|
a |
|
b/landmark_extraction/utils/autoanchor.py |
|
|
1 |
# Auto-anchor utils |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import torch |
|
|
5 |
import yaml |
|
|
6 |
from scipy.cluster.vq import kmeans |
|
|
7 |
from tqdm import tqdm |
|
|
8 |
|
|
|
9 |
from utils.general import colorstr |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def check_anchor_order(m): |
|
|
13 |
# Check anchor order against stride order for YOLO Detect() module m, and correct if necessary |
|
|
14 |
a = m.anchor_grid.prod(-1).view(-1) # anchor area |
|
|
15 |
da = a[-1] - a[0] # delta a |
|
|
16 |
ds = m.stride[-1] - m.stride[0] # delta s |
|
|
17 |
if da.sign() != ds.sign(): # same order |
|
|
18 |
print('Reversing anchor order') |
|
|
19 |
m.anchors[:] = m.anchors.flip(0) |
|
|
20 |
m.anchor_grid[:] = m.anchor_grid.flip(0) |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def check_anchors(dataset, model, thr=4.0, imgsz=640): |
|
|
24 |
# Check anchor fit to data, recompute if necessary |
|
|
25 |
prefix = colorstr('autoanchor: ') |
|
|
26 |
print(f'\n{prefix}Analyzing anchors... ', end='') |
|
|
27 |
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() |
|
|
28 |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
29 |
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale |
|
|
30 |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh |
|
|
31 |
|
|
|
32 |
def metric(k): # compute metric |
|
|
33 |
r = wh[:, None] / k[None] |
|
|
34 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|
|
35 |
best = x.max(1)[0] # best_x |
|
|
36 |
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold |
|
|
37 |
bpr = (best > 1. / thr).float().mean() # best possible recall |
|
|
38 |
return bpr, aat |
|
|
39 |
|
|
|
40 |
anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors |
|
|
41 |
bpr, aat = metric(anchors) |
|
|
42 |
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') |
|
|
43 |
if bpr < 0.98: # threshold to recompute |
|
|
44 |
print('. Attempting to improve anchors, please wait...') |
|
|
45 |
na = m.anchor_grid.numel() // 2 # number of anchors |
|
|
46 |
try: |
|
|
47 |
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) |
|
|
48 |
except Exception as e: |
|
|
49 |
print(f'{prefix}ERROR: {e}') |
|
|
50 |
new_bpr = metric(anchors)[0] |
|
|
51 |
if new_bpr > bpr: # replace anchors |
|
|
52 |
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) |
|
|
53 |
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference |
|
|
54 |
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss |
|
|
55 |
check_anchor_order(m) |
|
|
56 |
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') |
|
|
57 |
else: |
|
|
58 |
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') |
|
|
59 |
print('') # newline |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|
|
63 |
""" Creates kmeans-evolved anchors from training dataset |
|
|
64 |
|
|
|
65 |
Arguments: |
|
|
66 |
path: path to dataset *.yaml, or a loaded dataset |
|
|
67 |
n: number of anchors |
|
|
68 |
img_size: image size used for training |
|
|
69 |
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|
|
70 |
gen: generations to evolve anchors using genetic algorithm |
|
|
71 |
verbose: print all results |
|
|
72 |
|
|
|
73 |
Return: |
|
|
74 |
k: kmeans evolved anchors |
|
|
75 |
|
|
|
76 |
Usage: |
|
|
77 |
from utils.autoanchor import *; _ = kmean_anchors() |
|
|
78 |
""" |
|
|
79 |
thr = 1. / thr |
|
|
80 |
prefix = colorstr('autoanchor: ') |
|
|
81 |
|
|
|
82 |
def metric(k, wh): # compute metrics |
|
|
83 |
r = wh[:, None] / k[None] |
|
|
84 |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric |
|
|
85 |
# x = wh_iou(wh, torch.tensor(k)) # iou metric |
|
|
86 |
return x, x.max(1)[0] # x, best_x |
|
|
87 |
|
|
|
88 |
def anchor_fitness(k): # mutation fitness |
|
|
89 |
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|
|
90 |
return (best * (best > thr).float()).mean() # fitness |
|
|
91 |
|
|
|
92 |
def print_results(k): |
|
|
93 |
k = k[np.argsort(k.prod(1))] # sort small to large |
|
|
94 |
x, best = metric(k, wh0) |
|
|
95 |
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr |
|
|
96 |
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') |
|
|
97 |
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' |
|
|
98 |
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') |
|
|
99 |
for i, x in enumerate(k): |
|
|
100 |
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg |
|
|
101 |
return k |
|
|
102 |
|
|
|
103 |
if isinstance(path, str): # *.yaml file |
|
|
104 |
with open(path) as f: |
|
|
105 |
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict |
|
|
106 |
from utils.datasets import LoadImagesAndLabels |
|
|
107 |
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) |
|
|
108 |
else: |
|
|
109 |
dataset = path # dataset |
|
|
110 |
|
|
|
111 |
# Get label wh |
|
|
112 |
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) |
|
|
113 |
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh |
|
|
114 |
|
|
|
115 |
# Filter |
|
|
116 |
i = (wh0 < 3.0).any(1).sum() |
|
|
117 |
if i: |
|
|
118 |
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') |
|
|
119 |
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels |
|
|
120 |
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 |
|
|
121 |
|
|
|
122 |
# Kmeans calculation |
|
|
123 |
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') |
|
|
124 |
s = wh.std(0) # sigmas for whitening |
|
|
125 |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance |
|
|
126 |
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}') |
|
|
127 |
k *= s |
|
|
128 |
wh = torch.tensor(wh, dtype=torch.float32) # filtered |
|
|
129 |
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered |
|
|
130 |
k = print_results(k) |
|
|
131 |
|
|
|
132 |
# Plot |
|
|
133 |
# k, d = [None] * 20, [None] * 20 |
|
|
134 |
# for i in tqdm(range(1, 21)): |
|
|
135 |
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance |
|
|
136 |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) |
|
|
137 |
# ax = ax.ravel() |
|
|
138 |
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') |
|
|
139 |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh |
|
|
140 |
# ax[0].hist(wh[wh[:, 0]<100, 0],400) |
|
|
141 |
# ax[1].hist(wh[wh[:, 1]<100, 1],400) |
|
|
142 |
# fig.savefig('wh.png', dpi=200) |
|
|
143 |
|
|
|
144 |
# Evolve |
|
|
145 |
npr = np.random |
|
|
146 |
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma |
|
|
147 |
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar |
|
|
148 |
for _ in pbar: |
|
|
149 |
v = np.ones(sh) |
|
|
150 |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) |
|
|
151 |
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
|
152 |
kg = (k.copy() * v).clip(min=2.0) |
|
|
153 |
fg = anchor_fitness(kg) |
|
|
154 |
if fg > f: |
|
|
155 |
f, k = fg, kg.copy() |
|
|
156 |
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' |
|
|
157 |
if verbose: |
|
|
158 |
print_results(k) |
|
|
159 |
|
|
|
160 |
return print_results(k) |