|
a |
|
b/train.py |
|
|
1 |
# ============================================================================== |
|
|
2 |
# Copyright (C) 2020 Vladimir Juras, Ravinder Regatte and Cem M. Deniz |
|
|
3 |
# |
|
|
4 |
# This file is part of 2019_IWOAI_Challenge |
|
|
5 |
# |
|
|
6 |
# This program is free software: you can redistribute it and/or modify |
|
|
7 |
# it under the terms of the GNU Affero General Public License as published |
|
|
8 |
# by the Free Software Foundation, either version 3 of the License, or |
|
|
9 |
# (at your option) any later version. |
|
|
10 |
|
|
|
11 |
# This program is distributed in the hope that it will be useful, |
|
|
12 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
13 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
14 |
# GNU Affero General Public License for more details. |
|
|
15 |
|
|
|
16 |
# You should have received a copy of the GNU Affero General Public License |
|
|
17 |
# along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
|
18 |
# ============================================================================== |
|
|
19 |
import tensorflow as tf |
|
|
20 |
import tf_utilities as tfut |
|
|
21 |
import tf_layers as tflay |
|
|
22 |
import models |
|
|
23 |
import sys |
|
|
24 |
|
|
|
25 |
import numpy as np |
|
|
26 |
import re |
|
|
27 |
import time |
|
|
28 |
import os |
|
|
29 |
from functools import partial |
|
|
30 |
|
|
|
31 |
import h5py |
|
|
32 |
from sklearn.model_selection import StratifiedKFold |
|
|
33 |
from sklearn.metrics import accuracy_score |
|
|
34 |
from sklearn.preprocessing import label_binarize |
|
|
35 |
from keras.utils import to_categorical |
|
|
36 |
from pathlib import Path |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
tf.app.flags.DEFINE_boolean('restore', False, 'Whether to restore from previous model.') |
|
|
40 |
tf.app.flags.DEFINE_float('lr', 0.00005, 'Initial learning rate.') |
|
|
41 |
tf.app.flags.DEFINE_integer('feature', 16, 'Number of root features.') |
|
|
42 |
tf.app.flags.DEFINE_string('model', '4atrous248', 'Model name.') |
|
|
43 |
tf.app.flags.DEFINE_boolean('val', True, 'Whether to use validation.') |
|
|
44 |
tf.app.flags.DEFINE_boolean('full_data', True, 'Whether to use full data set.') |
|
|
45 |
tf.app.flags.DEFINE_float('dr', 1.0, 'Learning rate decay rate.') |
|
|
46 |
tf.app.flags.DEFINE_integer('reso', 384, 'Image size.') |
|
|
47 |
tf.app.flags.DEFINE_integer('slices', 160, 'Number Of Slices') |
|
|
48 |
tf.app.flags.DEFINE_string('loss', 'wce', 'Loss name.') |
|
|
49 |
tf.app.flags.DEFINE_integer('epoch', 400, 'Number of epochs.') |
|
|
50 |
tf.app.flags.DEFINE_boolean('staircase', False, 'If True decay the learning rate at discrete intervals.') |
|
|
51 |
tf.app.flags.DEFINE_integer('seed', 1234, 'Graph-level random seed.') |
|
|
52 |
