|
a |
|
b/landmark_extraction/static_landmarks+extraction.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 2, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import cv2\n", |
|
|
10 |
"import matplotlib.pyplot as plt\n", |
|
|
11 |
"import numpy as np\n", |
|
|
12 |
"import os\n", |
|
|
13 |
"import urllib.request\n", |
|
|
14 |
"import sys\n", |
|
|
15 |
"import torch\n", |
|
|
16 |
"import time\n", |
|
|
17 |
"import datetime\n", |
|
|
18 |
"\n", |
|
|
19 |
"from torchvision import transforms\n", |
|
|
20 |
"from PIL import Image\n", |
|
|
21 |
"\n", |
|
|
22 |
"%matplotlib inline" |
|
|
23 |
] |
|
|
24 |
}, |
|
|
25 |
{ |
|
|
26 |
"cell_type": "code", |
|
|
27 |
"execution_count": 3, |
|
|
28 |
"metadata": {}, |
|
|
29 |
"outputs": [], |
|
|
30 |
"source": [ |
|
|
31 |
"YOLOV7_MODEL = [\n", |
|
|
32 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt\",\n", |
|
|
33 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt\",\n", |
|
|
34 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt\",\n", |
|
|
35 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt\",\n", |
|
|
36 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt\",\n", |
|
|
37 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt\",\n", |
|
|
38 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt\",\n", |
|
|
39 |
" \"https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6-pose.pt\",\n", |
|
|
40 |
"]" |
|
|
41 |
] |
|
|
42 |
}, |
|
|
43 |
{ |
|
|
44 |
"cell_type": "code", |
|
|
45 |
"execution_count": 4, |
|
|
46 |
"metadata": {}, |
|
|
47 |
"outputs": [], |
|
|
48 |
"source": [ |
|
|
49 |
"def get_yolov7_model(modelistid=1):\n", |
|
|
50 |
" \"\"\"\n", |
|
|
51 |
" Download YoloV7 model from a yoloV7 model list\n", |
|
|
52 |
" \"\"\"\n", |
|
|
53 |
" modelid = YOLOV7_MODEL[modelistid]\n", |
|
|
54 |
"\n", |
|
|
55 |
" if not os.path.exists(modelid):\n", |
|
|
56 |
" print(\"Downloading the model:\",\n", |
|
|
57 |
" os.path.basename(modelid), \"from:\", modelid)\n", |
|
|
58 |
" urllib.request.urlretrieve(modelid, \n", |
|
|
59 |
" filename=os.path.basename(modelid))\n", |
|
|
60 |
" print(\"Done\\n\")\n", |
|
|
61 |
" !ls yolo*.pt -lh\n", |
|
|
62 |
"\n", |
|
|
63 |
" if os.path.exists(modelid):\n", |
|
|
64 |
" print(\"Downloaded model files:\")\n", |
|
|
65 |
" !ls yolo*.pt -lh" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 5, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"from utils.datasets import letterbox\n", |
|
|
75 |
"from utils.general import non_max_suppression_kpt\n", |
|
|
76 |
"from utils.plots import output_to_keypoint, plot_skeleton_kpts" |
|
|
77 |
] |
|
|
78 |
}, |
|
|
79 |
{ |
|
|
80 |
"cell_type": "code", |
|
|
81 |
"execution_count": 6, |
|
|
82 |
"metadata": {}, |
|
|
83 |
"outputs": [], |
|
|
84 |
"source": [ |
|
|
85 |
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" |
|
|
86 |
] |
|
|
87 |
}, |
|
|
88 |
{ |
|
|
89 |
"cell_type": "code", |
|
|
90 |
"execution_count": 8, |
|
|
91 |
"metadata": {}, |
|
|
92 |
"outputs": [], |
|
|
93 |
"source": [ |
|
|
94 |
"def image_view(imagefile, w=15, h=10):\n", |
|
|
95 |
" \"\"\"\n", |
|
|
96 |
