|
a |
|
b/landmark_extraction/utils/datasets.py |
|
|
1 |
# Dataset utils and dataloaders |
|
|
2 |
|
|
|
3 |
import glob |
|
|
4 |
import logging |
|
|
5 |
import math |
|
|
6 |
import os |
|
|
7 |
import random |
|
|
8 |
import shutil |
|
|
9 |
import time |
|
|
10 |
from itertools import repeat |
|
|
11 |
from multiprocessing.pool import ThreadPool |
|
|
12 |
from pathlib import Path |
|
|
13 |
from threading import Thread |
|
|
14 |
|
|
|
15 |
import cv2 |
|
|
16 |
import numpy as np |
|
|
17 |
import torch |
|
|
18 |
import torch.nn.functional as F |
|
|
19 |
from PIL import Image, ExifTags |
|
|
20 |
from torch.utils.data import Dataset |
|
|
21 |
from tqdm import tqdm |
|
|
22 |
|
|
|
23 |
import pickle |
|
|
24 |
from copy import deepcopy |
|
|
25 |
#from pycocotools import mask as maskUtils |
|
|
26 |
from torchvision.utils import save_image |
|
|
27 |
from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align |
|
|
28 |
|
|
|
29 |
from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \ |
|
|
30 |
resample_segments, clean_str |
|
|
31 |
from utils.torch_utils import torch_distributed_zero_first |
|
|
32 |
|
|
|
33 |
# Parameters |
|
|
34 |
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' |
|
|
35 |
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes |
|
|
36 |
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes |
|
|
37 |
logger = logging.getLogger(__name__) |
|
|
38 |
|
|
|
39 |
# Get orientation exif tag |
|
|
40 |
for orientation in ExifTags.TAGS.keys(): |
|
|
41 |
if ExifTags.TAGS[orientation] == 'Orientation': |
|
|
42 |
break |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def get_hash(files): |
|
|
46 |
# Returns a single hash value of a list of files |
|
|
47 |
return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def exif_size(img): |
|
|
51 |
# Returns exif-corrected PIL size |
|
|
52 |
s = img.size # (width, height) |
|
|
53 |
try: |
|
|
54 |
rotation = dict(img._getexif().items())[orientation] |
|
|
55 |
if rotation == 6: # rotation 270 |
|
|
56 |
s = (s[1], s[0]) |
|
|
57 |
elif rotation == 8: # rotation 90 |
|
|
58 |
s = (s[1], s[0]) |
|
|
59 |
except: |
|
|
60 |
pass |
|
|
61 |
|
|
|
62 |
return s |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, |
|
|
66 |
rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): |
|
|
67 |
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache |
|
|
68 |
with torch_distributed_zero_first(rank): |
|
|
69 |
dataset = LoadImagesAndLabels(path, imgsz, batch_size, |
|
|
70 |
augment=augment, # augment images |
|
|
71 |
hyp=hyp, # augmentation hyperparameters |
|
|
72 |
rect=rect, # rectangular training |
|
|
73 |
cache_images=cache, |
|
|
74 |
single_cls=opt.single_cls, |
|
|
75 |
stride=int(stride), |
|
|
76 |
pad=pad, |
|
|
77 |
image_weights=image_weights, |
|
|
78 |
prefix=prefix) |
|
|
79 |
|
|
|
80 |
batch_size = min(batch_size, len(dataset)) |
|
|
81 |
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers |
|
|
82 |
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None |
|
|
83 |
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader |
|
|
84 |
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() |
|
|
85 |
dataloader = loader(dataset, |
|
|
86 |
batch_size=batch_size, |
|
|
87 |
num_workers=nw, |
|
|
88 |
sampler=sampler, |
|
|
89 |
pin_memory=True, |
|
|
90 |
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) |
|
|
91 |
return dataloader, dataset |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): |
|
|
95 |
""" Dataloader that reuses workers |
|
|
96 |
|
|
|
97 |
Uses same syntax as vanilla DataLoader |
|
|
98 |
""" |
|
|
99 |
|
|
|
100 |
def __init__(self, *args, **kwargs): |
|
|
101 |
super().__init__(*args, **kwargs) |
|
|
102 |
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) |
|
|
103 |
self.iterator = super().__iter__() |
|
|
104 |
|
|
|
105 |
def __len__(self): |
|
|
106 |
return len(self.batch_sampler.sampler) |
|
|
107 |
|
|
|
108 |
def __iter__(self): |
|
|
109 |
for i in range(len(self)): |
|
|
110 |
yield next(self.iterator) |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
class _RepeatSampler(object): |
|
|
114 |
""" Sampler that repeats forever |
|
|
115 |
|
|
|
116 |
Args: |
|
|
117 |
sampler (Sampler) |
|
|
118 |
""" |
|
|
119 |
|
|
|
120 |
def __init__(self, sampler): |
|
|
121 |
self.sampler = sampler |
|
|
122 |
|
|
|
123 |
def __iter__(self): |
|
|
124 |
while True: |
|
|
125 |
yield from iter(self.sampler) |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
class LoadImages: # for inference |
|
|
129 |
def __init__(self, path, img_size=640, stride=32): |
|
|
130 |
p = str(Path(path).absolute()) # os-agnostic absolute path |
|
|
131 |
if '*' in p: |
|
|
132 |
files = sorted(glob.glob(p, recursive=True)) # glob |
|
|
133 |
elif os.path.isdir(p): |
|
|
134 |
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir |
|
|
135 |
elif os.path.isfile(p): |
|
|
136 |
files = [p] # files |
|
|
137 |
else: |
|
|
138 |
raise Exception(f'ERROR: {p} does not exist') |
|
|
139 |
|
|
|
140 |
images = [x for x in files if x.split('.')[-1].lower() in img_formats] |
|
|
141 |
videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] |
|
|
142 |
ni, nv = len(images), len(videos) |
|
|
143 |
|
|
|
144 |
self.img_size = img_size |
|
|
145 |
self.stride = stride |
|
|
146 |
self.files = images + videos |
|
|
147 |
self.nf = ni + nv # number of files |
|
|
148 |
self.video_flag = [False] * ni + [True] * nv |
|
|
149 |
self.mode = 'image' |
|
|
150 |
if any(videos): |
|
|
151 |
self.new_video(videos[0]) # new video |
|
|
152 |
else: |
|
|
153 |
self.cap = None |
|
|
154 |
assert self.nf > 0, f'No images or videos found in {p}. ' \ |
|
|
155 |
f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' |
|
|
156 |
|
|
|
157 |
def __iter__(self): |
|
|
158 |
self.count = 0 |
|
|
159 |
return self |
|
|
160 |
|
|
|
161 |
def __next__(self): |
|
|
162 |
if self.count == self.nf: |
|
|
163 |
raise StopIteration |
|
|
164 |
path = self.files[self.count] |
|
|
165 |
|
|
|
166 |
if self.video_flag[self.count]: |
|
|
167 |
# Read video |
|
|
168 |
self.mode = 'video' |
|
|
169 |
ret_val, img0 = self.cap.read() |
|
|
170 |
if not ret_val: |
|
|
171 |
self.count += 1 |
|
|
172 |
self.cap.release() |
|
|
173 |
if self.count == self.nf: # last video |
|
|
174 |
raise StopIteration |
|
|
175 |
else: |
|
|
176 |
path = self.files[self.count] |
|
|
177 |
self.new_video(path) |
|
|
178 |
ret_val, img0 = self.cap.read() |
|
|
179 |
|
|
|
180 |
self.frame += 1 |
|
|
181 |
print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='') |
|
|
182 |
|
|
|
183 |
else: |
|
|
184 |
# Read image |
|
|
185 |
self.count += 1 |
|
|
186 |
img0 = cv2.imread(path) # BGR |
|
|
187 |
assert img0 is not None, 'Image Not Found ' + path |
|
|
188 |
#print(f'image {self.count}/{self.nf} {path}: ', end='') |
|
|
189 |
|
|
|
190 |
# Padded resize |
|
|
191 |
