[1b6491]: / train.py

Download this file

480 lines (388 with data), 22.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# ==============================================================================
# Copyright (C) 2020 Vladimir Juras, Ravinder Regatte and Cem M. Deniz
#
# This file is part of 2019_IWOAI_Challenge
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# ==============================================================================
import tensorflow as tf
import tf_utilities as tfut
import tf_layers as tflay
import models
import sys
import numpy as np
import re
import time
import os
from functools import partial
import h5py
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import label_binarize
from keras.utils import to_categorical
from pathlib import Path
tf.app.flags.DEFINE_boolean('restore', False, 'Whether to restore from previous model.')
tf.app.flags.DEFINE_float('lr', 0.00005, 'Initial learning rate.')
tf.app.flags.DEFINE_integer('feature', 16, 'Number of root features.')
tf.app.flags.DEFINE_string('model', '4atrous248', 'Model name.')
tf.app.flags.DEFINE_boolean('val', True, 'Whether to use validation.')
tf.app.flags.DEFINE_boolean('full_data', True, 'Whether to use full data set.')
tf.app.flags.DEFINE_float('dr', 1.0, 'Learning rate decay rate.')
tf.app.flags.DEFINE_integer('reso', 384, 'Image size.')
tf.app.flags.DEFINE_integer('slices', 160, 'Number Of Slices')
tf.app.flags.DEFINE_string('loss', 'wce', 'Loss name.')
tf.app.flags.DEFINE_integer('epoch', 400, 'Number of epochs.')
tf.app.flags.DEFINE_boolean('staircase', False, 'If True decay the learning rate at discrete intervals.')
tf.app.flags.DEFINE_integer('seed', 1234, 'Graph-level random seed.')
tf.app.flags.DEFINE_float('dropout', 1.0, 'Dropout rate when training.')
tf.app.flags.DEFINE_string('output_path', None, 'Name of output folder.')
tf.app.flags.DEFINE_boolean('resnet', False, 'Whether to use resnet shortcut.')
tf.app.flags.DEFINE_boolean('early_stopping', True, 'early stopping feature')
tf.app.flags.DEFINE_string('folder', './data', 'Data Folder')
tf.app.flags.DEFINE_integer('noImages', -1, 'how many images to train and validate')
tf.app.flags.DEFINE_float('switchAccuracy', 0.88, 'Training accuracy switch to Dice loss')
tf.app.flags.DEFINE_string('info', ' ', 'add some info to run')
FLAGS = tf.app.flags.FLAGS
switchAccuracy = FLAGS.switchAccuracy
num_classes = 7
num_channels = 1
def _get_cost(logits, batch_y, cost_name='dice', add_regularizers=None, class_weights=None):
flat_logits = tf.reshape(logits, [-1, num_classes])
flat_labels = tf.reshape(batch_y, [-1, num_classes])
if cost_name == 'cross_entropy':
if class_weights is not None:
weight_map = tf.multiply(flat_labels, class_weights)
weight_map = tf.reduce_sum(weight_map, axis=1)
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits,
labels=flat_labels)
weighted_loss = tf.multiply(loss_map, weight_map)
loss = tf.reduce_mean(weighted_loss)
else:
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels))
elif cost_name == 'dice':
flat_logits = tf.nn.softmax(flat_logits)[:, 1]
flat_labels = flat_labels[:, 1]
inse = tf.reduce_sum(flat_logits*flat_labels)
l = tf.reduce_sum(flat_logits*flat_logits)
r = tf.reduce_sum(flat_labels*flat_labels)
dice = 2 *(inse) / (l+r)
