--- a
+++ b/landmark_extraction/utils/datasets.py
@@ -0,0 +1,1320 @@
+# Dataset utils and dataloaders
+
+import glob
+import logging
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from threading import Thread
+
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+from PIL import Image, ExifTags
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+import pickle
+from copy import deepcopy
+#from pycocotools import mask as maskUtils
+from torchvision.utils import save_image
+from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
+
+from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
+    resample_segments, clean_str
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes
+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
+logger = logging.getLogger(__name__)
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == 'Orientation':
+        break
+
+
+def get_hash(files):
+    # Returns a single hash value of a list of files
+    return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
+
+
+def exif_size(img):
+    # Returns exif-corrected PIL size
+    s = img.size  # (width, height)
+    try:
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation == 6:  # rotation 270
+            s = (s[1], s[0])
+        elif rotation == 8:  # rotation 90
+            s = (s[1], s[0])
+    except:
+        pass
+
+    return s
+
+
+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
+                      rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
+    # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
+    with torch_distributed_zero_first(rank):
+        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+                                      augment=augment,  # augment images
+                                      hyp=hyp,  # augmentation hyperparameters
+                                      rect=rect,  # rectangular training
+                                      cache_images=cache,
+                                      single_cls=opt.single_cls,
+                                      stride=int(stride),
+                                      pad=pad,
+                                      image_weights=image_weights,
+                                      prefix=prefix)
+
+    batch_size = min(batch_size, len(dataset))
+    nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
+    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
+    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
+    dataloader = loader(dataset,
+                        batch_size=batch_size,
+                        num_workers=nw,
+                        sampler=sampler,
+                        pin_memory=True,
+                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
+    return dataloader, dataset
+
+
+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
+    """ Dataloader that reuses workers
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        for i in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler(object):
+    """ Sampler that repeats forever
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        self.sampler = sampler
+
+    def __iter__(self):
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadImages:  # for inference
+    def __init__(self, path, img_size=640, stride=32):
+        p = str(Path(path).absolute())  # os-agnostic absolute path
+        if '*' in p:
+            files = sorted(glob.glob(p, recursive=True))  # glob
+        elif os.path.isdir(p):
+            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
+        elif os.path.isfile(p):
+            files = [p]  # files
+        else:
+            raise Exception(f'ERROR: {p} does not exist')
+
+        images = [x for x in files if x.split('.')[-1].lower() in img_formats]
+        videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = 'image'
+        if any(videos):
+            self.new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, f'No images or videos found in {p}. ' \
+                            f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
+
+    def __iter__(self):
+        self.count = 0
+        return self
+
+    def __next__(self):
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = 'video'
+            ret_val, img0 = self.cap.read()
+            if not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                else:
+                    path = self.files[self.count]
+                    self.new_video(path)
+                    ret_val, img0 = self.cap.read()
+
+            self.frame += 1
+            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
+
+        else:
+            # Read image
+            self.count += 1
+            img0 = cv2.imread(path)  # BGR
+            assert img0 is not None, 'Image Not Found ' + path
+            #print(f'image {self.count}/{self.nf} {path}: ', end='')
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+        # Convert
+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+        img = np.ascontiguousarray(img)
+
+        return path, img, img0, self.cap
+
+    def new_video(self, path):
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+    def __len__(self):
+        return self.nf  # number of files
+
+
+class LoadWebcam:  # for inference
+    def __init__(self, pipe='0', img_size=640, stride=32):
+        self.img_size = img_size
+        self.stride = stride
+
+        if pipe.isnumeric():
+            pipe = eval(pipe)  # local camera
+        # pipe = 'rtsp://192.168.1.64/1'  # IP camera
+        # pipe = 'rtsp://username:password@192.168.1.64/1'  # IP camera with login
+        # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg'  # IP golf camera
