Switch to unified view

a b/landmark_extraction/utils/autoanchor.py
1
# Auto-anchor utils
2
3
import numpy as np
4
import torch
5
import yaml
6
from scipy.cluster.vq import kmeans
7
from tqdm import tqdm
8
9
from utils.general import colorstr
10
11
12
def check_anchor_order(m):
13
    # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
    a = m.anchor_grid.prod(-1).view(-1)  # anchor area
15
    da = a[-1] - a[0]  # delta a
16
    ds = m.stride[-1] - m.stride[0]  # delta s
17
    if da.sign() != ds.sign():  # same order
18
        print('Reversing anchor order')
19
        m.anchors[:] = m.anchors.flip(0)
20
        m.anchor_grid[:] = m.anchor_grid.flip(0)
21
22
23
def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
    # Check anchor fit to data, recompute if necessary
25
    prefix = colorstr('autoanchor: ')
26
    print(f'\n{prefix}Analyzing anchors... ', end='')
27
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
28
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
30
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
31
32
    def metric(k):  # compute metric
33
        r = wh[:, None] / k[None]
34
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
35
        best = x.max(1)[0]  # best_x
36
        aat = (x > 1. / thr).float().sum(1).mean()  # anchors above threshold
37
        bpr = (best > 1. / thr).float().mean()  # best possible recall
38
        return bpr, aat
39
40
    anchors = m.anchor_grid.clone().cpu().view(-1, 2)  # current anchors
41
    bpr, aat = metric(anchors)
42
    print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
    if bpr < 0.98:  # threshold to recompute
44
        print('. Attempting to improve anchors, please wait...')
45
        na = m.anchor_grid.numel() // 2  # number of anchors
46
        try:
47
            anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
        except Exception as e:
49
            print(f'{prefix}ERROR: {e}')
50
        new_bpr = metric(anchors)[0]
51
        if new_bpr > bpr:  # replace anchors
52
            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
            m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid)  # for inference
54
            m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
55
            check_anchor_order(m)
56
            print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
        else:
58
            print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
    print('')  # newline
60
61
62
def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
    """ Creates kmeans-evolved anchors from training dataset
64
65
        Arguments:
66
            path: path to dataset *.yaml, or a loaded dataset
67
            n: number of anchors
68
            img_size: image size used for training
69
            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
            gen: generations to evolve anchors using genetic algorithm
71
            verbose: print all results
72
73
        Return:
74
            k: kmeans evolved anchors
75
76
        Usage:
77
            from utils.autoanchor import *; _ = kmean_anchors()
78
    """
79
    thr = 1. / thr
80
    prefix = colorstr('autoanchor: ')
81
82
    def metric(k, wh):  # compute metrics
83
        r = wh[:, None] / k[None]
84
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
85
        # x = wh_iou(wh, torch.tensor(k))  # iou metric
86
        return x, x.max(1)[0]  # x, best_x
87
88
    def anchor_fitness(k):  # mutation fitness
89
        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
        return (best * (best > thr).float()).mean()  # fitness
91
92
    def print_results(k):
93
        k = k[np.argsort(k.prod(1))]  # sort small to large
94
        x, best = metric(k, wh0)
95
        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
96
        print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
        print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
              f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
        for i, x in enumerate(k):
100
            print('%i,%i' % (round(x[0]), round(x[1])), end=',  ' if i < len(k) - 1 else '\n')  # use in *.cfg
101
        return k
102
103
    if isinstance(path, str):  # *.yaml file
104
        with open(path) as f:
105
            data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
106
        from utils.datasets import LoadImagesAndLabels
107
        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
    else:
109
        dataset = path  # dataset
110
111
    # Get label wh
112
    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
114
115
    # Filter
116
    i = (wh0 < 3.0).any(1).sum()
117
    if i:
118
        print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
    wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
120
    # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
121
122
    # Kmeans calculation
123
    print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
    s = wh.std(0)  # sigmas for whitening
125
    k, dist = kmeans(wh / s, n, iter=30)  # points, mean distance
126
    assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
    k *= s
128
    wh = torch.tensor(wh, dtype=torch.float32)  # filtered
129
    wh0 = torch.tensor(wh0, dtype=torch.float32)  # unfiltered
130
    k = print_results(k)
131
132
    # Plot
133
    # k, d = [None] * 20, [None] * 20
134
    # for i in tqdm(range(1, 21)):
135
    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
136
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
    # ax = ax.ravel()
138
    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
140
    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
    # fig.savefig('wh.png', dpi=200)
143
144
    # Evolve
145
    npr = np.random
146
    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
147
    pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:')  # progress bar
148
    for _ in pbar:
149
        v = np.ones(sh)
150
        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
151
            v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
        kg = (k.copy() * v).clip(min=2.0)
153
        fg = anchor_fitness(kg)
154
        if fg > f:
155
            f, k = fg, kg.copy()
156
            pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
            if verbose:
158
                print_results(k)
159
160
    return print_results(k)