loss = 1.0-tf.clip_by_value(dice,0,1-1e-10)
elif cost_name == 'dice_multi':
dice_multi = 0
n_classes = num_classes
for index in range(n_classes):
flat_logits_ = tf.nn.softmax(flat_logits)[:, index]
flat_labels_ = flat_labels[:, index]
inse = tf.reduce_sum(flat_logits_*flat_labels_)
l = tf.reduce_sum(flat_logits_*flat_logits_)
r = tf.reduce_sum(flat_labels_*flat_labels_)
dice = 2 *(inse) / (l+r)
dice = tf.clip_by_value(dice,0,1-1e-10)
dice_multi += dice
loss = n_classes*1.0-dice_multi
elif cost_name == 'dice_multi_noBG':
dice_multi = 0
n_classes = num_classes
for index in range(1,n_classes):
flat_logits_ = tf.nn.softmax(flat_logits)[:, index]
flat_labels_ = flat_labels[:, index]
inse = tf.reduce_sum(flat_logits_*flat_labels_)
l = tf.reduce_sum(flat_logits_*flat_logits_)
r = tf.reduce_sum(flat_labels_*flat_labels_)
dice = 2 *(inse) / (l+r)
dice = tf.clip_by_value(dice,0,1-1e-10)
dice_multi += dice
loss = (n_classes-1)*1.0-dice_multi
return loss
def _get_acc(logits, batch_y, cost_name='dice', add_regularizers=None, class_weights=None):
flat_logits = tf.reshape(logits, [-1, num_classes])
flat_labels = tf.reshape(batch_y, [-1, num_classes])
correct_prediction = tf.equal(tf.argmax(flat_logits,1), tf.argmax(flat_labels,1))
correct_prediction = tf.boolean_mask(correct_prediction, tf.equal(flat_labels[:,0],0))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy
def _get_optimizer(start_learning_rate=0.0001, global_step=0, decay_steps=25, decay_rate=0.9):
learning_rate = tf.train.exponential_decay(start_learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=FLAGS.staircase)
tf.summary.scalar('learning rate', learning_rate)
optimizer=tf.train.RMSPropOptimizer(learning_rate=learning_rate, decay=0.995)
return optimizer
def main(argv=None):
# if no output path is given, create a new folder using flags
res = 'res' if FLAGS.resnet else 'nores'
if FLAGS.output_path is None:
FLAGS.output_path = 'TrainedModels/' + '_'.join([time.strftime('%m%d_%H%M'),
FLAGS.model,'wceSwitch%.2fDice_AccVal'%(switchAccuracy),
res,
FLAGS.loss,
'no' + str(FLAGS.noImages),
'reso' + str(FLAGS.reso),
'features' + str(FLAGS.feature),
'lr' + '{:.1e}'.format(FLAGS.lr),
'dr' + str(FLAGS.dropout)])
if not os.path.exists(FLAGS.output_path):
os.makedirs(FLAGS.output_path)
# save flags into file
with open(FLAGS.output_path + '/flags.txt', 'a') as f:
f.write(str(FLAGS.flag_values_dict()))
# set seeds for tensorflow and numpy
tf.set_random_seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
# placeholders
batch_x = tf.placeholder(tf.float32, shape=(None, FLAGS.reso, FLAGS.reso, FLAGS.slices, 1), name='batch_x')
batch_y = tf.placeholder(tf.float32, shape=(None, None, None, None, num_classes))
keep_prob = tf.placeholder(tf.float32, shape=[], name='keep_prob')
global_step = tf.placeholder(tf.int32, shape=[])
class_weights = tf.placeholder(tf.float32, shape=(num_classes))
# choose the model
inference_raw = {'4unet': models.inference_unet4, # the original architecture and use 4 layers
'4atrous248': partial(models.inference_atrous4, dilation_rates=[2,4,8])}[FLAGS.model]
inference = partial(inference_raw, resnet=FLAGS.resnet)
# get score and probability, add to summary
score = inference(batch_x, features_root=FLAGS.feature, keep_prob=keep_prob, n_class=num_classes)
logits = tf.nn.softmax(score)
