|
a |
|
b/landmark_extraction/utils/general.py |
|
|
1 |
# YOLOR general utils |
|
|
2 |
|
|
|
3 |
import glob |
|
|
4 |
import logging |
|
|
5 |
import math |
|
|
6 |
import os |
|
|
7 |
import platform |
|
|
8 |
import random |
|
|
9 |
import re |
|
|
10 |
import subprocess |
|
|
11 |
import time |
|
|
12 |
from pathlib import Path |
|
|
13 |
|
|
|
14 |
import cv2 |
|
|
15 |
import numpy as np |
|
|
16 |
import pandas as pd |
|
|
17 |
import torch |
|
|
18 |
import torchvision |
|
|
19 |
import yaml |
|
|
20 |
|
|
|
21 |
from utils.google_utils import gsutil_getsize |
|
|
22 |
from utils.metrics import fitness |
|
|
23 |
from utils.torch_utils import init_torch_seeds |
|
|
24 |
|
|
|
25 |
# Settings |
|
|
26 |
torch.set_printoptions(linewidth=320, precision=5, profile='long') |
|
|
27 |
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 |
|
|
28 |
pd.options.display.max_columns = 10 |
|
|
29 |
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) |
|
|
30 |
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
def set_logging(rank=-1): |
|
|
34 |
logging.basicConfig( |
|
|
35 |
format="%(message)s", |
|
|
36 |
level=logging.INFO if rank in [-1, 0] else logging.WARN) |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
def init_seeds(seed=0): |
|
|
40 |
# Initialize random number generator (RNG) seeds |
|
|
41 |
random.seed(seed) |
|
|
42 |
np.random.seed(seed) |
|
|
43 |
init_torch_seeds(seed) |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
def get_latest_run(search_dir='.'): |
|
|
47 |
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) |
|
|
48 |
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) |
|
|
49 |
return max(last_list, key=os.path.getctime) if last_list else '' |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
def isdocker(): |
|
|
53 |
# Is environment a Docker container |
|
|
54 |
return Path('/workspace').exists() # or Path('/.dockerenv').exists() |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
def emojis(str=''): |
|
|
58 |
# Return platform-dependent emoji-safe version of string |
|
|
59 |
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def check_online(): |
|
|
63 |
# Check internet connectivity |
|
|
64 |
import socket |
|
|
65 |
try: |
|
|
66 |
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability |
|
|
67 |
return True |
|
|
68 |
except OSError: |
|
|
69 |
return False |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
def check_git_status(): |
|
|
73 |
# Recommend 'git pull' if code is out of date |
|
|
74 |
print(colorstr('github: '), end='') |
|
|
75 |
try: |
|
|
76 |
assert Path('.git').exists(), 'skipping check (not a git repository)' |
|
|
77 |
assert not isdocker(), 'skipping check (Docker image)' |
|
|
78 |
assert check_online(), 'skipping check (offline)' |
|
|
79 |
|
|
|
80 |
cmd = 'git fetch && git config --get remote.origin.url' |
|
|
81 |
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url |
|
|
82 |
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out |
|
|
83 |
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind |
|
|
84 |
if n > 0: |
|
|
85 |
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \ |
|
|
86 |
f"Use 'git pull' to update or 'git clone {url}' to download latest." |
|
|
87 |
else: |
|
|
88 |
s = f'up to date with {url} ✅' |
|
|
89 |
print(emojis(s)) # emoji-safe |
|
|
90 |
except Exception as e: |
|
|
91 |
print(e) |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
def check_requirements(requirements='requirements.txt', exclude=()): |
|
|
95 |
# Check installed dependencies meet requirements (pass *.txt file or list of packages) |
|
|
96 |
import pkg_resources as pkg |
|
|
97 |
prefix = colorstr('red', 'bold', 'requirements:') |
|
|
98 |
if isinstance(requirements, (str, Path)): # requirements.txt file |
|
|
99 |
file = Path(requirements) |
|
|
100 |
if not file.exists(): |
|
|
101 |
print(f"{prefix} {file.resolve()} not found, check failed.") |
|
|
102 |
return |
|
|
103 |
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude] |
|
|
104 |
else: # list or tuple of packages |
|
|
105 |
requirements = [x for x in requirements if x not in exclude] |
|
|
106 |
|
|
|
107 |
n = 0 # number of packages updates |
|
|
108 |
for r in requirements: |
|
|
109 |
try: |
|
|
110 |
pkg.require(r) |
|
|
111 |
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met |
|
|
112 |
n += 1 |
|
|
113 |
print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...") |
|
|
114 |
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode()) |
|
|
115 |
|
|
|
116 |
if n: # if packages updated |
|
|
117 |
source = file.resolve() if 'file' in locals() else requirements |
|
|
118 |
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ |
|
|
119 |
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" |
|
|