" Displaying an image from an image file\n", |
|
|
97 |
" \"\"\"\n", |
|
|
98 |
" %matplotlib inline\n", |
|
|
99 |
" plt.figure(figsize=(w, h))\n", |
|
|
100 |
" plt.axis('off')\n", |
|
|
101 |
" plt.imshow(cv2.cvtColor(cv2.imread(imagefile), \n", |
|
|
102 |
" cv2.COLOR_BGR2RGB))" |
|
|
103 |
] |
|
|
104 |
}, |
|
|
105 |
{ |
|
|
106 |
"cell_type": "code", |
|
|
107 |
"execution_count": 23, |
|
|
108 |
"metadata": {}, |
|
|
109 |
"outputs": [], |
|
|
110 |
"source": [ |
|
|
111 |
"def running_inference(image):\n", |
|
|
112 |
" global model\n", |
|
|
113 |
" \"\"\"\n", |
|
|
114 |
" Running yolov7 model inference\n", |
|
|
115 |
" \"\"\"\n", |
|
|
116 |
" image = letterbox(image, 960, \n", |
|
|
117 |
" stride=64,\n", |
|
|
118 |
" auto=True)[0] # shape: (567, 960, 3)\n", |
|
|
119 |
" image = transforms.ToTensor()(image) # torch.Size([3, 567, 960])\n", |
|
|
120 |
"\n", |
|
|
121 |
" if torch.cuda.is_available():\n", |
|
|
122 |
" image = image.half().to(device)\n", |
|
|
123 |
"\n", |
|
|
124 |
" image = image.unsqueeze(0) # torch.Size([1, 3, 567, 960])\n", |
|
|
125 |
"\n", |
|
|
126 |
" with torch.no_grad():\n", |
|
|
127 |
" output, _ = model(image)\n", |
|
|
128 |
"\n", |
|
|
129 |
" return output, image" |
|
|
130 |
] |
|
|
131 |
}, |
|
|
132 |
{ |
|
|
133 |
"cell_type": "code", |
|
|
134 |
"execution_count": 15, |
|
|
135 |
"metadata": {}, |
|
|
136 |
"outputs": [], |
|
|
137 |
"source": [ |
|
|
138 |
"def loading_yolov7_model(yolomodel):\n", |
|
|
139 |
" \"\"\"\n", |
|
|
140 |
" Loading yolov7 model\n", |
|
|
141 |
" \"\"\"\n", |
|
|
142 |
" print(\"Loading model:\", yolomodel)\n", |
|
|
143 |
" model = torch.load(yolomodel, map_location=device)['model']\n", |
|
|
144 |
" model.float().eval()\n", |
|
|
145 |
"\n", |
|
|
146 |
" if torch.cuda.is_available():\n", |
|
|
147 |
" # half() turns predictions into float16 tensors\n", |
|
|
148 |
" # which significantly lowers inference time\n", |
|
|
149 |
" model.half().to(device)\n", |
|
|
150 |
"\n", |
|
|
151 |
" return model, yolomodel" |
|
|
152 |
] |
|
|
153 |
}, |
|
|
154 |
{ |
|
|
155 |
"cell_type": "code", |
|
|
156 |
"execution_count": 18, |
|
|
157 |
"metadata": {}, |
|
|
158 |
"outputs": [ |
|
|
159 |
{ |
|
|
160 |
"name": "stdout", |
|
|
161 |
"output_type": "stream", |
|
|
162 |
"text": [ |
|
|
163 |
"Downloading the model: yolov7-tiny.pt from: https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt\n", |
|
|
164 |
"Done\n", |
|
|
165 |
"\n", |
|
|
166 |
"-rw-r--r-- 1 g g 13M Aug 16 21:30 yolov7-tiny.pt\n" |
|
|
167 |
] |
|
|
168 |
} |
|
|
169 |
], |
|
|
170 |
"source": [ |
|
|
171 |
"model = get_yolov7_model(0)\n" |
|
|
172 |
] |
|
|
173 |
}, |
|
|
174 |
{ |
|
|
175 |
"cell_type": "code", |
|
|
176 |
"execution_count": 20, |
|
|
177 |
"metadata": {}, |
|
|
178 |
"outputs": [ |
|
|
179 |
{ |
|
|
180 |
"name": "stdout", |
|
|
181 |
"output_type": "stream", |
|
|
182 |
"text": [ |
|
|
183 |
"Loading the model...\n", |
|
|
184 |
"Loading model: yolov7-tiny.pt\n", |
|
|
185 |
"Using the yolov7-tiny.pt model\n", |
|
|
186 |
"Done\n" |
|
|
187 |
] |
|
|
188 |
} |
|
|
189 |
], |
|
|
190 |
"source": [ |
|
|
191 |
