Switch to unified view

a b/landmark_extraction/utils/add_nms.py
1
import numpy as np
2
import onnx
3
from onnx import shape_inference
4
try:
5
    import onnx_graphsurgeon as gs
6
except Exception as e:
7
    print('Import onnx_graphsurgeon failure: %s' % e)
8
9
import logging
10
11
LOGGER = logging.getLogger(__name__)
12
13
class RegisterNMS(object):
14
    def __init__(
15
        self,
16
        onnx_model_path: str,
17
        precision: str = "fp32",
18
    ):
19
20
        self.graph = gs.import_onnx(onnx.load(onnx_model_path))
21
        assert self.graph
22
        LOGGER.info("ONNX graph created successfully")
23
        # Fold constants via ONNX-GS that PyTorch2ONNX may have missed
24
        self.graph.fold_constants()
25
        self.precision = precision
26
        self.batch_size = 1
27
    def infer(self):
28
        """
29
        Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
30
        and fold constant inputs values. When possible, run shape inference on the
31
        ONNX graph to determine tensor shapes.
32
        """
33
        for _ in range(3):
34
            count_before = len(self.graph.nodes)
35
36
            self.graph.cleanup().toposort()
37
            try:
38
                for node in self.graph.nodes:
39
                    for o in node.outputs:
40
                        o.shape = None
41
                model = gs.export_onnx(self.graph)
42
                model = shape_inference.infer_shapes(model)
43
                self.graph = gs.import_onnx(model)
44
            except Exception as e:
45
                LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
46
            try:
47
                self.graph.fold_constants(fold_shapes=True)
48
            except TypeError as e:
49
                LOGGER.error(
50
                    "This version of ONNX GraphSurgeon does not support folding shapes, "
51
                    f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
52
                )
53
                raise
54
55
            count_after = len(self.graph.nodes)
56
            if count_before == count_after:
57
                # No new folding occurred in this iteration, so we can stop for now.
58
                break
59
60
    def save(self, output_path):
61
        """
62
        Save the ONNX model to the given location.
63
        Args:
64
            output_path: Path pointing to the location where to write
65
                out the updated ONNX model.
66
        """
67
        self.graph.cleanup().toposort()
68
        model = gs.export_onnx(self.graph)
69
        onnx.save(model, output_path)
70
        LOGGER.info(f"Saved ONNX model to {output_path}")
71
72
    def register_nms(
73
        self,
74
        *,
75
        score_thresh: float = 0.25,
76
        nms_thresh: float = 0.45,
77
        detections_per_img: int = 100,
78
    ):
79
        """
80
        Register the ``EfficientNMS_TRT`` plugin node.
81
        NMS expects these shapes for its input tensors:
82
            - box_net: [batch_size, number_boxes, 4]
83
            - class_net: [batch_size, number_boxes, number_labels]
84
        Args:
85
            score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
86
            nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
87
                overlap with previously selected boxes are removed).
88
            detections_per_img (int): Number of best detections to keep after NMS.
89
        """
90
91
        self.infer()
92
        # Find the concat node at the end of the network
93
        op_inputs = self.graph.outputs
94
        op = "EfficientNMS_TRT"
95
        attrs = {
96
            "plugin_version": "1",
97
            "background_class": -1,  # no background class
98
            "max_output_boxes": detections_per_img,
99
            "score_threshold": score_thresh,
100
            "iou_threshold": nms_thresh,
101
            "score_activation": False,
102
            "box_coding": 0,
103
        }
104
105
        if self.precision == "fp32":
106
            dtype_output = np.float32
107
        elif self.precision == "fp16":
108
            dtype_output = np.float16
109
        else:
110
            raise NotImplementedError(f"Currently not supports precision: {self.precision}")
111
112
        # NMS Outputs
113
        output_num_detections = gs.Variable(
114
            name="num_detections",
115
            dtype=np.int32,
116
            shape=[self.batch_size, 1],
117
        )  # A scalar indicating the number of valid detections per batch image.
118
        output_boxes = gs.Variable(
119
            name="detection_boxes",
120
            dtype=dtype_output,
121
            shape=[self.batch_size, detections_per_img, 4],
122
        )
123
        output_scores = gs.Variable(
124
            name="detection_scores",
125
            dtype=dtype_output,
126
            shape=[self.batch_size, detections_per_img],
127
        )
128
        output_labels = gs.Variable(
129
            name="detection_classes",
130
            dtype=np.int32,
131
            shape=[self.batch_size, detections_per_img],
132
        )
133
134
        op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
135
136
        # Create the NMS Plugin node with the selected inputs. The outputs of the node will also
137
        # become the final outputs of the graph.
138
        self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
139
        LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
140
141
        self.graph.outputs = op_outputs
142
143
        self.infer()
144
145
    def save(self, output_path):
146
        """
147
        Save the ONNX model to the given location.
148
        Args:
149
            output_path: Path pointing to the location where to write
150
                out the updated ONNX model.
151
        """
152
        self.graph.cleanup().toposort()
153
        model = gs.export_onnx(self.graph)
154
        onnx.save(model, output_path)
155
        LOGGER.info(f"Saved ONNX model to {output_path}")