120 |
print(emojis(s)) # emoji-safe |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
def check_img_size(img_size, s=32): |
|
|
124 |
# Verify img_size is a multiple of stride s |
|
|
125 |
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple |
|
|
126 |
if new_size != img_size: |
|
|
127 |
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) |
|
|
128 |
return new_size |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
def check_imshow(): |
|
|
132 |
# Check if environment supports image displays |
|
|
133 |
try: |
|
|
134 |
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments' |
|
|
135 |
cv2.imshow('test', np.zeros((1, 1, 3))) |
|
|
136 |
cv2.waitKey(1) |
|
|
137 |
cv2.destroyAllWindows() |
|
|
138 |
cv2.waitKey(1) |
|
|
139 |
return True |
|
|
140 |
except Exception as e: |
|
|
141 |
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') |
|
|
142 |
return False |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
def check_file(file): |
|
|
146 |
# Search for file if not found |
|
|
147 |
if Path(file).is_file() or file == '': |
|
|
148 |
return file |
|
|
149 |
else: |
|
|
150 |
files = glob.glob('./**/' + file, recursive=True) # find file |
|
|
151 |
assert len(files), f'File Not Found: {file}' # assert file was found |
|
|
152 |
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique |
|
|
153 |
return files[0] # return file |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
def check_dataset(dict): |
|
|
157 |
# Download dataset if not found locally |
|
|
158 |
val, s = dict.get('val'), dict.get('download') |
|
|
159 |
if val and len(val): |
|
|
160 |
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path |
|
|
161 |
if not all(x.exists() for x in val): |
|
|
162 |
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()]) |
|
|
163 |
if s and len(s): # download script |
|
|
164 |
print('Downloading %s ...' % s) |
|
|
165 |
if s.startswith('http') and s.endswith('.zip'): # URL |
|
|
166 |
f = Path(s).name # filename |
|
|
167 |
torch.hub.download_url_to_file(s, f) |
|
|
168 |
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip |
|
|
169 |
else: # bash script |
|
|
170 |
r = os.system(s) |
|
|
171 |
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value |
|
|
172 |
else: |
|
|
173 |
raise Exception('Dataset not found.') |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
def make_divisible(x, divisor): |
|
|
177 |
# Returns x evenly divisible by divisor |
|
|
178 |
return math.ceil(x / divisor) * divisor |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
def clean_str(s): |
|
|
182 |
# Cleans a string by replacing special characters with underscore _ |
|
|
183 |
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
def one_cycle(y1=0.0, y2=1.0, steps=100): |
|
|
187 |
# lambda function for sinusoidal ramp from y1 to y2 |
|
|
188 |
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 |
|
|
189 |
|
|
|
190 |
|
|
|
191 |
def colorstr(*input): |
|
|
192 |
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') |
|
|
193 |
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string |
|
|
194 |
colors = {'black': '\033[30m', # basic colors |
|
|
195 |
'red': '\033[31m', |
|
|
196 |
'green': '\033[32m', |
|
|
197 |
'yellow': '\033[33m', |
|
|
198 |
'blue': '\033[34m', |
|
|
199 |
'magenta': '\033[35m', |
|
|
200 |
'cyan': '\033[36m', |
|
|
201 |
'white': '\033[37m', |
|
|
202 |
'bright_black': '\033[90m', # bright colors |
|
|
203 |
'bright_red': '\033[91m', |
|
|
204 |
'bright_green': '\033[92m', |
|
|
205 |
'bright_yellow': '\033[93m', |
|
|
206 |
'bright_blue': '\033[94m', |
|
|
207 |
'bright_magenta': '\033[95m', |
|
|
208 |
'bright_cyan': '\033[96m', |
|
|
209 |
'bright_white': '\033[97m', |
|
|
210 |
'end': '\033[0m', # misc |
|
|
211 |
'bold': '\033[1m', |
|
|
212 |
'underline': '\033[4m'} |
|
|
213 |
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
def labels_to_class_weights(labels, nc=80): |
|
|
217 |
# Get class weights (inverse frequency) from training labels |
|
|
218 |
if labels[0] is None: # no labels loaded |
|
|
219 |
return torch.Tensor() |
|
|
220 |
|
|
|
221 |
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO |
|
|
222 |
classes = labels[:, 0].astype(np.int) # labels = [class xywh] |
|
|
223 |
weights = np.bincount(classes, minlength=nc) # occurrences per class |
|
|
224 |
|
|
|
225 |
# Prepend gridpoint count (for uCE training) |
|
|
226 |
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image |
|
|
227 |
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start |
|
|
228 |
|
|
|
229 |
weights[weights == 0] = 1 # replace empty bins with 1 |
|
|
230 |
weights = 1 / weights # number of targets per class |
|
|
231 |
weights /= weights.sum() # normalize |
|
|
232 |
return torch.from_numpy(weights) |
|
|
233 |
|
