--- a +++ b/landmark_extraction/utils/loss.py @@ -0,0 +1,1697 @@ +# Loss functions + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from utils.general import bbox_iou, bbox_alpha_iou, box_iou, box_giou, box_diou, box_ciou, xywh2xyxy +from utils.torch_utils import is_parallel + + +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 + # return positive, negative label smoothing BCE targets + return 1.0 - 0.5 * eps, 0.5 * eps + + +class BCEBlurWithLogitsLoss(nn.Module): + # BCEwithLogitLoss() with reduced missing label effects. + def __init__(self, alpha=0.05): + super(BCEBlurWithLogitsLoss, self).__init__() + self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() + self.alpha = alpha + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + pred = torch.sigmoid(pred) # prob from logits + dx = pred - true # reduce only missing label effects + # dx = (pred - true).abs() # reduce missing label and false label effects + alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) + loss *= alpha_factor + return loss.mean() + + +class SigmoidBin(nn.Module): + stride = None # strides computed during build + export = False # onnx export + + def __init__(self, bin_count=10, min=0.0, max=1.0, reg_scale = 2.0, use_loss_regression=True, use_fw_regression=True, BCE_weight=1.0, smooth_eps=0.0): + super(SigmoidBin, self).__init__() + + self.bin_count = bin_count + self.length = bin_count + 1 + self.min = min + self.max = max + self.scale = float(max - min) + self.shift = self.scale / 2.0 + + self.use_loss_regression = use_loss_regression + self.use_fw_regression = use_fw_regression + self.reg_scale = reg_scale + self.BCE_weight = BCE_weight + + start = min + (self.scale/2.0) / self.bin_count + end = max - (self.scale/2.0) / self.bin_count + step = self.scale / self.bin_count + self.step = step + #print(f" start = {start}, end = {end}, step = {step} ") + + bins = torch.range(start, end + 0.0001, step).float() + self.register_buffer('bins', bins) + + + self.cp = 1.0 - 0.5 * smooth_eps + self.cn = 0.5 * smooth_eps + + self.BCEbins = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([BCE_weight])) + self.MSELoss = nn.MSELoss() + + def get_length(self): + return self.length + + def forward(self, pred): + assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length) + + pred_reg = (pred[..., 0] * self.reg_scale - self.reg_scale/2.0) * self.step + pred_bin = pred[..., 1:(1+self.bin_count)] + + _, bin_idx = torch.max(pred_bin, dim=-1) + bin_bias = self.bins[bin_idx] + + if self.use_fw_regression: + result = pred_reg + bin_bias + else: + result = bin_bias + result = result.clamp(min=self.min, max=self.max) + + return result + + + def training_loss(self, pred, target): + assert pred.shape[-1] == self.length, 'pred.shape[-1]=%d is not equal to self.length=%d' % (pred.shape[-1], self.length) + assert pred.shape[0] == target.shape[0], 'pred.shape=%d is not equal to the target.shape=%d' % (pred.shape[0], target.shape[0]) + device = pred.device + + pred_reg = (pred[..., 0].sigmoid() * self.reg_scale - self.reg_scale/2.0) * self.step + pred_bin = pred[..., 1:(1+self.bin_count)] + + diff_bin_target = torch.abs(target[..., None] - self.bins) + _, bin_idx = torch.min(diff_bin_target, dim=-1) + + bin_bias = self.bins[bin_idx] + bin_bias.requires_grad = False + result = pred_reg + bin_bias + + target_bins = torch.full_like(pred_bin, self.cn, device=device) # targets + n = pred.shape[0] + target_bins[range(n), bin_idx] = self.cp + + loss_bin = self.BCEbins(pred_bin, target_bins) # BCE + + if self.use_loss_regression: + loss_regression = self.MSELoss(result, target) # MSE + loss = loss_bin + loss_regression + else: + loss = loss_bin + + out_result = result.clamp(min=self.min, max=self.max) + + return loss, out_result + + +class FocalLoss(nn.Module): + # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super(FocalLoss, self).