img = letterbox(img0, self.img_size, stride=self.stride)[0] |
|
|
192 |
|
|
|
193 |
# Convert |
|
|
194 |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|
|
195 |
img = np.ascontiguousarray(img) |
|
|
196 |
|
|
|
197 |
return path, img, img0, self.cap |
|
|
198 |
|
|
|
199 |
def new_video(self, path): |
|
|
200 |
self.frame = 0 |
|
|
201 |
self.cap = cv2.VideoCapture(path) |
|
|
202 |
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
203 |
|
|
|
204 |
def __len__(self): |
|
|
205 |
return self.nf # number of files |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
class LoadWebcam: # for inference |
|
|
209 |
def __init__(self, pipe='0', img_size=640, stride=32): |
|
|
210 |
self.img_size = img_size |
|
|
211 |
self.stride = stride |
|
|
212 |
|
|
|
213 |
if pipe.isnumeric(): |
|
|
214 |
pipe = eval(pipe) # local camera |
|
|
215 |
# pipe = 'rtsp://192.168.1.64/1' # IP camera |
|
|
216 |
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login |
|
|
217 |
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera |
|
|
218 |
|
|
|
219 |
self.pipe = pipe |
|
|
220 |
self.cap = cv2.VideoCapture(pipe) # video capture object |
|
|
221 |
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size |
|
|
222 |
|
|
|
223 |
def __iter__(self): |
|
|
224 |
self.count = -1 |
|
|
225 |
return self |
|
|
226 |
|
|
|
227 |
def __next__(self): |
|
|
228 |
self.count += 1 |
|
|
229 |
if cv2.waitKey(1) == ord('q'): # q to quit |
|
|
230 |
self.cap.release() |
|
|
231 |
cv2.destroyAllWindows() |
|
|
232 |
raise StopIteration |
|
|
233 |
|
|
|
234 |
# Read frame |
|
|
235 |
if self.pipe == 0: # local camera |
|
|
236 |
ret_val, img0 = self.cap.read() |
|
|
237 |
img0 = cv2.flip(img0, 1) # flip left-right |
|
|
238 |
else: # IP camera |
|
|
239 |
n = 0 |
|
|
240 |
while True: |
|
|
241 |
n += 1 |
|
|
242 |
self.cap.grab() |
|
|
243 |
if n % 30 == 0: # skip frames |
|
|
244 |
ret_val, img0 = self.cap.retrieve() |
|
|
245 |
if ret_val: |
|
|
246 |
break |
|
|
247 |
|
|
|
248 |
# Print |
|
|
249 |
assert ret_val, f'Camera Error {self.pipe}' |
|
|
250 |
img_path = 'webcam.jpg' |
|
|
251 |
print(f'webcam {self.count}: ', end='') |
|
|
252 |
|
|
|
253 |
# Padded resize |
|
|
254 |
img = letterbox(img0, self.img_size, stride=self.stride)[0] |
|
|
255 |
|
|
|
256 |
# Convert |
|
|
257 |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|
|
258 |
img = np.ascontiguousarray(img) |
|
|
259 |
|
|
|
260 |
return img_path, img, img0, None |
|
|
261 |
|
|
|
262 |
def __len__(self): |
|
|
263 |
return 0 |
|
|
264 |
|
|
|
265 |
|
|
|
266 |
class LoadStreams: # multiple IP or RTSP cameras |
|
|
267 |
def __init__(self, sources='streams.txt', img_size=640, stride=32): |
|
|
268 |
self.mode = 'stream' |
|
|
269 |
self.img_size = img_size |
|
|
270 |
self.stride = stride |
|
|
271 |
|
|
|
272 |
if os.path.isfile(sources): |
|
|
273 |
with open(sources, 'r') as f: |
|
|
274 |
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] |
|
|
275 |
else: |
|
|
276 |
sources = [sources] |
|
|
277 |
|
|
|
278 |
n = len(sources) |
|
|
279 |
self.imgs = [None] * n |
|
|
280 |
self.sources = [clean_str(x) for x in sources] # clean source names for later |
|
|
281 |
for i, s in enumerate(sources): |
|
|
282 |
# Start the thread to read frames from the video stream |
|
|
283 |
print(f'{i + 1}/{n}: {s}... ', end='') |
|
|
284 |
url = eval(s) if s.isnumeric() else s |
|
|
285 |
if 'youtube.com/' in str(url) or 'youtu.be/' in str(url): # if source is YouTube video |
|
|
286 |
check_requirements(('pafy', 'youtube_dl')) |
|
|
287 |
import pafy |
|
|
288 |
url = pafy.new(url).getbest(preftype="mp4").url |
|
|
289 |
cap = cv2.VideoCapture(url) |
|
|
290 |
assert cap.isOpened(), f'Failed to open {s}' |
|
|
291 |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
|
292 |
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
|
293 |
self.fps = cap.get(cv2.CAP_PROP_FPS) % 100 |
|
|
294 |
|
|
|
295 |
_, self.imgs[i] = cap.read() # guarantee first frame |
|
|
296 |
thread = Thread(target=self.update, args=([i, cap]), daemon=True) |
|
|
297 |
print(f' success ({w}x{h} at {self.fps:.2f} FPS).') |
|
|
298 |
thread.start() |
|
|
299 |
print('') # newline |
|
|
300 |
|
|
|
301 |
# check for common shapes |
|
|
302 |
s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes |
|
|
303 |
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal |
|
|
304 |
if not self.rect: |
|
|
305 |
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') |
|
|
306 |
|
|
|
307 |
def update(self, index, cap): |
|
|
308 |
# Read next stream frame in a daemon thread |
|
|
309 |
n = 0 |
|
|
310 |
while cap.isOpened(): |
|
|
311 |
n += 1 |
|
|
312 |
# _, self.imgs[index] = cap.read() |
|
|
313 |
cap.grab() |
|
|
314 |
if n == 4: # read every 4th frame |
|
|
315 |
success, im = cap.retrieve() |
|
|
316 |
self.imgs[index] = im if success else self.imgs[index] * 0 |
|
|
317 |
n = 0 |
|
|
318 |
time.sleep(1 / self.fps) # wait time |
|
|
319 |
|
|
|
320 |
def __iter__(self): |
|
|
321 |
self.count = -1 |
|
|
322 |
return self |
|
|
323 |
|
|
|
324 |
def __next__(self): |
|
|
325 |
self.count += 1 |
|
|
326 |
img0 = self.imgs.copy() |
|
|
327 |
if cv2.waitKey(1) == ord('q'): # q to quit |
|
|
328 |
cv2.destroyAllWindows() |
|
|
329 |
raise StopIteration |
|
|
330 |
|
|
|
331 |
# Letterbox |
|
|
332 |
img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] |
|
|
333 |
|
|
|
334 |
# Stack |
|
|
335 |
img = np.stack(img, 0) |
|
|
336 |
|
|
|
337 |
# Convert |
|
|
338 |
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416 |
|
|
339 |
img = np.ascontiguousarray(img) |
|
|
340 |
|
|
|
341 |
return self.sources, img, img0, None |
|
|
342 |
|
|
|
343 |
def __len__(self): |
|
|
344 |
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years |
|
|
345 |
|
|
|
346 |
|
|
|
347 |
def img2label_paths(img_paths): |
|
|
348 |
# Define label paths as a function of image paths |
|
|
349 |
sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings |
|
|
350 |
return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths] |
|
|
351 |
|
|
|
352 |
|
|
|
353 |
class LoadImagesAndLabels(Dataset): # for training/testing |
|
|
354 |
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, |
|
|
355 |
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): |
|
|
356 |
self.img_size = img_size |
|
|
357 |
self.augment = augment |
|
|
358 |
self.hyp = hyp |
|
|
359 |
self.image_weights = image_weights |
|
|
360 |
self.rect = False if image_weights else rect |
|
|
361 |
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) |
|
|
362 |
self.mosaic_border = [-img_size // 2, -img_size // 2] |
|
|
363 |
self.stride = stride |
|
|
364 |
self.path = path |
|
|
365 |
#self.albumentations = Albumentations() if augment else None |
|
|
366 |
|
|
|
367 |
try: |
|
|
368 |
f = [] # image files |
|
|
369 |
for p in path if isinstance(path, list) else [path]: |
|
|
370 |