+
+        self.pipe = pipe
+        self.cap = cv2.VideoCapture(pipe)  # video capture object
+        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if cv2.waitKey(1) == ord('q'):  # q to quit
+            self.cap.release()
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Read frame
+        if self.pipe == 0:  # local camera
+            ret_val, img0 = self.cap.read()
+            img0 = cv2.flip(img0, 1)  # flip left-right
+        else:  # IP camera
+            n = 0
+            while True:
+                n += 1
+                self.cap.grab()
+                if n % 30 == 0:  # skip frames
+                    ret_val, img0 = self.cap.retrieve()
+                    if ret_val:
+                        break
+
+        # Print
+        assert ret_val, f'Camera Error {self.pipe}'
+        img_path = 'webcam.jpg'
+        print(f'webcam {self.count}: ', end='')
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+        # Convert
+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+        img = np.ascontiguousarray(img)
+
+        return img_path, img, img0, None
+
+    def __len__(self):
+        return 0
+
+
+class LoadStreams:  # multiple IP or RTSP cameras
+    def __init__(self, sources='streams.txt', img_size=640, stride=32):
+        self.mode = 'stream'
+        self.img_size = img_size
+        self.stride = stride
+
+        if os.path.isfile(sources):
+            with open(sources, 'r') as f:
+                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
+        else:
+            sources = [sources]
+
+        n = len(sources)
+        self.imgs = [None] * n
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        for i, s in enumerate(sources):
+            # Start the thread to read frames from the video stream
+            print(f'{i + 1}/{n}: {s}... ', end='')
+            url = eval(s) if s.isnumeric() else s
+            if 'youtube.com/' in str(url) or 'youtu.be/' in str(url):  # if source is YouTube video
+                check_requirements(('pafy', 'youtube_dl'))
+                import pafy
+                url = pafy.new(url).getbest(preftype="mp4").url
+            cap = cv2.VideoCapture(url)
+            assert cap.isOpened(), f'Failed to open {s}'
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            thread = Thread(target=self.update, args=([i, cap]), daemon=True)
+            print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
+            thread.start()
+        print('')  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0)  # shapes
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        if not self.rect:
+            print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
+
+    def update(self, index, cap):
+        # Read next stream frame in a daemon thread
+        n = 0
+        while cap.isOpened():
+            n += 1
+            # _, self.imgs[index] = cap.read()
+            cap.grab()
+            if n == 4:  # read every 4th frame
+                success, im = cap.retrieve()
+                self.imgs[index] = im if success else self.imgs[index] * 0
+                n = 0
+            time.sleep(1 / self.fps)  # wait time
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        img0 = self.imgs.copy()
+        if cv2.waitKey(1) == ord('q'):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Letterbox
+        img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
+
+        # Stack
+        img = np.stack(img, 0)
+
+        # Convert
+        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB, to bsx3x416x416
+        img = np.ascontiguousarray(img)
+
+        return self.sources, img, img0, None
+
+    def __len__(self):
+        return 0  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    # Define label paths as a function of image paths
+    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
+    return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):  # for training/testing
+    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path        
+        #self.albumentations = Albumentations() if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+                    # f = list(p.rglob('**/*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p, 'r') as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
+                else:
+                    raise Exception(f'{prefix}{p} does not exist')
+            self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats])  # pathlib
+            assert self.img_files, f'{prefix}No images found'
+        except Exception as e:
+            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
+
+        # Check cache
+        self.label_files = img2label_paths(self.img_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')  # cached labels
+        if cache_path.is_file():
+            cache, exists = torch.load(cache_path), True  # load
+            #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache:  # changed
+            #    cache, exists = self.cache_labels(cache_path, prefix), False  # re-cache
+        else:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # cache
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupted, total
+        if exists:
+            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results
+        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
+
+        # Read cache
+        cache.pop('hash')  # remove hash
+        cache.pop('version')  # remove version
+        labels, shapes, self.segments = zip(*cache.values())
+        self.labels = list(labels)
+        self.shapes = np.array(shapes, dtype=np.float64)