__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + # p_t = torch.exp(-loss) + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability + + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py + pred_prob = torch.sigmoid(pred) # prob from logits + p_t = true * pred_prob + (1 - true) * (1 - pred_prob) + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = (1.0 - p_t) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class QFocalLoss(nn.Module): + # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super(QFocalLoss, self).__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + + pred_prob = torch.sigmoid(pred) # prob from logits + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = torch.abs(true - pred_prob) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + +class RankSort(torch.autograd.Function): + @staticmethod + def forward(ctx, logits, targets, delta_RS=0.50, eps=1e-10): + + classification_grads=torch.zeros(logits.shape).cuda() + + #Filter fg logits + fg_labels = (targets > 0.) + fg_logits = logits[fg_labels] + fg_targets = targets[fg_labels] + fg_num = len(fg_logits) + + #Do not use bg with scores less than minimum fg logit + #since changing its score does not have an effect on precision + threshold_logit = torch.min(fg_logits)-delta_RS + relevant_bg_labels=((targets==0) & (logits>=threshold_logit)) + + relevant_bg_logits = logits[relevant_bg_labels] + relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() + sorting_error=torch.zeros(fg_num).cuda() + ranking_error=torch.zeros(fg_num).cuda() + fg_grad=torch.zeros(fg_num).cuda() + + #sort the fg logits + order=torch.argsort(fg_logits) + #Loops over each positive following the order + for ii in order: + # Difference Transforms (x_ij) + fg_relations=fg_logits-fg_logits[ii] + bg_relations=relevant_bg_logits-fg_logits[ii] + + if delta_RS > 0: + fg_relations=torch.clamp(fg_relations/(2*delta_RS)+0.5,min=0,max=1) + bg_relations=torch.clamp(bg_relations/(2*delta_RS)+0.5,min=0,max=1) + else: + fg_relations = (fg_relations >= 0).float() + bg_relations = (bg_relations >= 0).float() + + # Rank of ii among pos and false positive number (bg with larger scores) + rank_pos=torch.sum(fg_relations) + FP_num=torch.sum(bg_relations) + + # Rank of ii among all examples + rank=rank_pos+FP_num + + # Ranking error of example ii. target_ranking_error is always 0. (Eq. 7) + ranking_error[ii]=FP_num/rank + + # Current sorting error of example ii. (Eq. 7) + current_sorting_error = torch.sum(fg_relations*(1-fg_targets))/rank_pos + + #Find examples in the target sorted order for example ii + iou_relations = (fg_targets >= fg_targets[ii]) + target_sorted_order = iou_relations * fg_relations + + #The rank of ii among positives in sorted order + rank_pos_target = torch.sum(target_sorted_order) + + #Compute target sorting error. (Eq. 8) + #Since target ranking error is 0, this is also total target error + target_sorting_error= torch.sum(target_sorted_order*(1-fg_targets))/rank_pos_target + + #Compute sorting error on example ii + sorting_error[ii] = current_sorting_error - target_sorting_error + + #Identity Update for Ranking Error + if FP_num > eps: + #For ii the update is the ranking error + fg_grad[ii] -= ranking_error[ii] + #For negatives, distribute error via ranking pmf (i.e. bg_relations/FP_num) + relevant_bg_grad += (bg_relations*(ranking_error[ii]/FP_num)) + + #Find the positives that are misranked (the cause of the error) + #These are the ones with smaller IoU but larger logits + missorted_examples = (~ iou_relations) * fg_relations + + #Denominotor of sorting pmf + sorting_pmf_denom = torch.sum(missorted_examples) + + #Identity Update for Sorting Error + if sorting_pmf_denom > eps: + #For ii the update is the sorting error + fg_grad[ii] -= sorting_error[ii] + #For positives, distribute error via sorting pmf (i.e. missorted_examples/sorting_pmf_denom) + fg_grad += (missorted_examples*(sorting_error[ii]/sorting_pmf_denom)) + + #Normalize gradients by number of positives + classification_grads[fg_labels]= (fg_grad/fg_num) + classification_grads[relevant_bg_labels]= (relevant_bg_grad/fg_num) + + ctx.save_for_backward(classification_grads) + + return