|
|
234 |
|
|
|
235 |
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): |
|
|
236 |
# Produces image weights based on class_weights and image contents |
|
|
237 |
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) |
|
|
238 |
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) |
|
|
239 |
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample |
|
|
240 |
return image_weights |
|
|
241 |
|
|
|
242 |
|
|
|
243 |
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) |
|
|
244 |
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ |
|
|
245 |
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|
|
246 |
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|
|
247 |
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|
|
248 |
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|
|
249 |
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|
|
250 |
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|
|
251 |
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|
|
252 |
return x |
|
|
253 |
|
|
|
254 |
|
|
|
255 |
def xyxy2xywh(x): |
|
|
256 |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right |
|
|
257 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
258 |
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center |
|
|
259 |
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center |
|
|
260 |
y[:, 2] = x[:, 2] - x[:, 0] # width |
|
|
261 |
y[:, 3] = x[:, 3] - x[:, 1] # height |
|
|
262 |
return y |
|
|
263 |
|
|
|
264 |
|
|
|
265 |
def xywh2xyxy(x): |
|
|
266 |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|
|
267 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
268 |
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x |
|
|
269 |
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y |
|
|
270 |
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x |
|
|
271 |
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y |
|
|
272 |
return y |
|
|
273 |
|
|
|
274 |
|
|
|
275 |
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): |
|
|
276 |
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right |
|
|
277 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
278 |
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x |
|
|
279 |
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y |
|
|
280 |
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x |
|
|
281 |
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y |
|
|
282 |
return y |
|
|
283 |
|
|
|
284 |
|
|
|
285 |
def xyn2xy(x, w=640, h=640, padw=0, padh=0): |
|
|
286 |
# Convert normalized segments into pixel segments, shape (n,2) |
|
|
287 |
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) |
|
|
288 |
y[:, 0] = w * x[:, 0] + padw # top left x |
|
|
289 |
y[:, 1] = h * x[:, 1] + padh # top left y |
|
|
290 |
return y |
|
|
291 |
|
|
|
292 |
|
|
|
293 |
def segment2box(segment, width=640, height=640): |
|
|
294 |
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) |
|
|
295 |
x, y = segment.T # segment xy |
|
|
296 |
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) |
|
|
297 |
x, y, = x[inside], y[inside] |
|
|
298 |
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy |
|
|
299 |
|
|
|
300 |
|
|
|
301 |
def segments2boxes(segments): |
|
|
302 |
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) |
|
|
303 |
boxes = [] |
|
|
304 |
for s in segments: |
|
|
305 |
x, y = s.T # segment xy |
|
|
306 |
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy |
|
|
307 |
return xyxy2xywh(np.array(boxes)) # cls, xywh |
|
|
308 |
|
|
|
309 |
|
|
|
310 |
def resample_segments(segments, n=1000): |
|
|
311 |
# Up-sample an (n,2) segment |
|
|
312 |
for i, s in enumerate(segments): |
|
|
313 |
x = np.linspace(0, len(s) - 1, n) |
|
|
314 |
xp = np.arange(len(s)) |
|
|
315 |
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy |
|
|
316 |
return segments |
|
|
317 |
|
|
|
318 |
|
|
|
319 |
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): |
|
|
320 |
# Rescale coords (xyxy) from img1_shape to img0_shape |
|
|
321 |
if ratio_pad is None: # calculate from img0_shape |
|
|
322 |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new |
|
|
323 |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding |
|
|
324 |
else: |
|
|
325 |
gain = ratio_pad[0][0] |
|
|
326 |
pad = ratio_pad[1] |
|
|
327 |
|
|
|
328 |
coords[:, [0, 2]] -= pad[0] # x padding |
|
|
329 |
coords[:, [1, 3]] -= pad[1] # y padding |
|
|
330 |
coords[:, :4] /= gain |
|
|
331 |
clip_coords(coords, img0_shape) |
|
|
332 |
return coords |
|
|
333 |
|
|
|
334 |
|
|
|
335 |
def clip_coords(boxes, img_shape): |
|
|
336 |
# Clip bounding xyxy bounding boxes to image shape (height, width) |
|
|
337 |
boxes[:, 0].clamp_(0, img_shape[1]) # x1 |
|
|
338 |
boxes[:, 1].clamp_(0, img_shape[0]) # y1 |
|
|
339 |