+        self.img_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+        if single_cls:
+            for x in self.labels:
+                x[:, 0] = 0
+
+        n = len(shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = range(n)
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.img_files = [self.img_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+        self.imgs = [None] * n
+        if cache_images:
+            if cache_images == 'disk':
+                self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
+                self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
+                self.im_cache_dir.mkdir(parents=True, exist_ok=True)
+            gb = 0  # Gigabytes of cached images
+            self.img_hw0, self.img_hw = [None] * n, [None] * n
+            results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
+            pbar = tqdm(enumerate(results), total=n)
+            for i, x in pbar:
+                if cache_images == 'disk':
+                    if not self.img_npy[i].exists():
+                        np.save(self.img_npy[i].as_posix(), x[0])
+                    gb += self.img_npy[i].stat().st_size
+                else:
+                    self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
+                    gb += self.imgs[i].nbytes
+                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
+            pbar.close()
+
+    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+        # Cache dataset labels, check images and read shapes
+        x = {}  # dict
+        nm, nf, ne, nc = 0, 0, 0, 0  # number missing, found, empty, duplicate
+        pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
+        for i, (im_file, lb_file) in enumerate(pbar):
+            try:
+                # verify images
+                im = Image.open(im_file)
+                im.verify()  # PIL verify
+                shape = exif_size(im)  # image size
+                segments = []  # instance segments
+                assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+                assert im.format.lower() in img_formats, f'invalid image format {im.format}'
+
+                # verify labels
+                if os.path.isfile(lb_file):
+                    nf += 1  # label found
+                    with open(lb_file, 'r') as f:
+                        l = [x.split() for x in f.read().strip().splitlines()]
+                        if any([len(x) > 8 for x in l]):  # is segment
+                            classes = np.array([x[0] for x in l], dtype=np.float32)
+                            segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]  # (cls, xy1...)
+                            l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                        l = np.array(l, dtype=np.float32)
+                    if len(l):
+                        assert l.shape[1] == 5, 'labels require 5 columns each'
+                        assert (l >= 0).all(), 'negative labels'
+                        assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
+                        assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
+                    else:
+                        ne += 1  # label empty
+                        l = np.zeros((0, 5), dtype=np.float32)
+                else:
+                    nm += 1  # label missing
+                    l = np.zeros((0, 5), dtype=np.float32)
+                x[im_file] = [l, shape, segments]
+            except Exception as e:
+                nc += 1
+                print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
+
+            pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
+                        f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+        pbar.close()
+
+        if nf == 0:
+            print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
+
+        x['hash'] = get_hash(self.label_files + self.img_files)
+        x['results'] = nf, nm, ne, nc, i + 1
+        x['version'] = 0.1  # cache version
+        torch.save(x, path)  # save for next time
+        logging.info(f'{prefix}New cache created: {path}')
+        return x
+
+    def __len__(self):
+        return len(self.img_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        if mosaic:
+            # Load mosaic
+            if random.random() < 0.8:
+                img, labels = load_mosaic(self, index)
+            else:
+                img, labels = load_mosaic9(self, index)
+            shapes = None
+
+            # MixUp https://arxiv.org/pdf/1710.09412.pdf
+            if random.random() < hyp['mixup']:
+                if random.random() < 0.8:
+                    img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
+                else:
+                    img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
+                r = np.random.beta(8.0, 8.0)  # mixup ratio, alpha=beta=8.0
+                img = (img * r + img2 * (1 - r)).astype(np.uint8)
+                labels = np.concatenate((labels, labels2), 0)
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = load_image(self, index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+        if self.augment:
+            # Augment imagespace
+            if not mosaic:
+                img, labels = random_perspective(img, labels,
+                                                 degrees=hyp['degrees'],
+                                                 translate=hyp['translate'],
+                                                 scale=hyp['scale'],
+                                                 shear=hyp['shear'],
+                                                 perspective=hyp['perspective'])