ranking_error.mean(), sorting_error.mean() + + @staticmethod + def backward(ctx, out_grad1, out_grad2): + g1, =ctx.saved_tensors + return g1*out_grad1, None, None, None + +class aLRPLoss(torch.autograd.Function): + @staticmethod + def forward(ctx, logits, targets, regression_losses, delta=1., eps=1e-5): + classification_grads=torch.zeros(logits.shape).cuda() + + #Filter fg logits + fg_labels = (targets == 1) + fg_logits = logits[fg_labels] + fg_num = len(fg_logits) + + #Do not use bg with scores less than minimum fg logit + #since changing its score does not have an effect on precision + threshold_logit = torch.min(fg_logits)-delta + + #Get valid bg logits + relevant_bg_labels=((targets==0)&(logits>=threshold_logit)) + relevant_bg_logits=logits[relevant_bg_labels] + relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() + rank=torch.zeros(fg_num).cuda() + prec=torch.zeros(fg_num).cuda() + fg_grad=torch.zeros(fg_num).cuda() + + max_prec=0 + #sort the fg logits + order=torch.argsort(fg_logits) + #Loops over each positive following the order + for ii in order: + #x_ij s as score differences with fgs + fg_relations=fg_logits-fg_logits[ii] + #Apply piecewise linear function and determine relations with fgs + fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1) + #Discard i=j in the summation in rank_pos + fg_relations[ii]=0 + + #x_ij s as score differences with bgs + bg_relations=relevant_bg_logits-fg_logits[ii] + #Apply piecewise linear function and determine relations with bgs + bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1) + + #Compute the rank of the example within fgs and number of bgs with larger scores + rank_pos=1+torch.sum(fg_relations) + FP_num=torch.sum(bg_relations) + #Store the total since it is normalizer also for aLRP Regression error + rank[ii]=rank_pos+FP_num + + #Compute precision for this example to compute classification loss + prec[ii]=rank_pos/rank[ii] + #For stability, set eps to a infinitesmall value (e.g. 1e-6), then compute grads + if FP_num > eps: + fg_grad[ii] = -(torch.sum(fg_relations*regression_losses)+FP_num)/rank[ii] + relevant_bg_grad += (bg_relations*(-fg_grad[ii]/FP_num)) + + #aLRP with grad formulation fg gradient + classification_grads[fg_labels]= fg_grad + #aLRP with grad formulation bg gradient + classification_grads[relevant_bg_labels]= relevant_bg_grad + + classification_grads /= (fg_num) + + cls_loss=1-prec.mean() + ctx.save_for_backward(classification_grads) + + return cls_loss, rank, order + + @staticmethod + def backward(ctx, out_grad1, out_grad2, out_grad3): + g1, =ctx.saved_tensors + return g1*out_grad1, None, None, None, None + + +class APLoss(torch.autograd.Function): + @staticmethod + def forward(ctx, logits, targets, delta=1.): + classification_grads=torch.zeros(logits.shape).cuda() + + #Filter fg logits + fg_labels = (targets == 1) + fg_logits = logits[fg_labels] + fg_num = len(fg_logits) + + #Do not use bg with scores less than minimum fg logit + #since changing its score does not have an effect on precision + threshold_logit = torch.min(fg_logits)-delta + + #Get valid bg logits + relevant_bg_labels=((targets==0)&(logits>=threshold_logit)) + relevant_bg_logits=logits[relevant_bg_labels] + relevant_bg_grad=torch.zeros(len(relevant_bg_logits)).cuda() + rank=torch.zeros(fg_num).cuda() + prec=torch.zeros(fg_num).cuda() + fg_grad=torch.zeros(fg_num).cuda() + + max_prec=0 + #sort the fg logits + order=torch.argsort(fg_logits) + #Loops over each positive following the order + for ii in order: + #x_ij s as score differences with fgs + fg_relations=fg_logits-fg_logits[ii] + #Apply piecewise linear function and determine relations with fgs + fg_relations=torch.clamp(fg_relations/(2*delta)+0.5,min=0,max=1) + #Discard i=j in the summation in rank_pos + fg_relations[ii]=0 + + #x_ij s as score differences with bgs + bg_relations=relevant_bg_logits-fg_logits[ii] + #Apply piecewise linear function and determine relations with bgs + bg_relations=torch.clamp(bg_relations/(2*delta)+0.5,min=0,max=1) + + #Compute the rank of the example within fgs and number of bgs with larger scores + rank_pos=1+torch.sum(fg_relations) + FP_num=torch.sum(bg_relations) + #Store the total since it is normalizer also for aLRP Regression error + rank[ii]=rank_pos+FP_num + + #Compute precision for this example + current_prec=rank_pos/rank[ii] + + #Compute interpolated AP and store gradients for relevant bg examples + if (max_prec<=current_prec): + max_prec=current_prec + relevant_bg_grad += (bg_relations/rank[ii]) + else: + relevant_bg_grad += (bg_relations/rank[ii])*(((1-max_prec)/(1-current_prec))) + + #Store fg gradients + fg_grad[ii]=-(1-max_prec) + prec[ii]=max_prec + + #aLRP with grad formulation fg gradient + classification_grads[fg_labels]= fg_grad + #aLRP with grad formulation bg gradient + classification_grads[relevant_bg_labels]= relevant_bg_grad + + classification_grads /= fg_num + + cls_loss=1-prec.mean() + ctx.save_for_backward(classification_grads) + + return cls_loss + + @staticmethod + def backward(ctx, out_grad1): + g1, =ctx.saved_tensors + return g1*out_grad1, None, None + + +class ComputeLoss: + # Compute losses + def __init__(self, model, autobalance=False): + super(ComputeLoss, self).__init__() + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 + #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.1, .05]) # P3-P7 + #self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.5, 0.4, .1]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors': + setattr(self, k, getattr(det, k)) + + def __call__(self, p, targets): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + pxy = ps[:, :2].sigmoid() * 2. - 0.5 + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + + # Classification + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t[range(n), tcls[i]] = self.cp + #t[t==self.cp] = iou.detach().clamp(0).type(t.dtype) + lcls += self.BCEcls(ps[:, 5:], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., 4], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() + + def build_targets(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + tcls, tbox, indices, anch = [], [], [], [] + gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class + + return tcls, tbox, indices, anch + + +class ComputeLossOTA: + # Compute losses + def __init__(self, model, autobalance=False): + super(ComputeLossOTA, self).__init__() + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors', 'stride': + setattr(self, k, getattr(det, k)) + + def __call__(self, p, targets, imgs): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs) + pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] + + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + grid = torch.stack([gi, gj], dim=1) + pxy = ps[:, :2].sigmoid() * 2. - 0.5 + #pxy = ps[:, :2].sigmoid() * 3. - 1. + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] + selected_tbox[:, :2] -= grid + iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + + # Classification + selected_tcls = targets[i][:, 1].long() + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t[range(n), selected_tcls] = self.cp + lcls += self.BCEcls(ps[:, 5:], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., 4], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() + + def build_targets(self, p, targets, imgs): + + #indices, anch = self.find_positive(p, targets) + indices, anch = self.find_3_positive(p, targets) + #indices, anch = self.find_4_positive(p, targets) + #indices, anch = self.find_5_positive(p, targets) + #indices, anch = self.find_9_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, 4:5]) + p_cls.append(fg_pred[:, 5:]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] + pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pxywh = torch.cat([pxy, pwh], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + if matching_targets[i] != []: + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + else: + matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def find_3_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch + + +class ComputeLossBinOTA: + # Compute losses + def __init__(self, model, autobalance=False): + super(ComputeLossBinOTA, self).