p = Path(p) # os-agnostic |
|
|
371 |
if p.is_dir(): # dir |
|
|
372 |
f += glob.glob(str(p / '**' / '*.*'), recursive=True) |
|
|
373 |
# f = list(p.rglob('**/*.*')) # pathlib |
|
|
374 |
elif p.is_file(): # file |
|
|
375 |
with open(p, 'r') as t: |
|
|
376 |
t = t.read().strip().splitlines() |
|
|
377 |
parent = str(p.parent) + os.sep |
|
|
378 |
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path |
|
|
379 |
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) |
|
|
380 |
else: |
|
|
381 |
raise Exception(f'{prefix}{p} does not exist') |
|
|
382 |
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) |
|
|
383 |
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib |
|
|
384 |
assert self.img_files, f'{prefix}No images found' |
|
|
385 |
except Exception as e: |
|
|
386 |
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') |
|
|
387 |
|
|
|
388 |
# Check cache |
|
|
389 |
self.label_files = img2label_paths(self.img_files) # labels |
|
|
390 |
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels |
|
|
391 |
if cache_path.is_file(): |
|
|
392 |
cache, exists = torch.load(cache_path), True # load |
|
|
393 |
#if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed |
|
|
394 |
# cache, exists = self.cache_labels(cache_path, prefix), False # re-cache |
|
|
395 |
else: |
|
|
396 |
cache, exists = self.cache_labels(cache_path, prefix), False # cache |
|
|
397 |
|
|
|
398 |
# Display cache |
|
|
399 |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total |
|
|
400 |
if exists: |
|
|
401 |
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" |
|
|
402 |
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results |
|
|
403 |
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' |
|
|
404 |
|
|
|
405 |
# Read cache |
|
|
406 |
cache.pop('hash') # remove hash |
|
|
407 |
cache.pop('version') # remove version |
|
|
408 |
labels, shapes, self.segments = zip(*cache.values()) |
|
|
409 |
self.labels = list(labels) |
|
|
410 |
self.shapes = np.array(shapes, dtype=np.float64) |
|
|
411 |
self.img_files = list(cache.keys()) # update |
|
|
412 |
self.label_files = img2label_paths(cache.keys()) # update |
|
|
413 |
if single_cls: |
|
|
414 |
for x in self.labels: |
|
|
415 |
x[:, 0] = 0 |
|
|
416 |
|
|
|
417 |
n = len(shapes) # number of images |
|
|
418 |
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index |
|
|
419 |
nb = bi[-1] + 1 # number of batches |
|
|
420 |
self.batch = bi # batch index of image |
|
|
421 |
self.n = n |
|
|
422 |
self.indices = range(n) |
|
|
423 |
|
|
|
424 |
# Rectangular Training |
|
|
425 |
if self.rect: |
|
|
426 |
# Sort by aspect ratio |
|
|
427 |
s = self.shapes # wh |
|
|
428 |
ar = s[:, 1] / s[:, 0] # aspect ratio |
|
|
429 |
irect = ar.argsort() |
|
|
430 |
self.img_files = [self.img_files[i] for i in irect] |
|
|
431 |
self.label_files = [self.label_files[i] for i in irect] |
|
|
432 |
self.labels = [self.labels[i] for i in irect] |
|
|
433 |
self.shapes = s[irect] # wh |
|
|
434 |
ar = ar[irect] |
|
|
435 |
|
|
|
436 |
# Set training image shapes |
|
|
437 |
shapes = [[1, 1]] * nb |
|
|
438 |
for i in range(nb): |
|
|
439 |
ari = ar[bi == i] |
|
|
440 |
mini, maxi = ari.min(), ari.max() |
|
|
441 |
if maxi < 1: |
|
|
442 |
shapes[i] = [maxi, 1] |
|
|
443 |
elif mini > 1: |
|
|
444 |
shapes[i] = [1, 1 / mini] |
|
|
445 |
|
|
|
446 |
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride |
|
|
447 |
|
|
|
448 |
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) |
|
|
449 |
self.imgs = [None] * n |
|
|
450 |
if cache_images: |
|
|
451 |
if cache_images == 'disk': |
|
|
452 |
self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') |
|
|
453 |
self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] |
|
|
454 |
self.im_cache_dir.mkdir(parents=True, exist_ok=True) |
|
|
455 |
gb = 0 # Gigabytes of cached images |
|
|
456 |
self.img_hw0, self.img_hw = [None] * n, [None] * n |
|
|
457 |
results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) |
|
|
458 |
pbar = tqdm(enumerate(results), total=n) |
|
|
459 |
for i, x in pbar: |
|
|
460 |
if cache_images == 'disk': |
|
|
461 |
if not self.img_npy[i].exists(): |
|
|
462 |
np.save(self.img_npy[i].as_posix(), x[0]) |
|
|
463 |
gb += self.img_npy[i].stat().st_size |
|
|
464 |
else: |
|
|
465 |
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x |
|
|
466 |
gb += self.imgs[i].nbytes |
|
|
467 |
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' |
|
|
468 |
pbar.close() |
|
|
469 |
|
|
|
470 |
def cache_labels(self, path=Path('./labels.cache'), prefix=''): |
|
|
471 |
# Cache dataset labels, check images and read shapes |
|
|
472 |
x = {} # dict |
|
|
473 |
nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate |
|
|
474 |
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) |
|
|
475 |
for i, (im_file, lb_file) in enumerate(pbar): |
|
|
476 |
try: |
|
|
477 |
# verify images |
|
|
478 |
im = Image.open(im_file) |
|
|
479 |
im.verify() # PIL verify |
|
|
480 |
shape = exif_size(im) # image size |
|
|
481 |
segments = [] # instance segments |
|
|
482 |
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' |
|
|
483 |
assert im.format.lower() in img_formats, f'invalid image format {im.format}' |
|
|
484 |
|
|
|
485 |
# verify labels |
|
|
486 |
if os.path.isfile(lb_file): |
|
|
487 |
nf += 1 # label found |
|
|
488 |
with open(lb_file, 'r') as f: |
|
|
489 |
l = [x.split() for x in f.read().strip().splitlines()] |
|
|
490 |
if any([len(x) > 8 for x in l]): # is segment |
|
|
491 |
classes = np.array([x[0] for x in l], dtype=np.float32) |
|
|
492 |
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...) |
|
|
493 |
l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) |
|
|
494 |
l = np.array(l, dtype=np.float32) |
|
|
495 |
if len(l): |
|
|
496 |
assert l.shape[1] == 5, 'labels require 5 columns each' |
|
|
497 |
assert (l >= 0).all(), 'negative labels' |
|
|
498 |
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
|
499 |
assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' |
|
|
500 |
else: |
|
|
501 |
ne += 1 # label empty |
|
|
502 |
l = np.zeros((0, 5), dtype=np.float32) |
|
|
503 |
else: |
|
|
504 |
nm += 1 # label missing |
|
|
505 |
l = np.zeros((0, 5), dtype=np.float32) |
|
|
506 |
x[im_file] = [l, shape, segments] |
|
|
507 |
except Exception as e: |
|
|
508 |
nc += 1 |
|
|
509 |
print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') |
|
|
510 |
|
|
|
511 |
pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \ |
|
|
512 |
f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" |
|
|
513 |
pbar.close() |
|
|
514 |
|
|
|
515 |
if nf == 0: |
|
|
516 |
print(f'{prefix}WARNING: No labels found in {path}. See {help_url}') |
|
|
517 |
|
|
|
518 |
x['hash'] = get_hash(self.label_files + self.img_files) |
|
|
519 |
x['results'] = nf, nm, ne, nc, i + 1 |
|
|
520 |
x['version'] = 0.1 # cache version |
|
|
521 |