+            
+            
+            #img, labels = self.albumentations(img, labels)
+
+            # Augment colorspace
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Apply cutouts
+            # if random.random() < 0.9:
+            #     labels = cutout(img, labels)
+            
+            if random.random() < hyp['paste_in']:
+                sample_labels, sample_images, sample_masks = [], [], [] 
+                while len(sample_labels) < 30:
+                    sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
+                    sample_labels += sample_labels_
+                    sample_images += sample_images_
+                    sample_masks += sample_masks_
+                    #print(len(sample_labels))
+                    if len(sample_labels) == 0:
+                        break
+                labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
+
+        nL = len(labels)  # number of labels
+        if nL:
+            labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])  # convert xyxy to xywh
+            labels[:, [2, 4]] /= img.shape[0]  # normalized height 0-1
+            labels[:, [1, 3]] /= img.shape[1]  # normalized width 0-1
+
+        if self.augment:
+            # flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nL:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nL:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+        labels_out = torch.zeros((nL, 6))
+        if nL:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+    @staticmethod
+    def collate_fn(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        for i, l in enumerate(label):
+            l[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, .5, .5, .5, .5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
+                    0].type(img[i].type())
+                l = label[i]
+            else:
+                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
+                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            img4.append(im)
+            label4.append(l)
+
+        for i, l in enumerate(label4):
+            l[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def load_image(self, index):
+    # loads 1 image from dataset, returns img, original hw, resized hw
+    img = self.imgs[index]
+    if img is None:  # not cached
+        path = self.img_files[index]
+        img = cv2.imread(path)  # BGR
+        assert img is not None, 'Image Not Found ' + path
+        h0, w0 = img.shape[:2]  # orig hw
+        r = self.img_size / max(h0, w0)  # resize image to img_size
+        if r != 1:  # always resize down, only resize up if training with augmentation
+            interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
+            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
+        return img, (h0, w0), img.shape[:2]  # img, hw_original, hw_resized
+    else:
+        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized
+
+
+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
+    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
+    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
+    dtype = img.dtype  # uint8
+
+    x = np.arange(0, 256, dtype=np.int16)
+    lut_hue = ((x * r[0]) % 180).astype(dtype)
+    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
+    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
+
+
+def hist_equalize(img, clahe=True, bgr=False):
+    # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
+    yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+    if clahe:
+        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+    else:
+        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
+    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB
+
+
+def load_mosaic(self, index):
+    # loads images in a 4-mosaic
+
+    labels4, segments4 = [], []
+    s = self.img_size
+    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
+    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+    for i, index in enumerate(indices):
+        # Load image
+        img, _, (h, w) = load_image(self, index)
+
+        # place img in img4
+        if i == 0:  # top left
+            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+        elif i == 1:  # top right
+            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+        elif i == 2:  # bottom left
+            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+        elif i == 3:  # bottom right
+            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+        padw = x1a - x1b
+        padh = y1a - y1b
+
+        # Labels
+        labels, segments = self.labels[index].copy(), self.segments[index].copy()
+        if labels.size:
+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+        labels4.append(labels)
+        segments4.extend(segments)
+
+    # Concat/clip labels
+    labels4 = np.concatenate(labels4, 0)
+    for x in (labels4[:, 1:], *segments4):
+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+    # img4, labels4 = replicate(img4, labels4)  # replicate
+
+    # Augment
+    #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
+    #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
+    img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
+    img4, labels4 = random_perspective(img4, labels4, segments4,
+                                       degrees=self.hyp['degrees'],
+                                       translate=self.hyp['translate'],
+                                       scale=self.hyp['scale'],
+                                       shear=self.hyp['shear'],
+                                       perspective=self.hyp['perspective'],
