--- a
+++ b/landmark_extraction/utils/metrics.py
@@ -0,0 +1,223 @@
+# Model validation metrics
+
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from . import general
+
+
+def fitness(x):
+    # Model fitness as a weighted combination of metrics
+    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+    return (x[:, :4] * w).sum(1)
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
+    """ Compute the average precision, given the recall and precision curves.
+    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+    # Arguments
+        tp:  True positives (nparray, nx1 or nx10).
+        conf:  Objectness value from 0-1 (nparray).
+        pred_cls:  Predicted object classes (nparray).
+        target_cls:  True object classes (nparray).
+        plot:  Plot precision-recall curve at mAP@0.5
+        save_dir:  Plot save directory
+    # Returns
+        The average precision as computed in py-faster-rcnn.
+    """
+
+    # Sort by objectness
+    i = np.argsort(-conf)
+    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+    # Find unique classes
+    unique_classes = np.unique(target_cls)
+    nc = unique_classes.shape[0]  # number of classes, number of detections
+
+    # Create Precision-Recall curve and compute AP for each class
+    px, py = np.linspace(0, 1, 1000), []  # for plotting
+    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+    for ci, c in enumerate(unique_classes):
+        i = pred_cls == c
+        n_l = (target_cls == c).sum()  # number of labels
+        n_p = i.sum()  # number of predictions
+
+        if n_p == 0 or n_l == 0:
+            continue
+        else:
+            # Accumulate FPs and TPs
+            fpc = (1 - tp[i]).cumsum(0)
+            tpc = tp[i].cumsum(0)
+
+            # Recall
+            recall = tpc / (n_l + 1e-16)  # recall curve
+            r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
+
+            # Precision
+            precision = tpc / (tpc + fpc)  # precision curve
+            p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
+
+            # AP from recall-precision curve
+            for j in range(tp.shape[1]):
+                ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+                if plot and j == 0:
+                    py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
+
+    # Compute F1 (harmonic mean of precision and recall)
+    f1 = 2 * p * r / (p + r + 1e-16)
+    if plot:
+        plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
+        plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
+        plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
+        plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
+
+    i = f1.mean(0).argmax()  # max F1 index
+    return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
+
+
+def compute_ap(recall, precision):
+    """ Compute the average precision, given the recall and precision curves
+    # Arguments
+        recall:    The recall curve (list)
+        precision: The precision curve (list)
+    # Returns
+        Average precision, precision curve, recall curve
+    """
+
+    # Append sentinel values to beginning and end
+    mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
+    mpre = np.concatenate(([1.], precision, [0.]))
+
+    # Compute the precision envelope
+    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+    # Integrate area under curve
+    method = 'interp'  # methods: 'continuous', 'interp'
+    if method == 'interp':
+        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
+        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
+    else:  # 'continuous'
+        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
+        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve
+
+    return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+    def __init__(self, nc, conf=0.25, iou_thres=0.45):
+        self.matrix = np.zeros((nc + 1, nc + 1))
+        self.nc = nc  # number of classes
+        self.conf = conf
+        self.iou_thres = iou_thres
+
+    def process_batch(self, detections, labels):
+        """
+        Return intersection-over-union (Jaccard index) of boxes.
+        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+        Arguments:
+            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+            labels (Array[M, 5]), class, x1, y1, x2, y2
+        Returns:
+            None, updates confusion matrix accordingly
+        """
+        detections = detections[detections[:, 4] > self.conf]
+        gt_classes = labels[:, 0].int()
+        detection_classes = detections[:, 5].int()
+        iou = general.box_iou(labels[:, 1:], detections[:, :4])
+
+        x = torch.where(iou > self.iou_thres)
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        else:
+            matches = np.zeros((0, 3))
+
+        n = matches.shape[0] > 0
+        m0, m1, _ = matches.transpose().astype(np.int16)
+        for i, gc in enumerate(gt_classes):
+            j = m0 == i
+            if n and sum(j) == 1:
+                self.matrix[gc, detection_classes[m1[j]]] += 1  # correct
+            else:
+                self.matrix[self.nc, gc] += 1  # background FP
+
+        if n:
+            for i, dc in enumerate(detection_classes):
+                if not any(m1 == i):
+                    self.matrix[dc, self.nc] += 1  # background FN
+
+    def matrix(self):
+        return self.matrix
+
+    def plot(self, save_dir='', names=()):
+        try:
+            import seaborn as sn
+
+            array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6)  # normalize
+            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)
+
+            fig = plt.figure(figsize=(12, 9), tight_layout=True)
+            sn.set(font_scale=1.0 if self.nc < 50 else 0.8)  # for label size
+            labels = (0 < len(names) < 99) and len(names) == self.nc  # apply names to ticklabels
+            sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
+                       xticklabels=names + ['background FP'] if labels else "auto",
+                       yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
+            fig.axes[0].set_xlabel('True')
+            fig.axes[0].set_ylabel('Predicted')
+            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+        except Exception as e:
+            pass
+
+    def print(self):
+        for i in range(self.nc + 1):
+            print(' '.join(map(str, self.matrix[i])))
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
+    # Precision-recall curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+    py = np.stack(py, axis=1)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py.T):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
+    else:
+        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)
+
+    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+    ax.set_xlabel('Recall')
+    ax.set_ylabel('Precision')
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    fig.savefig(Path(save_dir), dpi=250)
+
+
+def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
+    # Metric-confidence curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
+    else:
+        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)
+
+    y = py.mean(0)
+    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+    ax.set_xlabel(xlabel)
+    ax.set_ylabel(ylabel)
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    fig.savefig(Path(save_dir), dpi=250)