torch.save(x, path) # save for next time |
|
|
522 |
logging.info(f'{prefix}New cache created: {path}') |
|
|
523 |
return x |
|
|
524 |
|
|
|
525 |
def __len__(self): |
|
|
526 |
return len(self.img_files) |
|
|
527 |
|
|
|
528 |
# def __iter__(self): |
|
|
529 |
# self.count = -1 |
|
|
530 |
# print('ran dataset iter') |
|
|
531 |
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) |
|
|
532 |
# return self |
|
|
533 |
|
|
|
534 |
def __getitem__(self, index): |
|
|
535 |
index = self.indices[index] # linear, shuffled, or image_weights |
|
|
536 |
|
|
|
537 |
hyp = self.hyp |
|
|
538 |
mosaic = self.mosaic and random.random() < hyp['mosaic'] |
|
|
539 |
if mosaic: |
|
|
540 |
# Load mosaic |
|
|
541 |
if random.random() < 0.8: |
|
|
542 |
img, labels = load_mosaic(self, index) |
|
|
543 |
else: |
|
|
544 |
img, labels = load_mosaic9(self, index) |
|
|
545 |
shapes = None |
|
|
546 |
|
|
|
547 |
# MixUp https://arxiv.org/pdf/1710.09412.pdf |
|
|
548 |
if random.random() < hyp['mixup']: |
|
|
549 |
if random.random() < 0.8: |
|
|
550 |
img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1)) |
|
|
551 |
else: |
|
|
552 |
img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1)) |
|
|
553 |
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 |
|
|
554 |
img = (img * r + img2 * (1 - r)).astype(np.uint8) |
|
|
555 |
labels = np.concatenate((labels, labels2), 0) |
|
|
556 |
|
|
|
557 |
else: |
|
|
558 |
# Load image |
|
|
559 |
img, (h0, w0), (h, w) = load_image(self, index) |
|
|
560 |
|
|
|
561 |
# Letterbox |
|
|
562 |
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape |
|
|
563 |
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) |
|
|
564 |
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling |
|
|
565 |
|
|
|
566 |
labels = self.labels[index].copy() |
|
|
567 |
if labels.size: # normalized xywh to pixel xyxy format |
|
|
568 |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) |
|
|
569 |
|
|
|
570 |
if self.augment: |
|
|
571 |
# Augment imagespace |
|
|
572 |
if not mosaic: |
|
|
573 |
img, labels = random_perspective(img, labels, |
|
|
574 |
degrees=hyp['degrees'], |
|
|
575 |
translate=hyp['translate'], |
|
|
576 |
scale=hyp['scale'], |
|
|
577 |
shear=hyp['shear'], |
|
|
578 |
perspective=hyp['perspective']) |
|
|
579 |
|
|
|
580 |
|
|
|
581 |
#img, labels = self.albumentations(img, labels) |
|
|
582 |
|
|
|
583 |
# Augment colorspace |
|
|
584 |
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) |
|
|
585 |
|
|
|
586 |
# Apply cutouts |
|
|
587 |
# if random.random() < 0.9: |
|
|
588 |
# labels = cutout(img, labels) |
|
|
589 |
|
|
|
590 |
if random.random() < hyp['paste_in']: |
|
|
591 |
sample_labels, sample_images, sample_masks = [], [], [] |
|
|
592 |
while len(sample_labels) < 30: |
|
|
593 |
sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1)) |
|
|
594 |
sample_labels += sample_labels_ |
|
|
595 |
sample_images += sample_images_ |
|
|
596 |
sample_masks += sample_masks_ |
|
|
597 |
#print(len(sample_labels)) |
|
|
598 |
if len(sample_labels) == 0: |
|
|
599 |
break |
|
|
600 |
labels = pastein(img, labels, sample_labels, sample_images, sample_masks) |
|
|
601 |
|
|
|
602 |
nL = len(labels) # number of labels |
|
|
603 |
if nL: |
|
|
604 |
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh |
|
|
605 |
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 |
|
|
606 |
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 |
|
|
607 |
|
|
|
608 |
if self.augment: |
|
|
609 |
# flip up-down |
|
|
610 |
if random.random() < hyp['flipud']: |
|
|
611 |
img = np.flipud(img) |
|
|
612 |
if nL: |
|
|
613 |
labels[:, 2] = 1 - labels[:, 2] |
|
|
614 |
|
|
|
615 |
# flip left-right |
|
|
616 |
if random.random() < hyp['fliplr']: |
|
|
617 |
img = np.fliplr(img) |
|
|
618 |
if nL: |
|
|
619 |
labels[:, 1] = 1 - labels[:, 1] |
|
|
620 |
|
|
|
621 |
labels_out = torch.zeros((nL, 6)) |
|
|
622 |
if nL: |
|
|
623 |
labels_out[:, 1:] = torch.from_numpy(labels) |
|
|
624 |
|
|
|
625 |
# Convert |
|
|
626 |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 |
|
|
627 |
img = np.ascontiguousarray(img) |
|
|
628 |
|
|
|
629 |
return torch.from_numpy(img), labels_out, self.img_files[index], shapes |
|
|
630 |
|
|
|
631 |
@staticmethod |
|
|
632 |
def collate_fn(batch): |
|
|
633 |
img, label, path, shapes = zip(*batch) # transposed |
|
|
634 |
for i, l in enumerate(label): |
|
|
635 |
l[:, 0] = i # add target image index for build_targets() |
|
|
636 |
return torch.stack(img, 0), torch.cat(label, 0), path, shapes |
|
|
637 |
|
|
|
638 |
@staticmethod |
|
|
639 |
def collate_fn4(batch): |
|
|
640 |
img, label, path, shapes = zip(*batch) # transposed |
|
|
641 |
n = len(shapes) // 4 |
|
|
642 |
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] |
|
|
643 |
|
|
|
644 |
ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) |
|
|
645 |
wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) |
|
|
646 |
s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale |
|
|
647 |
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW |
|
|
648 |
i *= 4 |
|
|
649 |
if random.random() < 0.5: |
|
|
650 |
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ |
|
|
651 |
0].type(img[i].type()) |
|
|
652 |
l = label[i] |
|
|
653 |
else: |
|
|
654 |
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) |
|
|
655 |
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s |
|
|
656 |
img4.append(im) |
|
|
657 |
label4.append(l) |
|
|
658 |
|
|
|
659 |
for i, l in enumerate(label4): |
|
|
660 |
l[:, 0] = i # add target image index for build_targets() |
|
|
661 |
|
|
|
662 |
return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 |
|
|
663 |
|
|
|
664 |
|
|
|
665 |
# Ancillary functions -------------------------------------------------------------------------------------------------- |
|
|
666 |
def load_image(self, index): |
|
|
667 |
# loads 1 image from dataset, returns img, original hw, resized hw |
|
|
668 |
img = self.imgs[index] |
|
|
669 |
if img is None: # not cached |
|
|
670 |
path = self.img_files[index] |
|
|
671 |
img = cv2.imread(path) # BGR |
|
|
672 |
assert img is not None, 'Image Not Found ' + path |
|
|
673 |
h0, w0 = img.shape[:2] # orig hw |
|
|
674 |
r = self.img_size / max(h0, w0) # resize image to img_size |
|
|
675 |
if r != 1: # always resize down, only resize up if training with augmentation |
|
|
676 |
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR |
|
|
677 |
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) |
|
|
678 |
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized |
|
|
679 |
else: |
|
|
680 |
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized |
|
|
681 |
|
|
|
682 |
|
|
|
683 |
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): |
|
|
684 |
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains |
|
|
685 |
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
|
686 |