+                                       border=self.mosaic_border)  # border to remove
+
+    return img4, labels4
+
+
+def load_mosaic9(self, index):
+    # loads images in a 9-mosaic
+
+    labels9, segments9 = [], []
+    s = self.img_size
+    indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+    for i, index in enumerate(indices):
+        # Load image
+        img, _, (h, w) = load_image(self, index)
+
+        # place img in img9
+        if i == 0:  # center
+            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+            h0, w0 = h, w
+            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+        elif i == 1:  # top
+            c = s, s - h, s + w, s
+        elif i == 2:  # top right
+            c = s + wp, s - h, s + wp + w, s
+        elif i == 3:  # right
+            c = s + w0, s, s + w0 + w, s + h
+        elif i == 4:  # bottom right
+            c = s + w0, s + hp, s + w0 + w, s + hp + h
+        elif i == 5:  # bottom
+            c = s + w0 - w, s + h0, s + w0, s + h0 + h
+        elif i == 6:  # bottom left
+            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+        elif i == 7:  # left
+            c = s - w, s + h0 - h, s, s + h0
+        elif i == 8:  # top left
+            c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+        padx, pady = c[:2]
+        x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords
+
+        # Labels
+        labels, segments = self.labels[index].copy(), self.segments[index].copy()
+        if labels.size:
+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+            segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+        labels9.append(labels)
+        segments9.extend(segments)
+
+        # Image
+        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
+        hp, wp = h, w  # height, width previous
+
+    # Offset
+    yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border]  # mosaic center x, y
+    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+    # Concat/clip labels
+    labels9 = np.concatenate(labels9, 0)
+    labels9[:, [1, 3]] -= xc
+    labels9[:, [2, 4]] -= yc
+    c = np.array([xc, yc])  # centers
+    segments9 = [x - c for x in segments9]
+
+    for x in (labels9[:, 1:], *segments9):
+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+    # img9, labels9 = replicate(img9, labels9)  # replicate
+
+    # Augment
+    #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
+    img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
+    img9, labels9 = random_perspective(img9, labels9, segments9,
+                                       degrees=self.hyp['degrees'],
+                                       translate=self.hyp['translate'],
+                                       scale=self.hyp['scale'],
+                                       shear=self.hyp['shear'],
+                                       perspective=self.hyp['perspective'],
+                                       border=self.mosaic_border)  # border to remove
+
+    return img9, labels9
+
+
+def load_samples(self, index):
+    # loads images in a 4-mosaic
+
+    labels4, segments4 = [], []
+    s = self.img_size
+    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
+    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+    for i, index in enumerate(indices):
+        # Load image
+        img, _, (h, w) = load_image(self, index)
+
+        # place img in img4
+        if i == 0:  # top left
+            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+        elif i == 1:  # top right
+            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+        elif i == 2:  # bottom left
+            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+        elif i == 3:  # bottom right
+            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+        padw = x1a - x1b
+        padh = y1a - y1b
+
+        # Labels
+        labels, segments = self.labels[index].copy(), self.segments[index].copy()
+        if labels.size:
+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+        labels4.append(labels)
+        segments4.extend(segments)
+
+    # Concat/clip labels
+    labels4 = np.concatenate(labels4, 0)
+    for x in (labels4[:, 1:], *segments4):
+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+    # img4, labels4 = replicate(img4, labels4)  # replicate
+
+    # Augment
+    #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
+    sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
+
+    return sample_labels, sample_images, sample_masks
+
+
+def copy_paste(img, labels, segments, probability=0.5):
+    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+    n = len(segments)
+    if probability and n:
+        h, w, c = img.shape  # height, width, channels
+        im_new = np.zeros(img.shape, np.uint8)
+        for j in random.sample(range(n), k=round(probability * n)):
+            l, s = labels[j], segments[j]
+            box = w - l[3], l[2], w - l[1], l[4]
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
+                labels = np.concatenate((labels, [[l[0], *box]]), 0)
+                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+
+        result = cv2.bitwise_and(src1=img, src2=im_new)
+        result = cv2.flip(result, 1)  # augment segments (flip left-right)
+        i = result > 0  # pixels to replace
+        # i[:, :] = result.max(2).reshape(h, w, 1)  # act over ch
+        img[i] = result[i]  # cv2.imwrite('debug.jpg', img)  # debug
+
+    return img, labels, segments
+
+
+def remove_background(img, labels, segments):
+    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+    n = len(segments)