"YOLOV7MODEL = os.path.basename(YOLOV7_MODEL[0])\n", |
|
|
192 |
"\n", |
|
|
193 |
"try:\n", |
|
|
194 |
" print(\"Loading the model...\")\n", |
|
|
195 |
" model, yolomodel = loading_yolov7_model(yolomodel=YOLOV7MODEL)\n", |
|
|
196 |
" print(\"Using the\", YOLOV7MODEL, \"model\")\n", |
|
|
197 |
" print(\"Done\")\n", |
|
|
198 |
"\n", |
|
|
199 |
"except:\n", |
|
|
200 |
" print(\"[Error] Cannot load the model\", YOLOV7MODEL)" |
|
|
201 |
] |
|
|
202 |
}, |
|
|
203 |
{ |
|
|
204 |
"cell_type": "code", |
|
|
205 |
"execution_count": 21, |
|
|
206 |
"metadata": {}, |
|
|
207 |
"outputs": [], |
|
|
208 |
"source": [ |
|
|
209 |
"def draw_keypoints(output, image, confidence=0.25, threshold=0.65):\n", |
|
|
210 |
" \"\"\"\n", |
|
|
211 |
" Draw YoloV7 pose keypoints\n", |
|
|
212 |
" \"\"\"\n", |
|
|
213 |
" output = non_max_suppression_kpt(\n", |
|
|
214 |
" output,\n", |
|
|
215 |
" confidence, # Confidence Threshold\n", |
|
|
216 |
" threshold, # IoU Threshold\n", |
|
|
217 |
" nc=model.yaml['nc'], # Number of Classes\n", |
|
|
218 |
" nkpt=model.yaml['nkpt'], # Number of Keypoints\n", |
|
|
219 |
" kpt_label=True)\n", |
|
|
220 |
"\n", |
|
|
221 |
" with torch.no_grad():\n", |
|
|
222 |
" output = output_to_keypoint(output)\n", |
|
|
223 |
"\n", |
|
|
224 |
" nimg = image[0].permute(1, 2, 0) * 255\n", |
|
|
225 |
" nimg = cv2.cvtColor(nimg.cpu().numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)\n", |
|
|
226 |
"\n", |
|
|
227 |
" for idx in range(output.shape[0]):\n", |
|
|
228 |
" plot_skeleton_kpts(nimg, output[idx, 7:].T, 3)\n", |
|
|
229 |
"\n", |
|
|
230 |
" return nimg" |
|
|
231 |
] |
|
|
232 |
}, |
|
|
233 |
{ |
|
|
234 |
"cell_type": "code", |
|
|
235 |
"execution_count": 25, |
|
|
236 |
"metadata": {}, |
|
|
237 |
"outputs": [ |
|
|
238 |
{ |
|
|
239 |
"name": "stdout", |
|
|
240 |
"output_type": "stream", |
|
|
241 |
"text": [ |
|
|
242 |
"True\n" |
|
|
243 |
] |
|
|
244 |
}, |
|
|
245 |
{ |
|
|
246 |
"ename": "AttributeError", |
|
|
247 |
"evalue": "'Upsample' object has no attribute 'recompute_scale_factor'", |
|
|
248 |
"output_type": "error", |
|
|
249 |
"traceback": [ |
|
|
250 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
251 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", |
|
|
252 |
"Cell \u001b[0;32mIn[25], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m imagefile \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m../assets/messi.jpg\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 2\u001b[0m \u001b[39mprint\u001b[39m(os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mexists(imagefile))\n\u001b[0;32m----> 3\u001b[0m output, image \u001b[39m=\u001b[39m running_inference(cv2\u001b[39m.\u001b[39;49mimread(imagefile))\n\u001b[1;32m 4\u001b[0m pose_image \u001b[39m=\u001b[39m draw_keypoints(output, image, confidence\u001b[39m=\u001b[39m\u001b[39m0.25\u001b[39m, threshold\u001b[39m=\u001b[39m\u001b[39m0.65\u001b[39m)\n\u001b[1;32m 6\u001b[0m plt\u001b[39m.\u001b[39mfigure(figsize\u001b[39m=\u001b[39m(\u001b[39m30\u001b[39m, \u001b[39m7\u001b[39m))\n", |
|
|
253 |