tf.app.flags.DEFINE_float('dropout', 1.0, 'Dropout rate when training.') |
|
|
53 |
tf.app.flags.DEFINE_string('output_path', None, 'Name of output folder.') |
|
|
54 |
tf.app.flags.DEFINE_boolean('resnet', False, 'Whether to use resnet shortcut.') |
|
|
55 |
tf.app.flags.DEFINE_boolean('early_stopping', True, 'early stopping feature') |
|
|
56 |
tf.app.flags.DEFINE_string('folder', './data', 'Data Folder') |
|
|
57 |
tf.app.flags.DEFINE_integer('noImages', -1, 'how many images to train and validate') |
|
|
58 |
tf.app.flags.DEFINE_float('switchAccuracy', 0.88, 'Training accuracy switch to Dice loss') |
|
|
59 |
tf.app.flags.DEFINE_string('info', ' ', 'add some info to run') |
|
|
60 |
|
|
|
61 |
FLAGS = tf.app.flags.FLAGS |
|
|
62 |
|
|
|
63 |
switchAccuracy = FLAGS.switchAccuracy |
|
|
64 |
|
|
|
65 |
num_classes = 7 |
|
|
66 |
num_channels = 1 |
|
|
67 |
|
|
|
68 |
def _get_cost(logits, batch_y, cost_name='dice', add_regularizers=None, class_weights=None): |
|
|
69 |
flat_logits = tf.reshape(logits, [-1, num_classes]) |
|
|
70 |
flat_labels = tf.reshape(batch_y, [-1, num_classes]) |
|
|
71 |
|
|
|
72 |
if cost_name == 'cross_entropy': |
|
|
73 |
if class_weights is not None: |
|
|
74 |
weight_map = tf.multiply(flat_labels, class_weights) |
|
|
75 |
weight_map = tf.reduce_sum(weight_map, axis=1) |
|
|
76 |
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, |
|
|
77 |
labels=flat_labels) |
|
|
78 |
weighted_loss = tf.multiply(loss_map, weight_map) |
|
|
79 |
loss = tf.reduce_mean(weighted_loss) |
|
|
80 |
else: |
|
|
81 |
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)) |
|
|
82 |
|
|
|
83 |
elif cost_name == 'dice': |
|
|
84 |
flat_logits = tf.nn.softmax(flat_logits)[:, 1] |
|
|
85 |
flat_labels = flat_labels[:, 1] |
|
|
86 |
|
|
|
87 |
inse = tf.reduce_sum(flat_logits*flat_labels) |
|
|
88 |
l = tf.reduce_sum(flat_logits*flat_logits) |
|
|
89 |
r = tf.reduce_sum(flat_labels*flat_labels) |
|
|
90 |
dice = 2 *(inse) / (l+r) |
|
|
91 |
loss = 1.0-tf.clip_by_value(dice,0,1-1e-10) |
|
|
92 |
|
|
|
93 |
elif cost_name == 'dice_multi': |
|
|
94 |
dice_multi = 0 |
|
|
95 |
n_classes = num_classes |
|
|
96 |
for index in range(n_classes): |
|
|
97 |
flat_logits_ = tf.nn.softmax(flat_logits)[:, index] |
|
|
98 |
flat_labels_ = flat_labels[:, index] |
|
|
99 |
|
|
|
100 |
inse = tf.reduce_sum(flat_logits_*flat_labels_) |
|
|
101 |
l = tf.reduce_sum(flat_logits_*flat_logits_) |
|
|
102 |
r = tf.reduce_sum(flat_labels_*flat_labels_) |
|
|
103 |
dice = 2 *(inse) / (l+r) |
|
|
104 |
dice = tf.clip_by_value(dice,0,1-1e-10) |
|
|
105 |
|
|
|
106 |
dice_multi += dice |
|
|
107 |
|
|
|
108 |
loss = n_classes*1.0-dice_multi |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
elif cost_name == 'dice_multi_noBG': |
|
|
112 |
dice_multi = 0 |
|
|
113 |
n_classes = num_classes |
|
|
114 |
for index in range(1,n_classes): |