# get losses
dice_cost = _get_cost(score, batch_y, cost_name='dice_multi')
tf.summary.scalar('dice_loss', dice_cost)
dice_cost_noBG = _get_cost(score, batch_y, cost_name='dice_multi_noBG')
tf.summary.scalar('dice_loss noBG', dice_cost_noBG)
cross_entropy = _get_cost(score, batch_y, cost_name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
weighted_cross_entropy = _get_cost(score, batch_y, cost_name='cross_entropy', class_weights=class_weights)
tf.summary.scalar('weighted_cross_entropy', weighted_cross_entropy)
if FLAGS.loss == 'wce': # weighted cross entropy
cost = weighted_cross_entropy
elif FLAGS.loss == 'dice': # dice
cost = dice_cost
elif FLAGS.loss == 'ce': # cross entropy
cost = cross_entropy
else:
cost = dice_cost
# get accuracy
accuracy = _get_acc(score, batch_y)
# set optimizer with learning rate and decay rate
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
with tf.name_scope('rms_optimizer'):
optimizer = _get_optimizer(FLAGS.lr, global_step, decay_rate=FLAGS.dr)
optimizer_dice = _get_optimizer(FLAGS.lr, global_step, decay_rate=FLAGS.dr)
grads = optimizer.compute_gradients(cost)
grads_dice = optimizer_dice.compute_gradients(dice_cost)
train = optimizer.apply_gradients(grads)
train_dice = optimizer_dice.apply_gradients(grads_dice)
# get merged summaries
merged = tf.summary.merge_all()
# get losses & acc for training
dice_cost_train = tf.placeholder(tf.float32, shape=[])
dice_loss_train_summary = tf.summary.scalar('dice_loss_train', dice_cost_train)
cross_entropy_train = tf.placeholder(tf.float32, shape=[])
cross_entropy_train_summary = tf.summary.scalar('cross_entropy_train', cross_entropy_train)
weighted_cross_entropy_train = tf.placeholder(tf.float32, shape=[])
weighted_cross_entropy_train_summary = tf.summary.scalar('weighted_cross_entropy_train', weighted_cross_entropy_train)
accuracy_train = tf.placeholder(tf.float32, shape=[])
accuracy_train_summary = tf.summary.scalar('accuracy_train', accuracy_train)
# get losses & acc for validation
dice_cost_val = tf.placeholder(tf.float32, shape=[])
dice_loss_val_summary = tf.summary.scalar('dice_loss_val', dice_cost_val)
cross_entropy_val = tf.placeholder(tf.float32, shape=[])
cross_entropy_val_summary = tf.summary.scalar('cross_entropy_val', cross_entropy_val)
weighted_cross_entropy_val = tf.placeholder(tf.float32, shape=[])
weighted_cross_entropy_val_summary = tf.summary.scalar('weighted_cross_entropy_val', weighted_cross_entropy_val)
accuracy_val = tf.placeholder(tf.float32, shape=[])
accuracy_val_summary = tf.summary.scalar('accuracy_val', accuracy_val)
# load data
#read multiple data
dataFolder = FLAGS.folder + '/train'
pathNifti = Path(dataFolder)
X = [] # create an empty list
for fileList in list(pathNifti.glob('**/*.im')):
X.append(fileList)
X = sorted(X)
y = [] # create an empty list
for fileList in list(pathNifti.glob('**/*.seg')):
y.append(fileList)
y = sorted(y)
pathNifti = Path(FLAGS.folder + '/valid')
X_v = [] # create an empty list
for fileList in list(pathNifti.glob('**/*.im')):
X_v.append(fileList)
X_v = sorted(X_v)
y_v = [] # create an empty list
for fileList in list(pathNifti.glob('**/*.seg')):
y_v.append(fileList)
y_v = sorted(y_v)
saver = tf.train.Saver(max_to_keep=0)
# load mri data and segmentation maps for training
if FLAGS.noImages ==-1:
noOfFiles = len(X)
else:
noOfFiles = FLAGS.noImages
list_X = list( X[i] for i in range(noOfFiles) )
list_y = list( y[i] for i in range(noOfFiles) )
X_train, y_train, train_info = tfut.loadData_list_h5(list_X,list_y,num_channels)
print('Dataload is done')
X_train = tfut.zeroMeanUnitVariance(X_train)
weights_cross_entropy = tfut.compute_weights_multiClass(y_train,num_classes)
del list_X, list_y
# load mri data and segmentation maps for validation
if FLAGS.noImages ==-1:
noOfFiles = len(X_v)
else:
noOfFiles = FLAGS.noImages
list_X = list( X_v[i] for i in range(noOfFiles) )
list_y = list( y_v[i] for i in range(noOfFiles) )
X_val, y_val, val_info = tfut.loadData_list_h5(list_X, list_y,num_channels)
X_val = tfut.zeroMeanUnitVariance(X_val)
del list_X, list_y
X_train = X_train[...,np.newaxis]
X_val = X_val[...,np.newaxis]
# # resize data
if FLAGS.reso != 384:
input_size= X_train.shape[2]
X_train = tfut.batch_resize(X_train, input_size=input_size, output_size=FLAGS.reso, order=3)
y_train = tfut.batch_resize(y_train, input_size=input_size, output_size=FLAGS.reso, order=0)
X_val = tfut.batch_resize(X_val, input_size=input_size, output_size=FLAGS.reso, order=3)
y_val = tfut.batch_resize(y_val, input_size=input_size, output_size=FLAGS.reso, order=0)
sample_size = X_train.shape[0]
val_size = X_val.shape[0]
# initialization for early stopping
if FLAGS.early_stopping:
best_acc = 0
wait = 0
patience = 500
switchFlag = 1
config = tf.ConfigProto()
config.log_device_placement=False
config.allow_soft_placement =True
from tensorflow.python.client import device_lib
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
modelNo = 0
if FLAGS.restore:
ckpt = tf.train.get_checkpoint_state(FLAGS.output_path)
model_path = ckpt.model_checkpoint_path
saver.restore(sess, tf.train.latest_checkpoint(FLAGS.output_path))
print('Model restored from file: %s' % model_path)
tmp=re.findall('\d+', model_path)
modelNo = int(tmp[-1])
train_writer = tf.summary.FileWriter(FLAGS.output_path, sess.graph)
start = time.clock()
prediction = sess.run(score, feed_dict={batch_x: X_train[0:1],
batch_y: y_train[0:1],
global_step:0,
keep_prob:FLAGS.dropout,
class_weights:weights_cross_entropy})
pred_shape = prediction.shape
offset0 = (y_train.shape[1] - pred_shape[1]) // 2
offset1 = (y_train.shape[2] - pred_shape[2]) // 2
offset2 = (y_train.shape[3] - pred_shape[3]) // 2
if offset0 == 0 and offset1 == 0 and offset2 == 0:
print('SAME padding')
else:
y_train = y_train[:, offset0:(-offset0), offset1:(-offset1),offset2:(-offset2),:]
y_val = y_val[:, offset0:(-offset0), offset1:(-offset1),offset2:(-offset2),:]
for epoch in range(modelNo+1, FLAGS.epoch+1):
print('train epoch', epoch, 'sample_size', sample_size)
# shuffle data at the beginning of every epoch
shuffled_idx = np.random.permutation(sample_size)
wce_train, dice_train, ce_train, acc_train = [], [], [], []
for j in range(sample_size):
idx = shuffled_idx[j]
i = (epoch - 1) * sample_size + j + 1
# Whether to do left-right mirroring
step = np.random.choice([1,-1])
if switchFlag:
_, loss, dice_loss, cross_entropy_loss, acc = sess.run([train, weighted_cross_entropy, dice_cost, cross_entropy, accuracy],
feed_dict={batch_x: X_train[idx:idx+1, :, :, ::step, :],
batch_y: y_train[idx:idx+1, :, :, ::step, :],
global_step:epoch-1,