"Cell \u001b[0;32mIn[23], line 17\u001b[0m, in \u001b[0;36mrunning_inference\u001b[0;34m(image)\u001b[0m\n\u001b[1;32m 14\u001b[0m image \u001b[39m=\u001b[39m image\u001b[39m.\u001b[39munsqueeze(\u001b[39m0\u001b[39m) \u001b[39m# torch.Size([1, 3, 567, 960])\u001b[39;00m\n\u001b[1;32m 16\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mno_grad():\n\u001b[0;32m---> 17\u001b[0m output, _ \u001b[39m=\u001b[39m model(image)\n\u001b[1;32m 19\u001b[0m \u001b[39mreturn\u001b[39;00m output, image\n", |
|
|
254 |
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1502\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n", |
|
|
255 |
"File \u001b[0;32m~/Documents/autoposture/repo/landmark_extraction_yolo/models/yolo.py:514\u001b[0m, in \u001b[0;36mModel.forward\u001b[0;34m(self, x, augment, profile)\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[39mreturn\u001b[39;00m torch\u001b[39m.\u001b[39mcat(y, \u001b[39m1\u001b[39m), \u001b[39mNone\u001b[39;00m \u001b[39m# augmented inference, train\u001b[39;00m\n\u001b[1;32m 513\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 514\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mforward_once(x, profile)\n", |
|
|
256 |
"File \u001b[0;32m~/Documents/autoposture/repo/landmark_extraction_yolo/models/yolo.py:540\u001b[0m, in \u001b[0;36mModel.forward_once\u001b[0;34m(self, x, profile)\u001b[0m\n\u001b[1;32m 537\u001b[0m dt\u001b[39m.\u001b[39mappend((time_synchronized() \u001b[39m-\u001b[39m t) \u001b[39m*\u001b[39m \u001b[39m100\u001b[39m)\n\u001b[1;32m 538\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m'\u001b[39m\u001b[39m%10.1f\u001b[39;00m\u001b[39m%10.0f\u001b[39;00m\u001b[39m%10.1f\u001b[39;00m\u001b[39mms \u001b[39m\u001b[39m%-40s\u001b[39;00m\u001b[39m'\u001b[39m \u001b[39m%\u001b[39m (o, m\u001b[39m.\u001b[39mnp, dt[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m], m\u001b[39m.\u001b[39mtype))\n\u001b[0;32m--> 540\u001b[0m x \u001b[39m=\u001b[39m m(x) \u001b[39m# run\u001b[39;00m\n\u001b[1;32m 542\u001b[0m y\u001b[39m.\u001b[39mappend(x \u001b[39mif\u001b[39;00m m\u001b[39m.\u001b[39mi \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msave \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m) \u001b[39m# save output\u001b[39;00m\n\u001b[1;32m 544\u001b[0m \u001b[39mif\u001b[39;00m profile:\n", |
|
|
257 |
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[39m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[39m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_backward_pre_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_hooks \u001b[39mor\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[39mor\u001b[39;00m _global_backward_pre_hooks \u001b[39mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[39mor\u001b[39;00m _global_forward_hooks \u001b[39mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[39mreturn\u001b[39;00m forward_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1502\u001b[0m \u001b[39m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[39m=\u001b[39m [], []\n", |
|
|
258 |