boxes[:, 2].clamp_(0, img_shape[1]) # x2 |
|
|
340 |
boxes[:, 3].clamp_(0, img_shape[0]) # y2 |
|
|
341 |
|
|
|
342 |
|
|
|
343 |
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
|
344 |
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 |
|
|
345 |
box2 = box2.T |
|
|
346 |
|
|
|
347 |
# Get the coordinates of bounding boxes |
|
|
348 |
if x1y1x2y2: # x1, y1, x2, y2 = box1 |
|
|
349 |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
|
350 |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
351 |
else: # transform from xywh to xyxy |
|
|
352 |
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
|
353 |
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
|
354 |
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
|
355 |
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
356 |
|
|
|
357 |
# Intersection area |
|
|
358 |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
|
359 |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
360 |
|
|
|
361 |
# Union Area |
|
|
362 |
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
|
363 |
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
|
364 |
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
365 |
|
|
|
366 |
iou = inter / union |
|
|
367 |
|
|
|
368 |
if GIoU or DIoU or CIoU: |
|
|
369 |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width |
|
|
370 |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height |
|
|
371 |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
372 |
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared |
|
|
373 |
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + |
|
|
374 |
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared |
|
|
375 |
if DIoU: |
|
|
376 |
return iou - rho2 / c2 # DIoU |
|
|
377 |
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
378 |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2) |
|
|
379 |
with torch.no_grad(): |
|
|
380 |
alpha = v / (v - iou + (1 + eps)) |
|
|
381 |
return iou - (rho2 / c2 + v * alpha) # CIoU |
|
|
382 |
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
383 |
c_area = cw * ch + eps # convex area |
|
|
384 |
return iou - (c_area - union) / c_area # GIoU |
|
|
385 |
else: |
|
|
386 |
return iou # IoU |
|
|
387 |
|
|
|
388 |
|
|
|
389 |
|
|
|
390 |
|
|
|
391 |
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9): |
|
|
392 |
# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4 |
|
|
393 |
box2 = box2.T |
|
|
394 |
|
|
|
395 |
# Get the coordinates of bounding boxes |
|
|
396 |
if x1y1x2y2: # x1, y1, x2, y2 = box1 |
|
|
397 |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
|
398 |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
399 |
else: # transform from xywh to xyxy |
|
|
400 |
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 |
|
|
401 |
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 |
|
|
402 |
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 |
|
|
403 |
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 |
|
|
404 |
|
|
|
405 |
# Intersection area |
|
|
406 |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ |
|
|
407 |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) |
|
|
408 |
|
|
|
409 |
# Union Area |
|
|
410 |
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
|
411 |
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
|
412 |
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
413 |
|
|
|
414 |
# change iou into pow(iou+eps) |
|
|
415 |
# iou = inter / union |
|
|
416 |
iou = torch.pow(inter/union + eps, alpha) |
|
|
417 |
# beta = 2 * alpha |
|
|
418 |
if GIoU or DIoU or CIoU: |
|
|
419 |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width |
|
|
420 |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height |
|
|
421 |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
422 |
c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal |
|
|
423 |
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2) |
|
|
424 |
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2) |
|
|
425 |
rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance |
|
|
426 |
if DIoU: |
|
|
427 |
return iou - rho2 / c2 # DIoU |
|
|
428 |
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
429 |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
|
430 |
with torch.no_grad(): |
|
|
431 |
alpha_ciou = v / ((1 + eps) - inter / union + v) |
|
|
432 |
# return iou - (rho2 / c2 + v * alpha_ciou) # CIoU |
|
|
433 |
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU |
|
|
434 |
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
435 |
# c_area = cw * ch + eps # convex area |
|
|
436 |
# return iou - (c_area - union) / c_area # GIoU |
|
|
437 |
c_area = torch.max(cw * ch + eps, union) # convex area |
|
|
438 |
return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU |
|
|