__init__() + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + #MSEangle = nn.MSELoss().to(device) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors', 'stride', 'bin_count': + setattr(self, k, getattr(det, k)) + + #xy_bin_sigmoid = SigmoidBin(bin_count=11, min=-0.5, max=1.5, use_loss_regression=False).to(device) + wh_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0, use_loss_regression=False).to(device) + #angle_bin_sigmoid = SigmoidBin(bin_count=31, min=-1.1, max=1.1, use_loss_regression=False).to(device) + self.wh_bin_sigmoid = wh_bin_sigmoid + + def __call__(self, p, targets, imgs): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs) + pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] + + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + + obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 # x,y, w-bce, h-bce # xy_bin_sigmoid.get_length()*2 + + n = b.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + grid = torch.stack([gi, gj], dim=1) + selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] + selected_tbox[:, :2] -= grid + + #pxy = ps[:, :2].sigmoid() * 2. - 0.5 + ##pxy = ps[:, :2].sigmoid() * 3. - 1. + #pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + #pbox = torch.cat((pxy, pwh), 1) # predicted box + + #x_loss, px = xy_bin_sigmoid.training_loss(ps[..., 0:12], tbox[i][..., 0]) + #y_loss, py = xy_bin_sigmoid.training_loss(ps[..., 12:24], tbox[i][..., 1]) + w_loss, pw = self.wh_bin_sigmoid.training_loss(ps[..., 2:(3+self.bin_count)], selected_tbox[..., 2] / anchors[i][..., 0]) + h_loss, ph = self.wh_bin_sigmoid.training_loss(ps[..., (3+self.bin_count):obj_idx], selected_tbox[..., 3] / anchors[i][..., 1]) + + pw *= anchors[i][..., 0] + ph *= anchors[i][..., 1] + + px = ps[:, 0].sigmoid() * 2. - 0.5 + py = ps[:, 1].sigmoid() * 2. - 0.5 + + lbox += w_loss + h_loss # + x_loss + y_loss + + #print(f"\n px = {px.shape}, py = {py.shape}, pw = {pw.shape}, ph = {ph.shape} \n") + + pbox = torch.cat((px.unsqueeze(1), py.unsqueeze(1), pw.unsqueeze(1), ph.unsqueeze(1)), 1).to(device) # predicted box + + + + + iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + + # Classification + selected_tcls = targets[i][:, 1].long() + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, (1+obj_idx):], self.cn, device=device) # targets + t[range(n), selected_tcls] = self.cp + lcls += self.BCEcls(ps[:, (1+obj_idx):], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., obj_idx], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() + + def build_targets(self, p, targets, imgs): + + #indices, anch = self.find_positive(p, targets) + indices, anch = self.find_3_positive(p, targets) + #indices, anch = self.find_4_positive(p, targets) + #indices, anch = self.find_5_positive(p, targets) + #indices, anch = self.find_9_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + obj_idx = self.wh_bin_sigmoid.get_length()*2 + 2 + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, obj_idx:(obj_idx+1)]) + p_cls.append(fg_pred[:, (obj_idx+1):]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pw = self.wh_bin_sigmoid.forward(fg_pred[..., 2:(3+self.bin_count)].sigmoid()) * anch[i][idx][:, 0] * self.stride[i] + ph = self.wh_bin_sigmoid.forward(fg_pred[..., (3+self.bin_count):obj_idx].sigmoid()) * anch[i][idx][:, 1] * self.stride[i] + + pxywh = torch.cat([pxy, pw.unsqueeze(1), ph.unsqueeze(1)], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + if matching_targets[i] != []: + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + else: + matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def find_3_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch + + +class ComputeLossAuxOTA: + # Compute losses + def __init__(self, model, autobalance=False): + super(ComputeLossAuxOTA, self).