|
|
115 |
flat_logits_ = tf.nn.softmax(flat_logits)[:, index] |
|
|
116 |
flat_labels_ = flat_labels[:, index] |
|
|
117 |
|
|
|
118 |
inse = tf.reduce_sum(flat_logits_*flat_labels_) |
|
|
119 |
l = tf.reduce_sum(flat_logits_*flat_logits_) |
|
|
120 |
r = tf.reduce_sum(flat_labels_*flat_labels_) |
|
|
121 |
dice = 2 *(inse) / (l+r) |
|
|
122 |
dice = tf.clip_by_value(dice,0,1-1e-10) |
|
|
123 |
|
|
|
124 |
dice_multi += dice |
|
|
125 |
|
|
|
126 |
loss = (n_classes-1)*1.0-dice_multi |
|
|
127 |
|
|
|
128 |
return loss |
|
|
129 |
|
|
|
130 |
def _get_acc(logits, batch_y, cost_name='dice', add_regularizers=None, class_weights=None): |
|
|
131 |
flat_logits = tf.reshape(logits, [-1, num_classes]) |
|
|
132 |
flat_labels = tf.reshape(batch_y, [-1, num_classes]) |
|
|
133 |
|
|
|
134 |
correct_prediction = tf.equal(tf.argmax(flat_logits,1), tf.argmax(flat_labels,1)) |
|
|
135 |
correct_prediction = tf.boolean_mask(correct_prediction, tf.equal(flat_labels[:,0],0)) |
|
|
136 |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) |
|
|
137 |
|
|
|
138 |
return accuracy |
|
|
139 |
|
|
|
140 |
def _get_optimizer(start_learning_rate=0.0001, global_step=0, decay_steps=25, decay_rate=0.9): |
|
|
141 |
learning_rate = tf.train.exponential_decay(start_learning_rate, |
|
|
142 |
global_step, |
|
|
143 |
decay_steps, |
|
|
144 |
decay_rate, |
|
|
145 |
staircase=FLAGS.staircase) |
|
|
146 |
tf.summary.scalar('learning rate', learning_rate) |
|
|
147 |
optimizer=tf.train.RMSPropOptimizer(learning_rate=learning_rate, decay=0.995) |
|
|
148 |
return optimizer |
|
|
149 |
|
|
|
150 |
def main(argv=None): |
|
|
151 |
# if no output path is given, create a new folder using flags |
|
|
152 |
res = 'res' if FLAGS.resnet else 'nores' |
|
|
153 |
if FLAGS.output_path is None: |
|
|
154 |
FLAGS.output_path = 'TrainedModels/' + '_'.join([time.strftime('%m%d_%H%M'), |
|
|
155 |
FLAGS.model,'wceSwitch%.2fDice_AccVal'%(switchAccuracy), |
|
|
156 |
res, |
|
|
157 |
FLAGS.loss, |
|
|
158 |
'no' + str(FLAGS.noImages), |
|
|
159 |
'reso' + str(FLAGS.reso), |
|
|
160 |
'features' + str(FLAGS.feature), |
|
|
161 |
'lr' + '{:.1e}'.format(FLAGS.lr), |
|
|
162 |
'dr' + str(FLAGS.dropout)]) |
|
|
163 |
|
|
|
164 |
if not os.path.exists(FLAGS.output_path): |
|
|
165 |
os.makedirs(FLAGS.output_path) |
|
|
166 |
|
|
|
167 |
# save flags into file |
|
|
168 |
with open(FLAGS.output_path + '/flags.txt', 'a') as f: |
|
|
169 |
f.write(str(FLAGS.flag_values_dict())) |
|
|
170 |
|
|
|
171 |
# set seeds for tensorflow and numpy |
|
|
172 |
tf.set_random_seed(FLAGS.seed) |
|
|
173 |
np.random.seed(FLAGS.seed) |
|
|
174 |
|
|
|
175 |
# placeholders |
|
|
176 |
batch_x = tf.placeholder(tf.float32, shape=(None, FLAGS.reso, FLAGS.reso, FLAGS.slices, 1), name='batch_x') |
|
|
177 |
batch_y = tf.placeholder(tf.float32, shape=(None, None, None, None, num_classes)) |