439 |
else: |
|
|
440 |
return iou # torch.log(iou+eps) or iou |
|
|
441 |
|
|
|
442 |
|
|
|
443 |
def box_iou(box1, box2): |
|
|
444 |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py |
|
|
445 |
""" |
|
|
446 |
Return intersection-over-union (Jaccard index) of boxes. |
|
|
447 |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
|
448 |
Arguments: |
|
|
449 |
box1 (Tensor[N, 4]) |
|
|
450 |
box2 (Tensor[M, 4]) |
|
|
451 |
Returns: |
|
|
452 |
iou (Tensor[N, M]): the NxM matrix containing the pairwise |
|
|
453 |
IoU values for every element in boxes1 and boxes2 |
|
|
454 |
""" |
|
|
455 |
|
|
|
456 |
def box_area(box): |
|
|
457 |
# box = 4xn |
|
|
458 |
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
459 |
|
|
|
460 |
area1 = box_area(box1.T) |
|
|
461 |
area2 = box_area(box2.T) |
|
|
462 |
|
|
|
463 |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) |
|
|
464 |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
|
465 |
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) |
|
|
466 |
|
|
|
467 |
|
|
|
468 |
def wh_iou(wh1, wh2): |
|
|
469 |
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 |
|
|
470 |
wh1 = wh1[:, None] # [N,1,2] |
|
|
471 |
wh2 = wh2[None] # [1,M,2] |
|
|
472 |
inter = torch.min(wh1, wh2).prod(2) # [N,M] |
|
|
473 |
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) |
|
|
474 |
|
|
|
475 |
|
|
|
476 |
def box_giou(box1, box2): |
|
|
477 |
""" |
|
|
478 |
Return generalized intersection-over-union (Jaccard index) between two sets of boxes. |
|
|
479 |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with |
|
|
480 |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. |
|
|
481 |
Args: |
|
|
482 |
boxes1 (Tensor[N, 4]): first set of boxes |
|
|
483 |
boxes2 (Tensor[M, 4]): second set of boxes |
|
|
484 |
Returns: |
|
|
485 |
Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values |
|
|
486 |
for every element in boxes1 and boxes2 |
|
|
487 |
""" |
|
|
488 |
|
|
|
489 |
def box_area(box): |
|
|
490 |
# box = 4xn |
|
|
491 |
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
492 |
|
|
|
493 |
area1 = box_area(box1.T) |
|
|
494 |
area2 = box_area(box2.T) |
|
|
495 |
|
|
|
496 |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
|
497 |
union = (area1[:, None] + area2 - inter) |
|
|
498 |
|
|
|
499 |
iou = inter / union |
|
|
500 |
|
|
|
501 |
lti = torch.min(box1[:, None, :2], box2[:, :2]) |
|
|
502 |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) |
|
|
503 |
|
|
|
504 |
whi = (rbi - lti).clamp(min=0) # [N,M,2] |
|
|
505 |
areai = whi[:, :, 0] * whi[:, :, 1] |
|
|
506 |
|
|
|
507 |
return iou - (areai - union) / areai |
|
|
508 |
|
|
|
509 |
|
|
|
510 |
def box_ciou(box1, box2, eps: float = 1e-7): |
|
|
511 |
""" |
|
|
512 |
Return complete intersection-over-union (Jaccard index) between two sets of boxes. |
|
|
513 |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with |
|
|
514 |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. |
|
|
515 |
Args: |
|
|
516 |
boxes1 (Tensor[N, 4]): first set of boxes |
|
|
517 |
boxes2 (Tensor[M, 4]): second set of boxes |
|
|
518 |
eps (float, optional): small number to prevent division by zero. Default: 1e-7 |
|
|
519 |
Returns: |
|
|
520 |
Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values |
|
|
521 |
for every element in boxes1 and boxes2 |
|
|
522 |
""" |
|
|
523 |
|
|
|
524 |
def box_area(box): |
|
|
525 |
# box = 4xn |
|
|
526 |
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
527 |
|
|
|
528 |
area1 = box_area(box1.T) |
|
|
529 |
area2 = box_area(box2.T) |
|
|
530 |
|
|
|
531 |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
|
532 |
union = (area1[:, None] + area2 - inter) |
|
|
533 |
|
|
|
534 |
iou = inter / union |
|
|
535 |
|
|
|
536 |
lti = torch.min(box1[:, None, :2], box2[:, :2]) |
|
|
537 |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) |
|
|
538 |
|
|
|
539 |
whi = (rbi - lti).clamp(min=0) # [N,M,2] |
|
|
540 |
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps |
|
|
541 |
|
|
|
542 |
# centers of boxes |
|
|
543 |
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2 |
|
|
544 |
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2 |
|
|
545 |
x_g = (box2[:, 0] + box2[:, 2]) / 2 |
|
|
546 |
y_g = (box2[:, 1] + box2[:, 3]) / 2 |
|
|
547 |
# The distance between boxes' centers squared. |
|
|
548 |
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2 |
|
|
549 |
|
|
|
550 |
w_pred = box1[:, None, 2] - box1[:, None, 0] |
|
|
551 |
h_pred = box1[:, None, 3] - box1[:, None, 1] |
|
|
552 |
|
|
|
553 |
w_gt = box2[:, 2] - box2[:, 0] |
|
|
554 |
h_gt = box2[:, 3] - box2[:, 1] |
|
|
555 |
|
|
|
556 |
v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) |
|
|
557 |
with torch.no_grad(): |
|
|
558 |
alpha = v / (1 - iou + v + eps) |
|
|
559 |