keep_prob:FLAGS.dropout,
class_weights:weights_cross_entropy})
else:
_, loss, dice_loss, cross_entropy_loss, acc = sess.run([train_dice, weighted_cross_entropy, dice_cost, cross_entropy, accuracy],
feed_dict={batch_x: X_train[idx:idx+1, :, :, ::step, :],
batch_y: y_train[idx:idx+1, :, :, ::step, :],
global_step:epoch-1,
keep_prob:FLAGS.dropout,
class_weights:weights_cross_entropy})
wce_train.append(loss)
dice_train.append(dice_loss)
ce_train.append(cross_entropy_loss)
acc_train.append(acc)
# swithc to dice loss when the CE train accuracy is pretty good
if np.mean(acc_train) > switchAccuracy:
switchFlag = 0
print('@@@@ switchtoDicein Epoch#:' ,epoch )
print('training weighted loss:', np.mean(wce_train), \
', cross entropy loss:', np.mean(ce_train), \
', dice loss:', np.mean(dice_train), \
', accuracy:', np.mean(acc_train))
summary = sess.run(weighted_cross_entropy_train_summary, feed_dict={weighted_cross_entropy_train:np.mean(wce_train)})
train_writer.add_summary(summary, epoch)
summary = sess.run(dice_loss_train_summary, feed_dict={dice_cost_train:np.mean(dice_train)})
train_writer.add_summary(summary, epoch)
summary = sess.run(cross_entropy_train_summary, feed_dict={cross_entropy_train:np.mean(ce_train)})
train_writer.add_summary(summary, epoch)
summary = sess.run(accuracy_train_summary , feed_dict={accuracy_train:np.mean(acc_train)})
train_writer.add_summary(summary, epoch)
if FLAGS.val:
summary = sess.run(merged,
feed_dict={batch_x: X_train[:1],
batch_y: y_train[:1],
global_step:epoch-1,
keep_prob:1.0,
class_weights:weights_cross_entropy})
train_writer.add_summary(summary, epoch)
wce_val, dice_val, ce_val, acc_val = [], [], [], []
for j in range(val_size):
loss, dice_loss, cross_entropy_loss, acc = sess.run([weighted_cross_entropy, dice_cost, cross_entropy, accuracy],
feed_dict={batch_x: X_val[j:j+1],
batch_y: y_val[j:j+1],
global_step:epoch-1,
keep_prob:1.0,
class_weights:weights_cross_entropy})
wce_val.append(loss)
dice_val.append(dice_loss)
ce_val.append(cross_entropy_loss)
acc_val.append(acc)
summary = sess.run(weighted_cross_entropy_val_summary, feed_dict={weighted_cross_entropy_val:np.mean(wce_val)})
train_writer.add_summary(summary, epoch)
summary = sess.run(dice_loss_val_summary, feed_dict={dice_cost_val:np.mean(dice_val)})
train_writer.add_summary(summary, epoch)
summary = sess.run(cross_entropy_val_summary, feed_dict={cross_entropy_val:np.mean(ce_val)})
train_writer.add_summary(summary, epoch)
summary = sess.run(accuracy_val_summary, feed_dict={accuracy_val:np.mean(acc_val)})
train_writer.add_summary(summary, epoch)
print('validation weighted loss:', np.mean(wce_val), \
', cross entropy loss:', np.mean(ce_val), \
', dice loss:', np.mean(dice_val), \
', accuracy:', np.mean(acc_val))
acc = np.mean(acc_val)
if acc - 1e-18 > best_acc:
best_acc, wait = acc, 0
saver.save(sess, FLAGS.output_path+'/model')
with open(FLAGS.output_path + '/SavedEpochNo.txt', 'w') as f:
f.write(str(epoch))
else:
saver.save(sess, FLAGS.output_path+'/model_lastEpoch')
with open(FLAGS.output_path + '/SavedEpochNoLastEpoch.txt', 'w') as f:
f.write(str(epoch))
wait += 1
if wait > patience:
print("!!!!Early Stopping on EPOCH %d!!!!" % epoch)
break
print("!!!!BEST: %f, wait %d !!!"%(best_acc, wait))
if __name__ == '__main__':
tf.app.run()