|
|
178 |
|
|
|
179 |
keep_prob = tf.placeholder(tf.float32, shape=[], name='keep_prob') |
|
|
180 |
global_step = tf.placeholder(tf.int32, shape=[]) |
|
|
181 |
class_weights = tf.placeholder(tf.float32, shape=(num_classes)) |
|
|
182 |
|
|
|
183 |
# choose the model |
|
|
184 |
inference_raw = {'4unet': models.inference_unet4, # the original architecture and use 4 layers |
|
|
185 |
'4atrous248': partial(models.inference_atrous4, dilation_rates=[2,4,8])}[FLAGS.model] |
|
|
186 |
|
|
|
187 |
inference = partial(inference_raw, resnet=FLAGS.resnet) |
|
|
188 |
|
|
|
189 |
# get score and probability, add to summary |
|
|
190 |
score = inference(batch_x, features_root=FLAGS.feature, keep_prob=keep_prob, n_class=num_classes) |
|
|
191 |
logits = tf.nn.softmax(score) |
|
|
192 |
|
|
|
193 |
# get losses |
|
|
194 |
dice_cost = _get_cost(score, batch_y, cost_name='dice_multi') |
|
|
195 |
tf.summary.scalar('dice_loss', dice_cost) |
|
|
196 |
dice_cost_noBG = _get_cost(score, batch_y, cost_name='dice_multi_noBG') |
|
|
197 |
tf.summary.scalar('dice_loss noBG', dice_cost_noBG) |
|
|
198 |
|
|
|
199 |
cross_entropy = _get_cost(score, batch_y, cost_name='cross_entropy') |
|
|
200 |
tf.summary.scalar('cross_entropy', cross_entropy) |
|
|
201 |
|
|
|
202 |
weighted_cross_entropy = _get_cost(score, batch_y, cost_name='cross_entropy', class_weights=class_weights) |
|
|
203 |
tf.summary.scalar('weighted_cross_entropy', weighted_cross_entropy) |
|
|
204 |
|
|
|
205 |
if FLAGS.loss == 'wce': # weighted cross entropy |
|
|
206 |
cost = weighted_cross_entropy |
|
|
207 |
elif FLAGS.loss == 'dice': # dice |
|
|
208 |
cost = dice_cost |
|
|
209 |
elif FLAGS.loss == 'ce': # cross entropy |
|
|
210 |
cost = cross_entropy |
|
|
211 |
else: |
|
|
212 |
cost = dice_cost |
|
|
213 |
|
|
|
214 |
# get accuracy |
|
|
215 |
accuracy = _get_acc(score, batch_y) |
|
|
216 |
|
|
|
217 |
# set optimizer with learning rate and decay rate |
|
|
218 |
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) |
|
|
219 |
with tf.control_dependencies(update_ops): |
|
|
220 |
with tf.name_scope('rms_optimizer'): |
|
|
221 |
optimizer = _get_optimizer(FLAGS.lr, global_step, decay_rate=FLAGS.dr) |
|
|
222 |
optimizer_dice = _get_optimizer(FLAGS.lr, global_step, decay_rate=FLAGS.dr) |
|
|
223 |
|
|
|
224 |
grads = optimizer.compute_gradients(cost) |
|
|
225 |
grads_dice = optimizer_dice.compute_gradients(dice_cost) |
|
|
226 |
|
|
|
227 |
train = optimizer.apply_gradients(grads) |
|
|
228 |
train_dice = optimizer_dice.apply_gradients(grads_dice) |
|
|
229 |
|
|
|
230 |
# get merged summaries |
|
|
231 |
merged = tf.summary.merge_all() |
|
|
232 |
|
|
|
233 |
# get losses & acc for training |
|
|
234 |
dice_cost_train = tf.placeholder(tf.float32, shape=[]) |
|
|
235 |