dtype = img.dtype # uint8 |
|
|
687 |
|
|
|
688 |
x = np.arange(0, 256, dtype=np.int16) |
|
|
689 |
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
|
690 |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
|
691 |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
692 |
|
|
|
693 |
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) |
|
|
694 |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed |
|
|
695 |
|
|
|
696 |
|
|
|
697 |
def hist_equalize(img, clahe=True, bgr=False): |
|
|
698 |
# Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 |
|
|
699 |
yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
|
700 |
if clahe: |
|
|
701 |
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
|
702 |
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
|
703 |
else: |
|
|
704 |
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram |
|
|
705 |
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB |
|
|
706 |
|
|
|
707 |
|
|
|
708 |
def load_mosaic(self, index): |
|
|
709 |
# loads images in a 4-mosaic |
|
|
710 |
|
|
|
711 |
labels4, segments4 = [], [] |
|
|
712 |
s = self.img_size |
|
|
713 |
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y |
|
|
714 |
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices |
|
|
715 |
for i, index in enumerate(indices): |
|
|
716 |
# Load image |
|
|
717 |
img, _, (h, w) = load_image(self, index) |
|
|
718 |
|
|
|
719 |
# place img in img4 |
|
|
720 |
if i == 0: # top left |
|
|
721 |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles |
|
|
722 |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) |
|
|
723 |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) |
|
|
724 |
elif i == 1: # top right |
|
|
725 |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
|
726 |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
|
727 |
elif i == 2: # bottom left |
|
|
728 |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
|
729 |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
|
730 |
elif i == 3: # bottom right |
|
|
731 |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
|
732 |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
733 |
|
|
|
734 |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] |
|
|
735 |
padw = x1a - x1b |
|
|
736 |
padh = y1a - y1b |
|
|
737 |
|
|
|
738 |
# Labels |
|
|
739 |
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
|
740 |
if labels.size: |
|
|
741 |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format |
|
|
742 |
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] |
|
|
743 |
labels4.append(labels) |
|
|
744 |
segments4.extend(segments) |
|
|
745 |
|
|
|
746 |
# Concat/clip labels |
|
|
747 |
labels4 = np.concatenate(labels4, 0) |
|
|
748 |
for x in (labels4[:, 1:], *segments4): |
|
|
749 |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() |
|
|
750 |
# img4, labels4 = replicate(img4, labels4) # replicate |
|
|
751 |
|
|
|
752 |
# Augment |
|
|
753 |
#img4, labels4, segments4 = remove_background(img4, labels4, segments4) |
|
|
754 |
#sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste']) |
|
|
755 |
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste']) |
|
|
756 |
img4, labels4 = random_perspective(img4, labels4, segments4, |
|
|
757 |
degrees=self.hyp['degrees'], |
|
|
758 |
translate=self.hyp['translate'], |
|
|
759 |
scale=self.hyp['scale'], |
|
|
760 |
shear=self.hyp['shear'], |
|
|
761 |
perspective=self.hyp['perspective'], |
|
|
762 |
border=self.mosaic_border) # border to remove |
|
|
763 |
|
|
|
764 |
return img4, labels4 |
|
|
765 |
|
|
|
766 |
|
|
|
767 |
def load_mosaic9(self, index): |
|
|
768 |
# loads images in a 9-mosaic |
|
|
769 |
|
|
|
770 |
labels9, segments9 = [], [] |
|
|
771 |
s = self.img_size |
|
|
772 |
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices |
|
|
773 |
for i, index in enumerate(indices): |
|
|
774 |
# Load image |
|
|
775 |
img, _, (h, w) = load_image(self, index) |
|
|
776 |
|
|
|
777 |
# place img in img9 |
|
|
778 |
if i == 0: # center |
|
|
779 |
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles |
|
|
780 |
h0, w0 = h, w |
|
|
781 |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates |
|
|
782 |
elif i == 1: # top |
|
|
783 |
c = s, s - h, s + w, s |
|
|
784 |
elif i == 2: # top right |
|
|
785 |
c = s + wp, s - h, s + wp + w, s |
|
|
786 |
elif i == 3: # right |
|
|
787 |
c = s + w0, s, s + w0 + w, s + h |
|
|
788 |
elif i == 4: # bottom right |
|
|
789 |
c = s + w0, s + hp, s + w0 + w, s + hp + h |
|
|
790 |
elif i == 5: # bottom |
|
|
791 |
c = s + w0 - w, s + h0, s + w0, s + h0 + h |
|
|
792 |
elif i == 6: # bottom left |
|
|
793 |
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h |
|
|
794 |
elif i == 7: # left |
|
|
795 |
c = s - w, s + h0 - h, s, s + h0 |
|
|
796 |
elif i == 8: # top left |
|
|
797 |
c = s - w, s + h0 - hp - h, s, s + h0 - hp |
|
|
798 |
|
|
|
799 |
padx, pady = c[:2] |
|
|
800 |
x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords |
|
|
801 |
|
|
|
802 |
# Labels |
|
|
803 |
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
|
804 |
if labels.size: |
|
|
805 |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format |
|
|
806 |
segments = [xyn2xy(x, w, h, padx, pady) for x in segments] |
|
|
807 |
labels9.append(labels) |
|
|
808 |
segments9.extend(segments) |
|
|
809 |
|
|
|
810 |
# Image |
|
|
811 |
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] |
|
|
812 |
hp, wp = h, w # height, width previous |
|
|
813 |
|
|
|
814 |
# Offset |
|
|
815 |
yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y |
|
|
816 |
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] |
|
|
817 |
|
|
|
818 |
# Concat/clip labels |
|
|
819 |
labels9 = np.concatenate(labels9, 0) |
|
|
820 |
labels9[:, [1, 3]] -= xc |
|
|
821 |
labels9[:, [2, 4]] -= yc |
|
|
822 |
c = np.array([xc, yc]) # centers |
|
|
823 |
segments9 = [x - c for x in segments9] |
|
|
824 |
|
|
|
825 |
for x in (labels9[:, 1:], *segments9): |
|
|
826 |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() |
|
|
827 |
# img9, labels9 = replicate(img9, labels9) # replicate |
|
|
828 |
|
|
|
829 |
# Augment |
|
|
830 |
#img9, labels9, segments9 = remove_background(img9, labels9, segments9) |
|
|
831 |
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste']) |
|
|
832 |
img9, labels9 = random_perspective(img9, labels9, segments9, |
|
|
833 |
degrees=self.hyp['degrees'], |
|
|
834 |
translate=self.hyp['translate'], |
|
|
835 |
scale=self.hyp['scale'], |
|
|
836 |
shear=self.hyp['shear'], |
|
|
837 |
perspective=self.hyp['perspective'], |
|
|
838 |
border=self.mosaic_border) # border to remove |
|
|
839 |
|
|
|
840 |
return img9, labels9 |
|
|
841 |
|
|
|
842 |
|
|
|
843 |
def load_samples(self, index): |
|
|
844 |
# loads images in a 4-mosaic |
|
|
845 |
|
|
|
846 |
labels4, segments4 = [], [] |
|
|
847 |
s = self.img_size |
|
|
848 |