+    h, w, c = img.shape  # height, width, channels
+    im_new = np.zeros(img.shape, np.uint8)
+    img_new = np.ones(img.shape, np.uint8) * 114
+    for j in range(n):
+        cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+
+        result = cv2.bitwise_and(src1=img, src2=im_new)
+        
+        i = result > 0  # pixels to replace
+        img_new[i] = result[i]  # cv2.imwrite('debug.jpg', img)  # debug
+
+    return img_new, labels, segments
+
+
+def sample_segments(img, labels, segments, probability=0.5):
+    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+    n = len(segments)
+    sample_labels = []
+    sample_images = []
+    sample_masks = []
+    if probability and n:
+        h, w, c = img.shape  # height, width, channels
+        for j in random.sample(range(n), k=round(probability * n)):
+            l, s = labels[j], segments[j]
+            box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1) 
+            
+            #print(box)
+            if (box[2] <= box[0]) or (box[3] <= box[1]):
+                continue
+            
+            sample_labels.append(l[0])
+            
+            mask = np.zeros(img.shape, np.uint8)
+            
+            cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+            sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
+            
+            result = cv2.bitwise_and(src1=img, src2=mask)
+            i = result > 0  # pixels to replace
+            mask[i] = result[i]  # cv2.imwrite('debug.jpg', img)  # debug
+            #print(box)
+            sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
+
+    return sample_labels, sample_images, sample_masks
+
+
+def replicate(img, labels):
+    # Replicate labels
+    h, w = img.shape[:2]
+    boxes = labels[:, 1:].astype(int)
+    x1, y1, x2, y2 = boxes.T
+    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
+    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
+        x1b, y1b, x2b, y2b = boxes[i]
+        bh, bw = y2b - y1b, x2b - x1b
+        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
+        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+        img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+    return img, labels
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+    # Resize and pad image while meeting stride-multiple constraints
+    shape = img.shape[:2]  # current shape [height, width]
+    if isinstance(new_shape, int):
+        new_shape = (new_shape, new_shape)
+
+    # Scale ratio (new / old)
+    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+    if not scaleup:  # only scale down, do not scale up (for better test mAP)
+        r = min(r, 1.0)
+
+    # Compute padding
+    ratio = r, r  # width, height ratios
+    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+    if auto:  # minimum rectangle
+        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
+    elif scaleFill:  # stretch
+        dw, dh = 0.0, 0.0
+        new_unpad = (new_shape[1], new_shape[0])
+        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
+
+    dw /= 2  # divide padding into 2 sides
+    dh /= 2
+
+    if shape[::-1] != new_unpad:  # resize
+        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+    return img, ratio, (dw, dh)
+
+
+def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
+                       border=(0, 0)):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = img.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1.1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(img[:, :, ::-1])  # base
+    # ax[1].imshow(img2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    if n:
+        use_segments = any(x.any() for x in segments)
+        new = np.zeros((n, 4))
+        if use_segments:  # warp segments
+            segments = resample_segments(segments)  # upsample
+            for i, segment in enumerate(segments):
+                xy = np.ones((len(segment), 3))
+                xy[:, :2] = segment
+                xy = xy @ M.T  # transform
+                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
+
+                # clip
+                new[i] = segment2box(xy, width, height)
+
+        else:  # warp boxes
+            xy = np.ones((n * 4, 3))
+            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine
+
+            # create new boxes
+            x = xy[:, [0, 2, 4, 6]]
+            y = xy[:, [1, 3, 5, 7]]
+            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+            # clip
+            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+
+    return img, targets
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
+    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
+    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates
+
+
+def bbox_ioa(box1, box2):
+    # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
+    box2 = box2.transpose()
+
+    # Get the coordinates of bounding boxes
+    b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+    b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+
+    # Intersection area
+    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+    # box2 area
+    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
+
+    # Intersection over box2 area
+    return inter_area / box2_area
+    
+
+def cutout(image, labels):
+    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+    h, w = image.shape[:2]
+
+    # create random masks
+    scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
+    for s in scales:
+        mask_h = random.randint(1, int(h * s))
+        mask_w = random.randint(1, int(w * s))
+
+        # box