return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v |
|
|
560 |
|
|
|
561 |
|
|
|
562 |
def box_diou(box1, box2, eps: float = 1e-7): |
|
|
563 |
""" |
|
|
564 |
Return distance intersection-over-union (Jaccard index) between two sets of boxes. |
|
|
565 |
Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with |
|
|
566 |
``0 <= x1 < x2`` and ``0 <= y1 < y2``. |
|
|
567 |
Args: |
|
|
568 |
boxes1 (Tensor[N, 4]): first set of boxes |
|
|
569 |
boxes2 (Tensor[M, 4]): second set of boxes |
|
|
570 |
eps (float, optional): small number to prevent division by zero. Default: 1e-7 |
|
|
571 |
Returns: |
|
|
572 |
Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values |
|
|
573 |
for every element in boxes1 and boxes2 |
|
|
574 |
""" |
|
|
575 |
|
|
|
576 |
def box_area(box): |
|
|
577 |
# box = 4xn |
|
|
578 |
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
579 |
|
|
|
580 |
area1 = box_area(box1.T) |
|
|
581 |
area2 = box_area(box2.T) |
|
|
582 |
|
|
|
583 |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) |
|
|
584 |
union = (area1[:, None] + area2 - inter) |
|
|
585 |
|
|
|
586 |
iou = inter / union |
|
|
587 |
|
|
|
588 |
lti = torch.min(box1[:, None, :2], box2[:, :2]) |
|
|
589 |
rbi = torch.max(box1[:, None, 2:], box2[:, 2:]) |
|
|
590 |
|
|
|
591 |
whi = (rbi - lti).clamp(min=0) # [N,M,2] |
|
|
592 |
diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps |
|
|
593 |
|
|
|
594 |
# centers of boxes |
|
|
595 |
x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2 |
|
|
596 |
y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2 |
|
|
597 |
x_g = (box2[:, 0] + box2[:, 2]) / 2 |
|
|
598 |
y_g = (box2[:, 1] + box2[:, 3]) / 2 |
|
|
599 |
# The distance between boxes' centers squared. |
|
|
600 |
centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2 |
|
|
601 |
|
|
|
602 |
# The distance IoU is the IoU penalized by a normalized |
|
|
603 |
# distance between boxes' centers squared. |
|
|
604 |
return iou - (centers_distance_squared / diagonal_distance_squared) |
|
|
605 |
|
|
|
606 |
|
|
|
607 |
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, |
|
|
608 |
labels=()): |
|
|
609 |
"""Runs Non-Maximum Suppression (NMS) on inference results |
|
|
610 |
|
|
|
611 |
Returns: |
|
|
612 |
list of detections, on (n,6) tensor per image [xyxy, conf, cls] |
|
|
613 |
""" |
|
|
614 |
|
|
|
615 |
nc = prediction.shape[2] - 5 # number of classes |
|
|
616 |
xc = prediction[..., 4] > conf_thres # candidates |
|
|
617 |
|
|
|
618 |
# Settings |
|
|
619 |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height |
|
|
620 |
max_det = 300 # maximum number of detections per image |
|
|
621 |
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|
|
622 |
time_limit = 10.0 # seconds to quit after |
|
|
623 |
redundant = True # require redundant detections |
|
|
624 |
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) |
|
|
625 |
merge = False # use merge-NMS |
|
|
626 |
|
|
|
627 |
t = time.time() |
|
|
628 |
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] |
|
|
629 |
for xi, x in enumerate(prediction): # image index, image inference |
|
|
630 |
# Apply constraints |
|
|
631 |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|
|
632 |
x = x[xc[xi]] # confidence |
|
|
633 |
|
|
|
634 |
# Cat apriori labels if autolabelling |
|
|
635 |
if labels and len(labels[xi]): |
|
|
636 |
l = labels[xi] |
|
|
637 |
v = torch.zeros((len(l), nc + 5), device=x.device) |
|
|
638 |
v[:, :4] = l[:, 1:5] # box |
|
|
639 |
v[:, 4] = 1.0 # conf |
|
|
640 |
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls |
|
|
641 |
x = torch.cat((x, v), 0) |
|
|
642 |
|
|
|
643 |
# If none remain process next image |
|
|
644 |
if not x.shape[0]: |
|
|
645 |
continue |
|
|
646 |
|
|
|
647 |
# Compute conf |
|
|
648 |
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf |
|
|
649 |
|
|
|
650 |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) |
|
|
651 |
box = xywh2xyxy(x[:, :4]) |
|
|
652 |
|
|
|
653 |
# Detections matrix nx6 (xyxy, conf, cls) |
|
|
654 |
if multi_label: |
|
|
655 |
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T |
|
|
656 |
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|
|
657 |
else: # best class only |
|
|
658 |
conf, j = x[:, 5:].max(1, keepdim=True) |
|
|
659 |
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|
|
660 |
|
|
|
661 |
# Filter by class |
|
|
662 |
if classes is not None: |
|
|
663 |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|
|
664 |
|
|
|
665 |
# Apply finite constraint |
|
|
666 |
# if not torch.isfinite(x).all(): |
|
|
667 |
# x = x[torch.isfinite(x).all(1)] |
|
|
668 |
|
|
|
669 |
# Check shape |
|
|
670 |
n = x.shape[0] # number of boxes |
|
|
671 |
if not n: # no boxes |
|
|
672 |
continue |
|
|
673 |