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y |
|
|
849 |
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices |
|
|
850 |
for i, index in enumerate(indices): |
|
|
851 |
# Load image |
|
|
852 |
img, _, (h, w) = load_image(self, index) |
|
|
853 |
|
|
|
854 |
# place img in img4 |
|
|
855 |
if i == 0: # top left |
|
|
856 |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles |
|
|
857 |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) |
|
|
858 |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) |
|
|
859 |
elif i == 1: # top right |
|
|
860 |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
|
861 |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
|
862 |
elif i == 2: # bottom left |
|
|
863 |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
|
864 |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
|
865 |
elif i == 3: # bottom right |
|
|
866 |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
|
867 |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
868 |
|
|
|
869 |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] |
|
|
870 |
padw = x1a - x1b |
|
|
871 |
padh = y1a - y1b |
|
|
872 |
|
|
|
873 |
# Labels |
|
|
874 |
labels, segments = self.labels[index].copy(), self.segments[index].copy() |
|
|
875 |
if labels.size: |
|
|
876 |
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format |
|
|
877 |
segments = [xyn2xy(x, w, h, padw, padh) for x in segments] |
|
|
878 |
labels4.append(labels) |
|
|
879 |
segments4.extend(segments) |
|
|
880 |
|
|
|
881 |
# Concat/clip labels |
|
|
882 |
labels4 = np.concatenate(labels4, 0) |
|
|
883 |
for x in (labels4[:, 1:], *segments4): |
|
|
884 |
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() |
|
|
885 |
# img4, labels4 = replicate(img4, labels4) # replicate |
|
|
886 |
|
|
|
887 |
# Augment |
|
|
888 |
#img4, labels4, segments4 = remove_background(img4, labels4, segments4) |
|
|
889 |
sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5) |
|
|
890 |
|
|
|
891 |
return sample_labels, sample_images, sample_masks |
|
|
892 |
|
|
|
893 |
|
|
|
894 |
def copy_paste(img, labels, segments, probability=0.5): |
|
|
895 |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
|
896 |
n = len(segments) |
|
|
897 |
if probability and n: |
|
|
898 |
h, w, c = img.shape # height, width, channels |
|
|
899 |
im_new = np.zeros(img.shape, np.uint8) |
|
|
900 |
for j in random.sample(range(n), k=round(probability * n)): |
|
|
901 |
l, s = labels[j], segments[j] |
|
|
902 |
box = w - l[3], l[2], w - l[1], l[4] |
|
|
903 |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area |
|
|
904 |
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels |
|
|
905 |
labels = np.concatenate((labels, [[l[0], *box]]), 0) |
|
|
906 |
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) |
|
|
907 |
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) |
|
|
908 |
|
|
|
909 |
result = cv2.bitwise_and(src1=img, src2=im_new) |
|
|
910 |
result = cv2.flip(result, 1) # augment segments (flip left-right) |
|
|
911 |
i = result > 0 # pixels to replace |
|
|
912 |
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch |
|
|
913 |
img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug |
|
|
914 |
|
|
|
915 |
return img, labels, segments |
|
|
916 |
|
|
|
917 |
|
|
|
918 |
def remove_background(img, labels, segments): |
|
|
919 |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
|
920 |
n = len(segments) |
|
|
921 |
h, w, c = img.shape # height, width, channels |
|
|
922 |
im_new = np.zeros(img.shape, np.uint8) |
|
|
923 |
img_new = np.ones(img.shape, np.uint8) * 114 |
|
|
924 |
for j in range(n): |
|
|
925 |
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) |
|
|
926 |
|
|
|
927 |
result = cv2.bitwise_and(src1=img, src2=im_new) |
|
|
928 |
|
|
|
929 |
i = result > 0 # pixels to replace |
|
|
930 |
img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug |
|
|
931 |
|
|
|
932 |
return img_new, labels, segments |
|
|
933 |
|
|
|
934 |
|
|
|
935 |
def sample_segments(img, labels, segments, probability=0.5): |
|
|
936 |
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) |
|
|
937 |
n = len(segments) |
|
|
938 |
sample_labels = [] |
|
|
939 |
sample_images = [] |
|
|
940 |
sample_masks = [] |
|
|
941 |
if probability and n: |
|
|
942 |
h, w, c = img.shape # height, width, channels |
|
|
943 |
for j in random.sample(range(n), k=round(probability * n)): |
|
|
944 |
l, s = labels[j], segments[j] |
|
|
945 |
box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1) |
|
|
946 |
|
|
|
947 |
#print(box) |
|
|
948 |
if (box[2] <= box[0]) or (box[3] <= box[1]): |
|
|
949 |
continue |
|
|
950 |
|
|
|
951 |
sample_labels.append(l[0]) |
|
|
952 |
|
|
|
953 |
mask = np.zeros(img.shape, np.uint8) |
|
|
954 |
|
|
|
955 |
cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) |
|
|
956 |
sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:]) |
|
|
957 |
|
|
|
958 |
result = cv2.bitwise_and(src1=img, src2=mask) |
|
|
959 |
i = result > 0 # pixels to replace |
|
|
960 |
mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug |
|
|
961 |
#print(box) |
|
|
962 |
sample_images.append(mask[box[1]:box[3],box[0]:box[2],:]) |
|
|
963 |
|
|
|
964 |
return sample_labels, sample_images, sample_masks |
|
|
965 |
|
|
|
966 |
|
|
|
967 |
def replicate(img, labels): |
|
|
968 |
# Replicate labels |
|
|
969 |
h, w = img.shape[:2] |
|
|
970 |
boxes = labels[:, 1:].astype(int) |
|
|
971 |
x1, y1, x2, y2 = boxes.T |
|
|
972 |
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) |
|
|
973 |
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices |
|
|
974 |
x1b, y1b, x2b, y2b = boxes[i] |
|
|
975 |
bh, bw = y2b - y1b, x2b - x1b |
|
|
976 |
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y |
|
|
977 |
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
|
978 |
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] |
|
|
979 |
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
980 |
|
|
|
981 |
return img, labels |
|
|
982 |
|
|
|
983 |
|
|
|
984 |
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
985 |
# Resize and pad image while meeting stride-multiple constraints |
|
|
986 |
shape = img.shape[:2] # current shape [height, width] |
|
|
987 |
if isinstance(new_shape, int): |
|
|
988 |
new_shape = (new_shape, new_shape) |
|
|
989 |
|
|
|
990 |
# Scale ratio (new / old) |
|
|
991 |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
|
992 |
if not scaleup: # only scale down, do not scale up (for better test mAP) |
|
|
993 |
r = min(r, 1.0) |
|
|
994 |
|
|
|
995 |
# Compute padding |
|
|
996 |
ratio = r, r # width, height ratios |
|
|
997 |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
|
998 |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding |
|
|
999 |
if auto: # minimum rectangle |
|
|
1000 |
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding |
|
|
1001 |
elif scaleFill: # stretch |
|
|