__init__() + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors', 'stride': + setattr(self, k, getattr(det, k)) + + def __call__(self, p, targets, imgs): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + bs_aux, as_aux_, gjs_aux, gis_aux, targets_aux, anchors_aux = self.build_targets2(p[:self.nl], targets, imgs) + bs, as_, gjs, gis, targets, anchors = self.build_targets(p[:self.nl], targets, imgs) + pre_gen_gains_aux = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]] + pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p[:self.nl]] + + + # Losses + for i in range(self.nl): # layer index, layer predictions + pi = p[i] + pi_aux = p[i+self.nl] + b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx + b_aux, a_aux, gj_aux, gi_aux = bs_aux[i], as_aux_[i], gjs_aux[i], gis_aux[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + tobj_aux = torch.zeros_like(pi_aux[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + grid = torch.stack([gi, gj], dim=1) + pxy = ps[:, :2].sigmoid() * 2. - 0.5 + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] + selected_tbox[:, :2] -= grid + iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio + + # Classification + selected_tcls = targets[i][:, 1].long() + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t[range(n), selected_tcls] = self.cp + lcls += self.BCEcls(ps[:, 5:], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + n_aux = b_aux.shape[0] # number of targets + if n_aux: + ps_aux = pi_aux[b_aux, a_aux, gj_aux, gi_aux] # prediction subset corresponding to targets + grid_aux = torch.stack([gi_aux, gj_aux], dim=1) + pxy_aux = ps_aux[:, :2].sigmoid() * 2. - 0.5 + #pxy_aux = ps_aux[:, :2].sigmoid() * 3. - 1. + pwh_aux = (ps_aux[:, 2:4].sigmoid() * 2) ** 2 * anchors_aux[i] + pbox_aux = torch.cat((pxy_aux, pwh_aux), 1) # predicted box + selected_tbox_aux = targets_aux[i][:, 2:6] * pre_gen_gains_aux[i] + selected_tbox_aux[:, :2] -= grid_aux + iou_aux = bbox_iou(pbox_aux.T, selected_tbox_aux, x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += 0.25 * (1.0 - iou_aux).mean() # iou loss + + # Objectness + tobj_aux[b_aux, a_aux, gj_aux, gi_aux] = (1.0 - self.gr) + self.gr * iou_aux.detach().clamp(0).type(tobj_aux.dtype) # iou ratio + + # Classification + selected_tcls_aux = targets_aux[i][:, 1].long() + if self.nc > 1: # cls loss (only if multiple classes) + t_aux = torch.full_like(ps_aux[:, 5:], self.cn, device=device) # targets + t_aux[range(n_aux), selected_tcls_aux] = self.cp + lcls += 0.25 * self.BCEcls(ps_aux[:, 5:], t_aux) # BCE + + obji = self.BCEobj(pi[..., 4], tobj) + obji_aux = self.BCEobj(pi_aux[..., 4], tobj_aux) + lobj += obji * self.balance[i] + 0.25 * obji_aux * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + loss = lbox + lobj + lcls + return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() + + def build_targets(self, p, targets, imgs): + + indices, anch = self.find_3_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, 4:5]) + p_cls.append(fg_pred[:, 5:]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] + pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pxywh = torch.cat([pxy, pwh], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + if matching_targets[i] != []: + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + else: + matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def build_targets2(self, p, targets, imgs): + + indices, anch = self.find_5_positive(p, targets) + + matching_bs = [[] for pp in p] + matching_as = [[] for pp in p] + matching_gjs = [[] for pp in p] + matching_gis = [[] for pp in p] + matching_targets = [[] for pp in p] + matching_anchs = [[] for pp in p] + + nl = len(p) + + for batch_idx in range(p[0].shape[0]): + + b_idx = targets[:, 0]==batch_idx + this_target = targets[b_idx] + if this_target.shape[0] == 0: + continue + + txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] + txyxy = xywh2xyxy(txywh) + + pxyxys = [] + p_cls = [] + p_obj = [] + from_which_layer = [] + all_b = [] + all_a = [] + all_gj = [] + all_gi = [] + all_anch = [] + + for i, pi in enumerate(p): + + b, a, gj, gi = indices[i] + idx = (b == batch_idx) + b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] + all_b.append(b) + all_a.append(a) + all_gj.append(gj) + all_gi.append(gi) + all_anch.append(anch[i][idx]) + from_which_layer.append(torch.ones(size=(len(b),)) * i) + + fg_pred = pi[b, a, gj, gi] + p_obj.append(fg_pred[:, 4:5]) + p_cls.append(fg_pred[:, 5:]) + + grid = torch.stack([gi, gj], dim=1) + pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. + #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] + pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. + pxywh = torch.cat([pxy, pwh], dim=-1) + pxyxy = xywh2xyxy(pxywh) + pxyxys.append(pxyxy) + + pxyxys = torch.cat(pxyxys, dim=0) + if pxyxys.shape[0] == 0: + continue + p_obj = torch.cat(p_obj, dim=0) + p_cls = torch.cat(p_cls, dim=0) + from_which_layer = torch.cat(from_which_layer, dim=0) + all_b = torch.cat(all_b, dim=0) + all_a = torch.cat(all_a, dim=0) + all_gj = torch.cat(all_gj, dim=0) + all_gi = torch.cat(all_gi, dim=0) + all_anch = torch.cat(all_anch, dim=0) + + pair_wise_iou = box_iou(txyxy, pxyxys) + + pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) + + top_k, _ = torch.topk(pair_wise_iou, min(20, pair_wise_iou.shape[1]), dim=1) + dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) + + gt_cls_per_image = ( + F.one_hot(this_target[:, 1].to(torch.int64), self.nc) + .float() + .unsqueeze(1) + .repeat(1, pxyxys.shape[0], 1) + ) + + num_gt = this_target.shape[0] + cls_preds_ = ( + p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() + ) + + y = cls_preds_.sqrt_() + pair_wise_cls_loss = F.binary_cross_entropy_with_logits( + torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" + ).sum(-1) + del cls_preds_ + + cost = ( + pair_wise_cls_loss + + 3.0 * pair_wise_iou_loss + ) + + matching_matrix = torch.zeros_like(cost) + + for gt_idx in range(num_gt): + _, pos_idx = torch.topk( + cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False + ) + matching_matrix[gt_idx][pos_idx] = 1.0 + + del top_k, dynamic_ks + anchor_matching_gt = matching_matrix.sum(0) + if (anchor_matching_gt > 1).sum() > 0: + _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) + matching_matrix[:, anchor_matching_gt > 1] *= 0.0 + matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 + fg_mask_inboxes = matching_matrix.sum(0) > 0.0 + matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) + + from_which_layer = from_which_layer[fg_mask_inboxes] + all_b = all_b[fg_mask_inboxes] + all_a = all_a[fg_mask_inboxes] + all_gj = all_gj[fg_mask_inboxes] + all_gi = all_gi[fg_mask_inboxes] + all_anch = all_anch[fg_mask_inboxes] + + this_target = this_target[matched_gt_inds] + + for i in range(nl): + layer_idx = from_which_layer == i + matching_bs[i].append(all_b[layer_idx]) + matching_as[i].append(all_a[layer_idx]) + matching_gjs[i].append(all_gj[layer_idx]) + matching_gis[i].append(all_gi[layer_idx]) + matching_targets[i].append(this_target[layer_idx]) + matching_anchs[i].append(all_anch[layer_idx]) + + for i in range(nl): + if matching_targets[i] != []: + matching_bs[i] = torch.cat(matching_bs[i], dim=0) + matching_as[i] = torch.cat(matching_as[i], dim=0) + matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) + matching_gis[i] = torch.cat(matching_gis[i], dim=0) + matching_targets[i] = torch.cat(matching_targets[i], dim=0) + matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) + else: + matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) + + return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs + + def find_5_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 1.0 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch + + def find_3_positive(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + indices, anch = [], [] + gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxi % 1. < g) & (gxi > 1.)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + anch.append(anchors[a]) # anchors + + return indices, anch