dice_loss_train_summary = tf.summary.scalar('dice_loss_train', dice_cost_train) |
|
|
236 |
|
|
|
237 |
cross_entropy_train = tf.placeholder(tf.float32, shape=[]) |
|
|
238 |
cross_entropy_train_summary = tf.summary.scalar('cross_entropy_train', cross_entropy_train) |
|
|
239 |
|
|
|
240 |
weighted_cross_entropy_train = tf.placeholder(tf.float32, shape=[]) |
|
|
241 |
weighted_cross_entropy_train_summary = tf.summary.scalar('weighted_cross_entropy_train', weighted_cross_entropy_train) |
|
|
242 |
|
|
|
243 |
accuracy_train = tf.placeholder(tf.float32, shape=[]) |
|
|
244 |
accuracy_train_summary = tf.summary.scalar('accuracy_train', accuracy_train) |
|
|
245 |
|
|
|
246 |
# get losses & acc for validation |
|
|
247 |
dice_cost_val = tf.placeholder(tf.float32, shape=[]) |
|
|
248 |
dice_loss_val_summary = tf.summary.scalar('dice_loss_val', dice_cost_val) |
|
|
249 |
|
|
|
250 |
cross_entropy_val = tf.placeholder(tf.float32, shape=[]) |
|
|
251 |
cross_entropy_val_summary = tf.summary.scalar('cross_entropy_val', cross_entropy_val) |
|
|
252 |
|
|
|
253 |
weighted_cross_entropy_val = tf.placeholder(tf.float32, shape=[]) |
|
|
254 |
weighted_cross_entropy_val_summary = tf.summary.scalar('weighted_cross_entropy_val', weighted_cross_entropy_val) |
|
|
255 |
|
|
|
256 |
accuracy_val = tf.placeholder(tf.float32, shape=[]) |
|
|
257 |
accuracy_val_summary = tf.summary.scalar('accuracy_val', accuracy_val) |
|
|
258 |
|
|
|
259 |
# load data |
|
|
260 |
#read multiple data |
|
|
261 |
dataFolder = FLAGS.folder + '/train' |
|
|
262 |
pathNifti = Path(dataFolder) |
|
|
263 |
|
|
|
264 |
X = [] # create an empty list |
|
|
265 |
for fileList in list(pathNifti.glob('**/*.im')): |
|
|
266 |
X.append(fileList) |
|
|
267 |
X = sorted(X) |
|
|
268 |
|
|
|
269 |
y = [] # create an empty list |
|
|
270 |
for fileList in list(pathNifti.glob('**/*.seg')): |
|
|
271 |
y.append(fileList) |
|
|
272 |
y = sorted(y) |
|
|
273 |
|
|
|
274 |
pathNifti = Path(FLAGS.folder + '/valid') |
|
|
275 |
|
|
|
276 |
X_v = [] # create an empty list |
|
|
277 |
for fileList in list(pathNifti.glob('**/*.im')): |
|
|
278 |
X_v.append(fileList) |
|
|
279 |
X_v = sorted(X_v) |
|
|
280 |
|
|
|
281 |
y_v = [] # create an empty list |
|
|
282 |
for fileList in list(pathNifti.glob('**/*.seg')): |
|
|
283 |
y_v.append(fileList) |
|
|
284 |
y_v = sorted(y_v) |
|
|
285 |
|
|
|
286 |
saver = tf.train.Saver(max_to_keep=0) |
|
|
287 |
|
|
|
288 |
# load mri data and segmentation maps for training |
|
|
289 |
if FLAGS.noImages ==-1: |
|
|
290 |
noOfFiles = len(X) |
|
|
291 |
else: |
|
|
292 |
noOfFiles = FLAGS.noImages |
|
|
293 |
list_X = list( X[i] for i in range(noOfFiles) ) |
|
|
294 |
list_y = list( y[i] for i in range(noOfFiles) ) |
|
|
295 |
|
|
|
296 |
X_train, y_train, train_info = tfut.loadData_list_h5(list_X,list_y,num_channels) |
|
|
297 |
print('Dataload is done') |