1002 |
dw, dh = 0.0, 0.0 |
|
|
1003 |
new_unpad = (new_shape[1], new_shape[0]) |
|
|
1004 |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios |
|
|
1005 |
|
|
|
1006 |
dw /= 2 # divide padding into 2 sides |
|
|
1007 |
dh /= 2 |
|
|
1008 |
|
|
|
1009 |
if shape[::-1] != new_unpad: # resize |
|
|
1010 |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
|
1011 |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
|
1012 |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
|
1013 |
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border |
|
|
1014 |
return img, ratio, (dw, dh) |
|
|
1015 |
|
|
|
1016 |
|
|
|
1017 |
def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, |
|
|
1018 |
border=(0, 0)): |
|
|
1019 |
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) |
|
|
1020 |
# targets = [cls, xyxy] |
|
|
1021 |
|
|
|
1022 |
height = img.shape[0] + border[0] * 2 # shape(h,w,c) |
|
|
1023 |
width = img.shape[1] + border[1] * 2 |
|
|
1024 |
|
|
|
1025 |
# Center |
|
|
1026 |
C = np.eye(3) |
|
|
1027 |
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) |
|
|
1028 |
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) |
|
|
1029 |
|
|
|
1030 |
# Perspective |
|
|
1031 |
P = np.eye(3) |
|
|
1032 |
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) |
|
|
1033 |
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) |
|
|
1034 |
|
|
|
1035 |
# Rotation and Scale |
|
|
1036 |
R = np.eye(3) |
|
|
1037 |
a = random.uniform(-degrees, degrees) |
|
|
1038 |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations |
|
|
1039 |
s = random.uniform(1 - scale, 1.1 + scale) |
|
|
1040 |
# s = 2 ** random.uniform(-scale, scale) |
|
|
1041 |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
1042 |
|
|
|
1043 |
# Shear |
|
|
1044 |
S = np.eye(3) |
|
|
1045 |
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) |
|
|
1046 |
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) |
|
|
1047 |
|
|
|
1048 |
# Translation |
|
|
1049 |
T = np.eye(3) |
|
|
1050 |
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) |
|
|
1051 |
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) |
|
|
1052 |
|
|
|
1053 |
# Combined rotation matrix |
|
|
1054 |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT |
|
|
1055 |
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed |
|
|
1056 |
if perspective: |
|
|
1057 |
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
1058 |
else: # affine |
|
|
1059 |
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
1060 |
|
|
|
1061 |
# Visualize |
|
|
1062 |
# import matplotlib.pyplot as plt |
|
|
1063 |
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() |
|
|
1064 |
# ax[0].imshow(img[:, :, ::-1]) # base |
|
|
1065 |
# ax[1].imshow(img2[:, :, ::-1]) # warped |
|
|
1066 |
|
|
|
1067 |
# Transform label coordinates |
|
|
1068 |
n = len(targets) |
|
|
1069 |
if n: |
|
|
1070 |
use_segments = any(x.any() for x in segments) |
|
|
1071 |
new = np.zeros((n, 4)) |
|
|
1072 |
if use_segments: # warp segments |
|
|
1073 |
segments = resample_segments(segments) # upsample |
|
|
1074 |
for i, segment in enumerate(segments): |
|
|
1075 |
xy = np.ones((len(segment), 3)) |
|
|
1076 |
xy[:, :2] = segment |
|
|
1077 |
xy = xy @ M.T # transform |
|
|
1078 |
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine |
|
|
1079 |
|
|
|
1080 |
# clip |
|
|
1081 |
new[i] = segment2box(xy, width, height) |
|
|
1082 |
|
|
|
1083 |
else: # warp boxes |
|
|
1084 |
xy = np.ones((n * 4, 3)) |
|
|
1085 |
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 |
|
|
1086 |
xy = xy @ M.T # transform |
|
|
1087 |
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine |
|
|
1088 |
|
|
|
1089 |
# create new boxes |
|
|
1090 |
x = xy[:, [0, 2, 4, 6]] |
|
|
1091 |
y = xy[:, [1, 3, 5, 7]] |
|
|
1092 |
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T |
|
|
1093 |
|
|
|
1094 |
# clip |
|
|
1095 |
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) |
|
|
1096 |
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) |
|
|
1097 |
|
|
|
1098 |
# filter candidates |
|
|
1099 |
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) |
|
|
1100 |
targets = targets[i] |
|
|
1101 |
targets[:, 1:5] = new[i] |
|
|
1102 |
|
|
|
1103 |
return img, targets |
|
|
1104 |
|
|
|
1105 |
|
|
|
1106 |
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) |
|
|
1107 |
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio |
|
|
1108 |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
|
1109 |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
|
1110 |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio |
|
|
1111 |
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates |
|
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
def bbox_ioa(box1, box2): |
|
|
1115 |
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 |
|
|
1116 |
box2 = box2.transpose() |
|
|
1117 |
|
|
|
1118 |
# Get the coordinates of bounding boxes |
|
|
1119 |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] |
|
|
1120 |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] |
|
|
1121 |
|
|
|
1122 |
# Intersection area |
|
|
1123 |
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ |
|
|
1124 |
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) |
|
|
1125 |
|
|
|
1126 |
# box2 area |
|
|
1127 |
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 |
|
|
1128 |
|
|
|
1129 |
# Intersection over box2 area |
|
|
1130 |
return inter_area / box2_area |
|
|
1131 |
|
|
|
1132 |
|
|
|
1133 |
def cutout(image, labels): |
|
|
1134 |
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 |
|
|
1135 |
h, w = image.shape[:2] |
|
|
1136 |
|
|
|
1137 |
# create random masks |
|
|
1138 |
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction |
|
|
1139 |
for s in scales: |
|
|
1140 |
mask_h = random.randint(1, int(h * s)) |
|
|
1141 |
mask_w = random.randint(1, int(w * s)) |
|
|
1142 |
|
|
|
1143 |
# box |
|
|
1144 |
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
|
1145 |
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
|
1146 |
xmax = min(w, xmin + mask_w) |
|
|
1147 |
ymax = min(h, ymin + mask_h) |
|
|
1148 |
|
|
|
1149 |
# apply random color mask |
|
|
1150 |
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
1151 |
|
|
|
1152 |
# return unobscured labels |
|
|
1153 |
if len(labels) and s > 0.03: |
|
|
1154 |
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
|
1155 |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area |
|
|
1156 |
labels = labels[ioa < 0.60] # remove >60% obscured labels |
|
|
1157 |
|
|
|
1158 |
return labels |
|
|
1159 |
|
|
|
1160 |
|
|
|
1161 |
def pastein(image, labels, sample_labels, sample_images, sample_masks): |
|
|
1162 |
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552 |
|
|
1163 |
h, w = image.shape[:2] |
|
|
1164 |
|
|
|
1165 |
# create random masks |
|
|
1166 |
scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction |