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/torch/nn/modules/upsampling.py:157\u001b[0m, in \u001b[0;36mUpsample.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mforward\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m: Tensor) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Tensor:\n\u001b[1;32m 156\u001b[0m \u001b[39mreturn\u001b[39;00m F\u001b[39m.\u001b[39minterpolate(\u001b[39minput\u001b[39m, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msize, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscale_factor, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmode, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39malign_corners,\n\u001b[0;32m--> 157\u001b[0m recompute_scale_factor\u001b[39m=\u001b[39m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrecompute_scale_factor)\n", |
|
|
259 |
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/torch/nn/modules/module.py:1614\u001b[0m, in \u001b[0;36mModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1612\u001b[0m \u001b[39mif\u001b[39;00m name \u001b[39min\u001b[39;00m modules:\n\u001b[1;32m 1613\u001b[0m \u001b[39mreturn\u001b[39;00m modules[name]\n\u001b[0;32m-> 1614\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mAttributeError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m object has no attribute \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(\n\u001b[1;32m 1615\u001b[0m \u001b[39mtype\u001b[39m(\u001b[39mself\u001b[39m)\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m, name))\n", |
|
|
260 |
"\u001b[0;31mAttributeError\u001b[0m: 'Upsample' object has no attribute 'recompute_scale_factor'" |
|
|
261 |
] |
|
|
262 |
} |
|
|
263 |
], |
|
|
264 |
"source": [ |
|
|
265 |
"imagefile = \"../assets/messi.jpg\"\n", |
|
|
266 |
"output, image = running_inference(cv2.imread(imagefile))\n", |
|
|
267 |
"pose_image = draw_keypoints(output, image, confidence=0.25, threshold=0.65)\n", |
|
|
268 |
"\n", |
|
|
269 |
"plt.figure(figsize=(30, 7))\n", |
|
|
270 |
"plt.axis(\"off\")\n", |
|
|
271 |
"plt.imshow(pose_image)" |
|
|
272 |
] |
|
|
273 |
}, |
|
|
274 |
{ |
|
|
275 |
"cell_type": "code", |
|
|
276 |
"execution_count": null, |
|
|
277 |
"metadata": {}, |
|
|
278 |
"outputs": [], |
|
|
279 |
"source": [ |
|
|
280 |
"output, image = running_inference(cv2.imread(imagefile))\n", |
|
|
281 |
"pose_image = draw_keypoints(output, image, confidence=0.25, threshold=0.65)\n", |
|
|
282 |
"\n", |
|
|
283 |
"plt.figure(figsize=(30, 7))\n", |
|
|
284 |
"plt.axis(\"off\")\n", |
|
|
285 |
"plt.imshow(pose_image)" |
|
|
286 |
] |
|
|
287 |
} |
|
|
288 |
], |
|
|
289 |
"metadata": { |
|
|
290 |
"kernelspec": { |
|
|
291 |
"display_name": "Python 3", |
|
|
292 |
"language": "python", |
|
|
293 |
"name": "python3" |
|
|
294 |
}, |
|
|
295 |
"language_info": { |
|
|
296 |
"codemirror_mode": { |
|
|
297 |
"name": "ipython", |
|
|
298 |
"version": 3 |
|
|
299 |
}, |
|
|
300 |
"file_extension": ".py", |
|
|
301 |
"mimetype": "text/x-python", |
|
|
302 |
"name": "python", |
|
|
303 |
"nbconvert_exporter": "python", |
|
|
304 |
"pygments_lexer": "ipython3", |
|
|
305 |
"version": "3.11.3" |
|
|
306 |
}, |
|
|
307 |
"orig_nbformat": 4 |
|
|
308 |
}, |
|
|
309 |
"nbformat": 4, |
|
|
310 |
"nbformat_minor": 2 |
|
|
311 |
} |