|
|
298 |
X_train = tfut.zeroMeanUnitVariance(X_train) |
|
|
299 |
weights_cross_entropy = tfut.compute_weights_multiClass(y_train,num_classes) |
|
|
300 |
del list_X, list_y |
|
|
301 |
|
|
|
302 |
# load mri data and segmentation maps for validation |
|
|
303 |
if FLAGS.noImages ==-1: |
|
|
304 |
noOfFiles = len(X_v) |
|
|
305 |
else: |
|
|
306 |
noOfFiles = FLAGS.noImages |
|
|
307 |
|
|
|
308 |
list_X = list( X_v[i] for i in range(noOfFiles) ) |
|
|
309 |
list_y = list( y_v[i] for i in range(noOfFiles) ) |
|
|
310 |
X_val, y_val, val_info = tfut.loadData_list_h5(list_X, list_y,num_channels) |
|
|
311 |
X_val = tfut.zeroMeanUnitVariance(X_val) |
|
|
312 |
del list_X, list_y |
|
|
313 |
|
|
|
314 |
X_train = X_train[...,np.newaxis] |
|
|
315 |
X_val = X_val[...,np.newaxis] |
|
|
316 |
|
|
|
317 |
# # resize data |
|
|
318 |
if FLAGS.reso != 384: |
|
|
319 |
input_size= X_train.shape[2] |
|
|
320 |
X_train = tfut.batch_resize(X_train, input_size=input_size, output_size=FLAGS.reso, order=3) |
|
|
321 |
y_train = tfut.batch_resize(y_train, input_size=input_size, output_size=FLAGS.reso, order=0) |
|
|
322 |
|
|
|
323 |
X_val = tfut.batch_resize(X_val, input_size=input_size, output_size=FLAGS.reso, order=3) |
|
|
324 |
y_val = tfut.batch_resize(y_val, input_size=input_size, output_size=FLAGS.reso, order=0) |
|
|
325 |
|
|
|
326 |
sample_size = X_train.shape[0] |
|
|
327 |
val_size = X_val.shape[0] |
|
|
328 |
|
|
|
329 |
# initialization for early stopping |
|
|
330 |
if FLAGS.early_stopping: |
|
|
331 |
best_acc = 0 |
|
|
332 |
wait = 0 |
|
|
333 |
patience = 500 |
|
|
334 |
switchFlag = 1 |
|
|
335 |
|
|
|
336 |
config = tf.ConfigProto() |
|
|
337 |
config.log_device_placement=False |
|
|
338 |
config.allow_soft_placement =True |
|
|
339 |
from tensorflow.python.client import device_lib |
|
|
340 |
|
|
|
341 |
with tf.Session(config=config) as sess: |
|
|
342 |
sess.run(tf.global_variables_initializer()) |
|
|
343 |
|
|
|
344 |
modelNo = 0 |
|
|
345 |
if FLAGS.restore: |
|
|
346 |
ckpt = tf.train.get_checkpoint_state(FLAGS.output_path) |
|
|
347 |
model_path = ckpt.model_checkpoint_path |
|
|
348 |
saver.restore(sess, tf.train.latest_checkpoint(FLAGS.output_path)) |
|
|
349 |
print('Model restored from file: %s' % model_path) |
|
|
350 |
tmp=re.findall('\d+', model_path) |
|
|
351 |
modelNo = int(tmp[-1]) |
|
|
352 |
|
|
|
353 |
train_writer = tf.summary.FileWriter(FLAGS.output_path, sess.graph) |
|
|
354 |
|
|
|
355 |
start = time.clock() |
|
|
356 |
|
|
|
357 |
prediction = sess.run(score, feed_dict={batch_x: X_train[0:1], |
|
|
358 |
batch_y: y_train[0:1], |
|
|
359 |
global_step:0, |
|
|
360 |
keep_prob:FLAGS.dropout, |
|
|
361 |
class_weights:weights_cross_entropy}) |
|
|
362 |
pred_shape = prediction.shape |
|
|
363 |
|
|
|
364 |
offset0 = (y_train.shape[1] - pred_shape[1]) // 2 |
