks[:-1]]
if len(current_sequence) == 10:
current_sequence = np.array([current_sequence])
payload = {'array': current_sequence.tolist() }
response = predict_http_request(payload)
current_score = response['score']
previous_status = current_status
current_status = response['status']
# score, status = asyncio.run(predict_request(payload))
# if status == 'server-error':
# print('Server error or server not launched')
# print(score, status)
current_sequence = []
# if current_status == previous_status:
# if not bad_audio_thread.is_alive() and longevity < 30:
# longevity += 1
# else:
# longevity = 0
# else:
# longevity = 0
# if longevity == 30 and current_status == "bad":
# try:
# if not bad_audio_thread.is_alive():
# bad_audio_thread = threading.Thread(target=play_audio("bad"))
# bad_audio_thread.start()
# except Exception as e:
# pass
im0 = image[0].permute(1, 2, 0) * 255 # Change format [b, c, h, w] to [h, w, c] for displaying the image.
im0 = im0.cpu().numpy().astype(np.uint8)
im0 = cv2.cvtColor(im0, cv2.COLOR_RGB2BGR) #reshape image format to (BGR)
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
for i, pose in enumerate(output_data): # detections per image
if empty: break
if len(output_data) == 0:
continue
for det_index, (*xyxy, conf, cls) in enumerate(reversed(pose[:,:6])): #loop over poses for drawing on frame
c = int(cls) # integer class
kpts = pose[det_index, 6:]
if multiple:
# get the centroid (cx, cy) for the current rectangle
rect = [tensor.cpu().numpy() for tensor in xyxy]
cx, cy = (rect[0] + rect[2]) / 2, (rect[1] + rect[3]) / 2
matched_object_id = None
# iterating through known people
for object_id, data in people.items():
distance = np.sqrt((cx - data['centroid'][0]) ** 2 + (cy - data['centroid'][1]) ** 2)
print(distance)
if distance < 300: # Adjust the threshold as needed
matched_object_id = object_id
break
if matched_object_id is None:
matched_object_id = next_object_id
next_object_id += 1
if matched_object_id not in people:
people[matched_object_id] = {'centroid': (cx, cy), 'yoloid': det_index, 'status': 'good', 'score': 0, 'sequence' : []}
else:
people[matched_object_id]['centroid'] = (cx, cy)
people[matched_object_id]['yoloid'] = det_index
obj = people[matched_object_id]
label = f"ID #{obj['yoloid']} Score: {obj['score']:.2f}"
plot_one_box_kpt(xyxy, im0, label=label, color=colors(c, True),
line_thickness=3, kpt_label=True, kpts=kpts, steps=3,
cmap=people[matched_object_id]['status'])
else:
label = f"ID #{0} Score: {current_score:.2f}"
plot_one_box_kpt(xyxy, im0, label=label, color=colors(c, True),
line_thickness=3,kpt_label=True, kpts=kpts, steps=3,
cmap=current_status)
if frame_count % separation == 0 and multiple:
for _, data in people.items():
if data['yoloid'] < output.shape[0]:
yoloid = data['yoloid']
landmarks = output[yoloid, 7:].T
data['sequence'] += [landmarks[:-1]]
if len(data['sequence']) == length:
payload = {'array': np.array([data['sequence']]).tolist()}
response = predict_http_request(payload)
data['score'] = response['score']
data['status'] = response['status']
data['sequence'] = []
# print(f"{data['yoloid']} -> {data['status']}", end=' ')
else:
data['sequence'] = []
statuses = [(people[p]['yoloid'], people[p]['status']) for p in people]
# for id, status in statuses:
# print(f'{id}: {status}', end='\t')
# print()
frame_count += 1
cv2.imshow("YOLOv7 Pose Estimation Demo", im0)
key = cv2.waitKey(1) & 0xFF # Wait for 1 millisecond and get the pressed key
if key == ord('q'):
cv2.destroyAllWindows() # Close the window if 'q' is pressed
break
else:
break
cap.release()
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source', type=str, default='video/0', help='video/0 for webcam') #video source
parser.add_argument('-d', '--device', type=str, default='cpu', help='cpu/0,1,2,3(gpu)') #device arugments
parser.add_argument('-sep', '--separation', type=str, default='1', help='Each how many frames the prediction will be executed. Defaults to 1, increase for performance') #separation arugments
parser.add_argument('-l', '--length', type=str, default='10', help='Defines the length of the sequence. Defaults to 10, decrease for performance') #separation arugments
parser.add_argument('-m', '--multiple', default=False, action='store_true', help='Enable multiple-person detection') # Boolean for multiple person detection
opt = parser.parse_args()
return opt
def main(opt):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
strip_optimizer(opt.device, POSEWEIGHTS)
main(opt)