elif n > max_nms: # excess boxes |
|
|
674 |
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence |
|
|
675 |
|
|
|
676 |
# Batched NMS |
|
|
677 |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes |
|
|
678 |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores |
|
|
679 |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS |
|
|
680 |
if i.shape[0] > max_det: # limit detections |
|
|
681 |
i = i[:max_det] |
|
|
682 |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) |
|
|
683 |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) |
|
|
684 |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix |
|
|
685 |
weights = iou * scores[None] # box weights |
|
|
686 |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes |
|
|
687 |
if redundant: |
|
|
688 |
i = i[iou.sum(1) > 1] # require redundancy |
|
|
689 |
|
|
|
690 |
output[xi] = x[i] |
|
|
691 |
if (time.time() - t) > time_limit: |
|
|
692 |
print(f'WARNING: NMS time limit {time_limit}s exceeded') |
|
|
693 |
break # time limit exceeded |
|
|
694 |
|
|
|
695 |
return output |
|
|
696 |
|
|
|
697 |
|
|
|
698 |
def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, |
|
|
699 |
labels=(), kpt_label=False, nc=None, nkpt=None): |
|
|
700 |
"""Runs Non-Maximum Suppression (NMS) on inference results |
|
|
701 |
|
|
|
702 |
Returns: |
|
|
703 |
list of detections, on (n,6) tensor per image [xyxy, conf, cls] |
|
|
704 |
""" |
|
|
705 |
if nc is None: |
|
|
706 |
nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes |
|
|
707 |
xc = prediction[..., 4] > conf_thres # candidates |
|
|
708 |
|
|
|
709 |
# Settings |
|
|
710 |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height |
|
|
711 |
max_det = 300 # maximum number of detections per image |
|
|
712 |
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() |
|
|
713 |
time_limit = 10.0 # seconds to quit after |
|
|
714 |
redundant = True # require redundant detections |
|
|
715 |
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) |
|
|
716 |
merge = False # use merge-NMS |
|
|
717 |
|
|
|
718 |
t = time.time() |
|
|
719 |
output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0] |
|
|
720 |
for xi, x in enumerate(prediction): # image index, image inference |
|
|
721 |
# Apply constraints |
|
|
722 |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height |
|
|
723 |
x = x[xc[xi]] # confidence |
|
|
724 |
|
|
|
725 |
# Cat apriori labels if autolabelling |
|
|
726 |
if labels and len(labels[xi]): |
|
|
727 |
l = labels[xi] |
|
|
728 |
v = torch.zeros((len(l), nc + 5), device=x.device) |
|
|
729 |
v[:, :4] = l[:, 1:5] # box |
|
|
730 |
v[:, 4] = 1.0 # conf |
|
|
731 |
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls |
|
|
732 |
x = torch.cat((x, v), 0) |
|
|
733 |
|
|
|
734 |
# If none remain process next image |
|
|
735 |
if not x.shape[0]: |
|
|
736 |
continue |
|
|
737 |
|
|
|
738 |
# Compute conf |
|
|
739 |
x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf |
|
|
740 |
|
|
|
741 |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) |
|
|
742 |
box = xywh2xyxy(x[:, :4]) |
|
|
743 |
|
|
|
744 |
# Detections matrix nx6 (xyxy, conf, cls) |
|
|
745 |
if multi_label: |
|
|
746 |
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T |
|
|
747 |
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) |
|
|
748 |
else: # best class only |
|
|
749 |
if not kpt_label: |
|
|
750 |
conf, j = x[:, 5:].max(1, keepdim=True) |
|
|
751 |
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] |
|
|
752 |
else: |
|
|
753 |
kpts = x[:, 6:] |
|
|
754 |
conf, j = x[:, 5:6].max(1, keepdim=True) |
|
|
755 |
x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres] |
|
|
756 |
|
|
|
757 |
|
|
|
758 |
# Filter by class |
|
|
759 |
if classes is not None: |
|
|
760 |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] |
|
|
761 |
|
|
|
762 |
# Apply finite constraint |
|
|
763 |
# if not torch.isfinite(x).all(): |
|
|
764 |
# x = x[torch.isfinite(x).all(1)] |
|
|
765 |
|
|
|
766 |
# Check shape |
|
|
767 |
n = x.shape[0] # number of boxes |
|
|
768 |
if not n: # no boxes |
|
|
769 |
continue |
|
|
770 |
elif n > max_nms: # excess boxes |
|
|
771 |
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence |
|
|
772 |
|
|
|
773 |
# Batched NMS |
|
|
774 |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes |
|
|
775 |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores |
|
|
776 |
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS |
|
|
777 |
if i.shape[0] > max_det: # limit detections |
|
|
778 |
i = i[:max_det] |
|
|
779 |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) |
|
|
780 |
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) |
|
|
781 |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix |
|
|
782 |
weights = iou * scores[None] # box weights |