|
|
365 |
offset1 = (y_train.shape[2] - pred_shape[2]) // 2 |
|
|
366 |
offset2 = (y_train.shape[3] - pred_shape[3]) // 2 |
|
|
367 |
|
|
|
368 |
if offset0 == 0 and offset1 == 0 and offset2 == 0: |
|
|
369 |
print('SAME padding') |
|
|
370 |
else: |
|
|
371 |
y_train = y_train[:, offset0:(-offset0), offset1:(-offset1),offset2:(-offset2),:] |
|
|
372 |
y_val = y_val[:, offset0:(-offset0), offset1:(-offset1),offset2:(-offset2),:] |
|
|
373 |
|
|
|
374 |
for epoch in range(modelNo+1, FLAGS.epoch+1): |
|
|
375 |
print('train epoch', epoch, 'sample_size', sample_size) |
|
|
376 |
|
|
|
377 |
# shuffle data at the beginning of every epoch |
|
|
378 |
shuffled_idx = np.random.permutation(sample_size) |
|
|
379 |
wce_train, dice_train, ce_train, acc_train = [], [], [], [] |
|
|
380 |
for j in range(sample_size): |
|
|
381 |
idx = shuffled_idx[j] |
|
|
382 |
i = (epoch - 1) * sample_size + j + 1 |
|
|
383 |
|
|
|
384 |
# Whether to do left-right mirroring |
|
|
385 |
step = np.random.choice([1,-1]) |
|
|
386 |
|
|
|
387 |
if switchFlag: |
|
|
388 |
_, loss, dice_loss, cross_entropy_loss, acc = sess.run([train, weighted_cross_entropy, dice_cost, cross_entropy, accuracy], |
|
|
389 |
feed_dict={batch_x: X_train[idx:idx+1, :, :, ::step, :], |
|
|
390 |
batch_y: y_train[idx:idx+1, :, :, ::step, :], |
|
|
391 |
global_step:epoch-1, |
|
|
392 |
keep_prob:FLAGS.dropout, |
|
|
393 |
class_weights:weights_cross_entropy}) |
|
|
394 |
else: |
|
|
395 |
_, loss, dice_loss, cross_entropy_loss, acc = sess.run([train_dice, weighted_cross_entropy, dice_cost, cross_entropy, accuracy], |
|
|
396 |
feed_dict={batch_x: X_train[idx:idx+1, :, :, ::step, :], |
|
|
397 |
batch_y: y_train[idx:idx+1, :, :, ::step, :], |
|
|
398 |
global_step:epoch-1, |
|
|
399 |
keep_prob:FLAGS.dropout, |
|
|
400 |
class_weights:weights_cross_entropy}) |
|
|
401 |
|
|
|
402 |
wce_train.append(loss) |
|
|
403 |
dice_train.append(dice_loss) |
|
|
404 |
ce_train.append(cross_entropy_loss) |
|
|
405 |
acc_train.append(acc) |
|
|
406 |
|
|
|
407 |
# swithc to dice loss when the CE train accuracy is pretty good |
|
|
408 |
if np.mean(acc_train) > switchAccuracy: |
|
|
409 |
switchFlag = 0 |
|
|
410 |
print('@@@@ switchtoDicein Epoch#:' ,epoch ) |
|
|
411 |
|
|
|
412 |
print('training weighted loss:', np.mean(wce_train), \ |
|
|
413 |
', cross entropy loss:', np.mean(ce_train), \ |
|
|
414 |
', dice loss:', np.mean(dice_train), \ |
|
|
415 |
', accuracy:', np.mean(acc_train)) |
|
|
416 |
summary = sess.run(weighted_cross_entropy_train_summary, feed_dict={weighted_cross_entropy_train:np.mean(wce_train)}) |
|
|
417 |
train_writer.add_summary(summary, epoch) |
|
|
418 |
summary = sess.run(dice_loss_train_summary, feed_dict={dice_cost_train:np.mean(dice_train)}) |
|
|
419 |
train_writer.add_summary(summary, epoch) |
|
|
420 |