|
|
1167 |
for s in scales: |
|
|
1168 |
if random.random() < 0.2: |
|
|
1169 |
continue |
|
|
1170 |
mask_h = random.randint(1, int(h * s)) |
|
|
1171 |
mask_w = random.randint(1, int(w * s)) |
|
|
1172 |
|
|
|
1173 |
# box |
|
|
1174 |
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
|
1175 |
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
|
1176 |
xmax = min(w, xmin + mask_w) |
|
|
1177 |
ymax = min(h, ymin + mask_h) |
|
|
1178 |
|
|
|
1179 |
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
|
1180 |
if len(labels): |
|
|
1181 |
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area |
|
|
1182 |
else: |
|
|
1183 |
ioa = np.zeros(1) |
|
|
1184 |
|
|
|
1185 |
if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels |
|
|
1186 |
sel_ind = random.randint(0, len(sample_labels)-1) |
|
|
1187 |
#print(len(sample_labels)) |
|
|
1188 |
#print(sel_ind) |
|
|
1189 |
#print((xmax-xmin, ymax-ymin)) |
|
|
1190 |
#print(image[ymin:ymax, xmin:xmax].shape) |
|
|
1191 |
#print([[sample_labels[sel_ind], *box]]) |
|
|
1192 |
#print(labels.shape) |
|
|
1193 |
hs, ws, cs = sample_images[sel_ind].shape |
|
|
1194 |
r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws) |
|
|
1195 |
r_w = int(ws*r_scale) |
|
|
1196 |
r_h = int(hs*r_scale) |
|
|
1197 |
|
|
|
1198 |
if (r_w > 10) and (r_h > 10): |
|
|
1199 |
r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h)) |
|
|
1200 |
r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h)) |
|
|
1201 |
temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w] |
|
|
1202 |
m_ind = r_mask > 0 |
|
|
1203 |
if m_ind.astype(np.int).sum() > 60: |
|
|
1204 |
temp_crop[m_ind] = r_image[m_ind] |
|
|
1205 |
#print(sample_labels[sel_ind]) |
|
|
1206 |
#print(sample_images[sel_ind].shape) |
|
|
1207 |
#print(temp_crop.shape) |
|
|
1208 |
box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32) |
|
|
1209 |
if len(labels): |
|
|
1210 |
labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0) |
|
|
1211 |
else: |
|
|
1212 |
labels = np.array([[sample_labels[sel_ind], *box]]) |
|
|
1213 |
|
|
|
1214 |
image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop |
|
|
1215 |
|
|
|
1216 |
return labels |
|
|
1217 |
|
|
|
1218 |
class Albumentations: |
|
|
1219 |
# YOLOv5 Albumentations class (optional, only used if package is installed) |
|
|
1220 |
def __init__(self): |
|
|
1221 |
self.transform = None |
|
|
1222 |
import albumentations as A |
|
|
1223 |
|
|
|
1224 |
self.transform = A.Compose([ |
|
|
1225 |
A.CLAHE(p=0.01), |
|
|
1226 |
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01), |
|
|
1227 |
A.RandomGamma(gamma_limit=[80, 120], p=0.01), |
|
|
1228 |
A.Blur(p=0.01), |
|
|
1229 |
A.MedianBlur(p=0.01), |
|
|
1230 |
A.ToGray(p=0.01), |
|
|
1231 |
A.ImageCompression(quality_lower=75, p=0.01),], |
|
|
1232 |
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels'])) |
|
|
1233 |
|
|
|
1234 |
#logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p)) |
|
|
1235 |
|
|
|
1236 |
def __call__(self, im, labels, p=1.0): |
|
|
1237 |
if self.transform and random.random() < p: |
|
|
1238 |
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed |
|
|
1239 |
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) |
|
|
1240 |
return im, labels |
|
|
1241 |
|
|
|
1242 |
|
|
|
1243 |
def create_folder(path='./new'): |
|
|
1244 |
# Create folder |
|
|
1245 |
if os.path.exists(path): |
|
|
1246 |
shutil.rmtree(path) # delete output folder |
|
|
1247 |
os.makedirs(path) # make new output folder |
|
|
1248 |
|
|
|
1249 |
|
|
|
1250 |
def flatten_recursive(path='../coco'): |
|
|
1251 |
# Flatten a recursive directory by bringing all files to top level |
|
|
1252 |
new_path = Path(path + '_flat') |
|
|
1253 |
create_folder(new_path) |
|
|
1254 |
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): |
|
|
1255 |
shutil.copyfile(file, new_path / Path(file).name) |
|
|
1256 |
|
|
|
1257 |
|
|
|
1258 |
def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128') |
|
|
1259 |
# Convert detection dataset into classification dataset, with one directory per class |
|
|
1260 |
|
|
|
1261 |
path = Path(path) # images dir |
|
|
1262 |
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing |
|
|
1263 |
files = list(path.rglob('*.*')) |
|
|
1264 |
n = len(files) # number of files |
|
|
1265 |
for im_file in tqdm(files, total=n): |
|
|
1266 |
if im_file.suffix[1:] in img_formats: |
|
|
1267 |
# image |
|
|
1268 |
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB |
|
|
1269 |
h, w = im.shape[:2] |
|
|
1270 |
|
|
|
1271 |
# labels |
|
|
1272 |
lb_file = Path(img2label_paths([str(im_file)])[0]) |
|
|
1273 |
if Path(lb_file).exists(): |
|
|
1274 |
with open(lb_file, 'r') as f: |
|
|
1275 |
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels |
|
|
1276 |
|
|
|
1277 |
for j, x in enumerate(lb): |
|
|
1278 |
c = int(x[0]) # class |
|
|
1279 |
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename |
|
|
1280 |
if not f.parent.is_dir(): |
|
|
1281 |
f.parent.mkdir(parents=True) |
|
|
1282 |
|
|
|
1283 |
b = x[1:] * [w, h, w, h] # box |
|
|
1284 |
# b[2:] = b[2:].max() # rectangle to square |
|
|
1285 |
b[2:] = b[2:] * 1.2 + 3 # pad |
|
|
1286 |
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) |
|
|
1287 |
|
|
|
1288 |
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image |
|
|
1289 |
b[[1, 3]] = np.clip(b[[1, 3]], 0, h) |
|
|
1290 |
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' |
|
|
1291 |
|
|
|
1292 |
|
|
|
1293 |
def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False): |
|
|
1294 |
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files |
|
|
1295 |
Usage: from utils.datasets import *; autosplit('../coco') |
|
|
1296 |
Arguments |
|
|
1297 |
path: Path to images directory |
|
|
1298 |
weights: Train, val, test weights (list) |
|
|
1299 |
annotated_only: Only use images with an annotated txt file |
|
|
1300 |
""" |
|
|
1301 |
path = Path(path) # images dir |
|
|
1302 |
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only |
|
|
1303 |
n = len(files) # number of files |
|
|
1304 |
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split |
|
|
1305 |
|
|
|
1306 |
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files |
|
|
1307 |
[(path / x).unlink() for x in txt if (path / x).exists()] # remove existing |
|
|
1308 |
|
|
|
1309 |
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) |
|
|
1310 |
for i, img in tqdm(zip(indices, files), total=n): |
|
|
1311 |
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label |
|
|
1312 |
with open(path / txt[i], 'a') as f: |
|
|
1313 |
f.write(str(img) + '\n') # add image to txt file |
|
|
1314 |
|
|
|
1315 |
|
|
|
1316 |
def load_segmentations(self, index): |
|
|
1317 |
key = '/work/handsomejw66/coco17/' + self.img_files[index] |
|
|
1318 |
#print(key) |
|
|
1319 |
# /work/handsomejw66/coco17/ |
|
|
1320 |
return self.segs[key] |