|
|
783 |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes |
|
|
784 |
if redundant: |
|
|
785 |
i = i[iou.sum(1) > 1] # require redundancy |
|
|
786 |
|
|
|
787 |
output[xi] = x[i] |
|
|
788 |
if (time.time() - t) > time_limit: |
|
|
789 |
print(f'WARNING: NMS time limit {time_limit}s exceeded') |
|
|
790 |
break # time limit exceeded |
|
|
791 |
|
|
|
792 |
return output |
|
|
793 |
|
|
|
794 |
|
|
|
795 |
def strip_optimizer(device='cpu',f='yolov7-w6-pose.pt', s=''): # from utils.general import *; strip_optimizer() |
|
|
796 |
# Strip optimizer from 'f' to finalize training, optionally save as 's' |
|
|
797 |
x = torch.load(f, map_location=torch.device(device)) |
|
|
798 |
if x.get('ema'): |
|
|
799 |
x['model'] = x['ema'] # replace model with ema |
|
|
800 |
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys |
|
|
801 |
x[k] = None |
|
|
802 |
x['epoch'] = -1 |
|
|
803 |
if device!='cpu': |
|
|
804 |
x['model'].half() # to FP16 |
|
|
805 |
else: |
|
|
806 |
x['model'].float() |
|
|
807 |
for p in x['model'].parameters(): |
|
|
808 |
p.requires_grad = False |
|
|
809 |
torch.save(x, s or f) |
|
|
810 |
mb = os.path.getsize(s or f) / 1E6 # filesize |
|
|
811 |
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") |
|
|
812 |
|
|
|
813 |
|
|
|
814 |
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): |
|
|
815 |
# Print mutation results to evolve.txt (for use with train.py --evolve) |
|
|
816 |
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys |
|
|
817 |
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values |
|
|
818 |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) |
|
|
819 |
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) |
|
|
820 |
|
|
|
821 |
if bucket: |
|
|
822 |
url = 'gs://%s/evolve.txt' % bucket |
|
|
823 |
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0): |
|
|
824 |
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local |
|
|
825 |
|
|
|
826 |
with open('evolve.txt', 'a') as f: # append result |
|
|
827 |
f.write(c + b + '\n') |
|
|
828 |
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows |
|
|
829 |
x = x[np.argsort(-fitness(x))] # sort |
|
|
830 |
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness |
|
|
831 |
|
|
|
832 |
# Save yaml |
|
|
833 |
for i, k in enumerate(hyp.keys()): |
|
|
834 |
hyp[k] = float(x[0, i + 7]) |
|
|
835 |
with open(yaml_file, 'w') as f: |
|
|
836 |
results = tuple(x[0, :7]) |
|
|
837 |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) |
|
|
838 |
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') |
|
|
839 |
yaml.dump(hyp, f, sort_keys=False) |
|
|
840 |
|
|
|
841 |
if bucket: |
|
|
842 |
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload |
|
|
843 |
|
|
|
844 |
|
|
|
845 |
def apply_classifier(x, model, img, im0): |
|
|
846 |
# applies a second stage classifier to yolo outputs |
|
|
847 |
im0 = [im0] if isinstance(im0, np.ndarray) else im0 |
|
|
848 |
for i, d in enumerate(x): # per image |
|
|
849 |
if d is not None and len(d): |
|
|
850 |
d = d.clone() |
|
|
851 |
|
|
|
852 |
# Reshape and pad cutouts |
|
|
853 |
b = xyxy2xywh(d[:, :4]) # boxes |
|
|
854 |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square |
|
|
855 |
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad |
|
|
856 |
d[:, :4] = xywh2xyxy(b).long() |
|
|
857 |
|
|
|
858 |
# Rescale boxes from img_size to im0 size |
|
|
859 |
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) |
|
|
860 |
|
|
|
861 |
# Classes |
|
|
862 |
pred_cls1 = d[:, 5].long() |
|
|
863 |
ims = [] |
|
|
864 |
for j, a in enumerate(d): # per item |
|
|
865 |
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] |
|
|
866 |
im = cv2.resize(cutout, (224, 224)) # BGR |
|
|
867 |
# cv2.imwrite('test%i.jpg' % j, cutout) |
|
|
868 |
|
|
|
869 |
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|
|
870 |
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 |
|
|
871 |
im /= 255.0 # 0 - 255 to 0.0 - 1.0 |
|
|
872 |
ims.append(im) |
|
|
873 |
|
|
|
874 |
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction |
|
|
875 |
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections |
|
|
876 |
|
|
|
877 |
return x |
|
|
878 |
|
|
|
879 |
|
|
|
880 |
def increment_path(path, exist_ok=True, sep=''): |
|
|
881 |
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. |
|
|
882 |
path = Path(path) # os-agnostic |
|
|
883 |
if (path.exists() and exist_ok) or (not path.exists()): |
|
|
884 |
return str(path) |
|
|
885 |
else: |
|
|
886 |
dirs = glob.glob(f"{path}{sep}*") # similar paths |
|
|
887 |
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] |
|
|
888 |
i = [int(m.groups()[0]) for m in matches if m] # indices |
|
|
889 |
n = max(i) + 1 if i else 2 # increment number |
|
|
890 |
return f"{path}{sep}{n}" # update path |