summary = sess.run(cross_entropy_train_summary, feed_dict={cross_entropy_train:np.mean(ce_train)}) |
|
|
421 |
train_writer.add_summary(summary, epoch) |
|
|
422 |
summary = sess.run(accuracy_train_summary , feed_dict={accuracy_train:np.mean(acc_train)}) |
|
|
423 |
train_writer.add_summary(summary, epoch) |
|
|
424 |
|
|
|
425 |
if FLAGS.val: |
|
|
426 |
summary = sess.run(merged, |
|
|
427 |
feed_dict={batch_x: X_train[:1], |
|
|
428 |
batch_y: y_train[:1], |
|
|
429 |
global_step:epoch-1, |
|
|
430 |
keep_prob:1.0, |
|
|
431 |
class_weights:weights_cross_entropy}) |
|
|
432 |
train_writer.add_summary(summary, epoch) |
|
|
433 |
|
|
|
434 |
wce_val, dice_val, ce_val, acc_val = [], [], [], [] |
|
|
435 |
for j in range(val_size): |
|
|
436 |
loss, dice_loss, cross_entropy_loss, acc = sess.run([weighted_cross_entropy, dice_cost, cross_entropy, accuracy], |
|
|
437 |
feed_dict={batch_x: X_val[j:j+1], |
|
|
438 |
batch_y: y_val[j:j+1], |
|
|
439 |
global_step:epoch-1, |
|
|
440 |
keep_prob:1.0, |
|
|
441 |
class_weights:weights_cross_entropy}) |
|
|
442 |
wce_val.append(loss) |
|
|
443 |
dice_val.append(dice_loss) |
|
|
444 |
ce_val.append(cross_entropy_loss) |
|
|
445 |
acc_val.append(acc) |
|
|
446 |
|
|
|
447 |
summary = sess.run(weighted_cross_entropy_val_summary, feed_dict={weighted_cross_entropy_val:np.mean(wce_val)}) |
|
|
448 |
train_writer.add_summary(summary, epoch) |
|
|
449 |
summary = sess.run(dice_loss_val_summary, feed_dict={dice_cost_val:np.mean(dice_val)}) |
|
|
450 |
train_writer.add_summary(summary, epoch) |
|
|
451 |
summary = sess.run(cross_entropy_val_summary, feed_dict={cross_entropy_val:np.mean(ce_val)}) |
|
|
452 |
train_writer.add_summary(summary, epoch) |
|
|
453 |
summary = sess.run(accuracy_val_summary, feed_dict={accuracy_val:np.mean(acc_val)}) |
|
|
454 |
train_writer.add_summary(summary, epoch) |
|
|
455 |
|
|
|
456 |
print('validation weighted loss:', np.mean(wce_val), \ |
|
|
457 |
', cross entropy loss:', np.mean(ce_val), \ |
|
|
458 |
', dice loss:', np.mean(dice_val), \ |
|
|
459 |
', accuracy:', np.mean(acc_val)) |
|
|
460 |
|
|
|
461 |
acc = np.mean(acc_val) |
|
|
462 |
if acc - 1e-18 > best_acc: |
|
|
463 |
best_acc, wait = acc, 0 |
|
|
464 |
saver.save(sess, FLAGS.output_path+'/model') |
|
|
465 |
with open(FLAGS.output_path + '/SavedEpochNo.txt', 'w') as f: |
|
|
466 |
f.write(str(epoch)) |
|
|
467 |
else: |
|
|
468 |
saver.save(sess, FLAGS.output_path+'/model_lastEpoch') |
|
|
469 |
with open(FLAGS.output_path + '/SavedEpochNoLastEpoch.txt', 'w') as f: |
|
|
470 |
f.write(str(epoch)) |
|
|
471 |
wait += 1 |
|
|
472 |
if wait > patience: |
|
|
473 |
print("!!!!Early Stopping on EPOCH %d!!!!" % epoch) |
|
|
474 |
break |
|
|
475 |
print("!!!!BEST: %f, wait %d !!!"%(best_acc, wait)) |
|
|
476 |
|
|
|
477 |
|
|
|
478 |
if __name__ == '__main__': |
|
|
479 |
tf.app.run() |