+        xmin = max(0, random.randint(0, w) - mask_w // 2)
+        ymin = max(0, random.randint(0, h) - mask_h // 2)
+        xmax = min(w, xmin + mask_w)
+        ymax = min(h, ymin + mask_h)
+
+        # apply random color mask
+        image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+        # return unobscured labels
+        if len(labels) and s > 0.03:
+            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+            labels = labels[ioa < 0.60]  # remove >60% obscured labels
+
+    return labels
+    
+
+def pastein(image, labels, sample_labels, sample_images, sample_masks):
+    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+    h, w = image.shape[:2]
+
+    # create random masks
+    scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6  # image size fraction
+    for s in scales:
+        if random.random() < 0.2:
+            continue
+        mask_h = random.randint(1, int(h * s))
+        mask_w = random.randint(1, int(w * s))
+
+        # box
+        xmin = max(0, random.randint(0, w) - mask_w // 2)
+        ymin = max(0, random.randint(0, h) - mask_h // 2)
+        xmax = min(w, xmin + mask_w)
+        ymax = min(h, ymin + mask_h)   
+        
+        box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+        if len(labels):
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area     
+        else:
+            ioa = np.zeros(1)
+        
+        if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20):  # allow 30% obscuration of existing labels
+            sel_ind = random.randint(0, len(sample_labels)-1)
+            #print(len(sample_labels))
+            #print(sel_ind)
+            #print((xmax-xmin, ymax-ymin))
+            #print(image[ymin:ymax, xmin:xmax].shape)
+            #print([[sample_labels[sel_ind], *box]])
+            #print(labels.shape)
+            hs, ws, cs = sample_images[sel_ind].shape
+            r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
+            r_w = int(ws*r_scale)
+            r_h = int(hs*r_scale)
+            
+            if (r_w > 10) and (r_h > 10):
+                r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
+                r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
+                temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
+                m_ind = r_mask > 0
+                if m_ind.astype(np.int).sum() > 60:
+                    temp_crop[m_ind] = r_image[m_ind]
+                    #print(sample_labels[sel_ind])
+                    #print(sample_images[sel_ind].shape)
+                    #print(temp_crop.shape)
+                    box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
+                    if len(labels):
+                        labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
+                    else:
+                        labels = np.array([[sample_labels[sel_ind], *box]])
+                              
+                    image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
+
+    return labels
+
+class Albumentations:
+    # YOLOv5 Albumentations class (optional, only used if package is installed)
+    def __init__(self):
+        self.transform = None
+        import albumentations as A
+
+        self.transform = A.Compose([
+            A.CLAHE(p=0.01),
+            A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
+            A.RandomGamma(gamma_limit=[80, 120], p=0.01),
+            A.Blur(p=0.01),
+            A.MedianBlur(p=0.01),
+            A.ToGray(p=0.01),
+            A.ImageCompression(quality_lower=75, p=0.01),],
+            bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
+
+            #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
+
+    def __call__(self, im, labels, p=1.0):
+        if self.transform and random.random() < p:
+            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
+            im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
+        return im, labels
+
+
+def create_folder(path='./new'):
+    # Create folder
+    if os.path.exists(path):
+        shutil.rmtree(path)  # delete output folder
+    os.makedirs(path)  # make new output folder
+
+
+def flatten_recursive(path='../coco'):
+    # Flatten a recursive directory by bringing all files to top level
+    new_path = Path(path + '_flat')
+    create_folder(new_path)
+    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path='../coco/'):  # from utils.datasets import *; extract_boxes('../coco128')
+    # Convert detection dataset into classification dataset, with one directory per class
+
+    path = Path(path)  # images dir
+    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
+    files = list(path.rglob('*.*'))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in img_formats:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file, 'r') as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.datasets import *; autosplit('../coco')
+    Arguments
+        path:           Path to images directory
+        weights:        Train, val, test weights (list)
+        annotated_only: Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], [])  # image files only
+    n = len(files)  # number of files
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
+    [(path / x).unlink() for x in txt if (path / x).exists()]  # remove existing
+
+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path / txt[i], 'a') as f:
+                f.write(str(img) + '\n')  # add image to txt file
+    
+    
+def load_segmentations(self, index):
+    key = '/work/handsomejw66/coco17/' + self.img_files[index]
+    #print(key)
+    # /work/handsomejw66/coco17/
+    return self.segs[key]