[fc9ccf]: / 2a-preprocess-pickle-study_to_data.ipynb

Download this file

696 lines (695 with data), 24.5 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import fastai\n",
    "import pickle\n",
    "from fastai.utils.mem import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "stage = 'stage_2'\n",
    "data_dir = Path('data')\n",
    "fn_to_study_ix = pickle.load(open(f'{data_dir}/{stage}_fn_to_study_ix.pickle', 'rb'))\n",
    "study_ix_to_fn = pickle.load(open(f'{data_dir}/{stage}_study_ix_to_fn.pickle', 'rb'))\n",
    "fn_to_labels = pickle.load(  open(f'{data_dir}/{stage}_train_fn_to_labels.pickle', 'rb'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>fn</th>\n",
       "      <th>study</th>\n",
       "      <th>any</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ID_76d55d9d0</td>\n",
       "      <td>ID_0000298a7d</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ID_96d282ea9</td>\n",
       "      <td>ID_0000298a7d</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>ID_7d8a7c29d</td>\n",
       "      <td>ID_0000298a7d</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>ID_4d4401491</td>\n",
       "      <td>ID_0000298a7d</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ID_8f5ded0b7</td>\n",
       "      <td>ID_0000298a7d</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "             fn          study    any  epidural  intraparenchymal  \\\n",
       "0  ID_76d55d9d0  ID_0000298a7d  False     False             False   \n",
       "1  ID_96d282ea9  ID_0000298a7d  False     False             False   \n",
       "2  ID_7d8a7c29d  ID_0000298a7d  False     False             False   \n",
       "3  ID_4d4401491  ID_0000298a7d  False     False             False   \n",
       "4  ID_8f5ded0b7  ID_0000298a7d  False     False             False   \n",
       "\n",
       "   intraventricular  subarachnoid  subdural  \n",
       "0             False         False     False  \n",
       "1             False         False     False  \n",
       "2             False         False     False  \n",
       "3             False         False     False  \n",
       "4             False         False     False  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "classes = ['any', 'epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural']\n",
    "labels = []\n",
    "for fn, lbls in fn_to_labels.items():\n",
    "    row = {'fn':fn,'study':fn_to_study_ix[fn][0]}\n",
    "    for c in classes:\n",
    "        row[c] = c in fn_to_labels[fn]\n",
    "    labels.append(row)\n",
    "\n",
    "labels_df = pd.DataFrame(labels)\n",
    "labels_df.head() "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>any</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any_size</th>\n",
       "      <th>epidural_size</th>\n",
       "      <th>intraparenchymal_size</th>\n",
       "      <th>intraventricular_size</th>\n",
       "      <th>subarachnoid_size</th>\n",
       "      <th>subdural_size</th>\n",
       "      <th>strat_class</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>study</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>ID_0c828b6688</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_fe788cb8e6</th>\n",
       "      <td>6.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>101010.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_676bad1cd8</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_d0df6455dc</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_db74a340fd</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_29ecf20f76</th>\n",
       "      <td>7.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>101100.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_2d80aed85a</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_d9cf56413e</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_a2d95718f5</th>\n",
       "      <td>15.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>200002.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_8fd4e085bf</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                any  epidural  intraparenchymal  intraventricular  \\\n",
       "study                                                               \n",
       "ID_0c828b6688   0.0       0.0               0.0               0.0   \n",
       "ID_fe788cb8e6   6.0       0.0               2.0               0.0   \n",
       "ID_676bad1cd8   0.0       0.0               0.0               0.0   \n",
       "ID_d0df6455dc   0.0       0.0               0.0               0.0   \n",
       "ID_db74a340fd   0.0       0.0               0.0               0.0   \n",
       "ID_29ecf20f76   7.0       0.0               5.0               5.0   \n",
       "ID_2d80aed85a   0.0       0.0               0.0               0.0   \n",
       "ID_d9cf56413e   0.0       0.0               0.0               0.0   \n",
       "ID_a2d95718f5  15.0       0.0               0.0               0.0   \n",
       "ID_8fd4e085bf   0.0       0.0               0.0               0.0   \n",
       "\n",
       "               subarachnoid  subdural  any_size  epidural_size  \\\n",
       "study                                                            \n",
       "ID_0c828b6688           0.0       0.0         0              0   \n",
       "ID_fe788cb8e6           4.0       0.0         1              0   \n",
       "ID_676bad1cd8           0.0       0.0         0              0   \n",
       "ID_d0df6455dc           0.0       0.0         0              0   \n",
       "ID_db74a340fd           0.0       0.0         0              0   \n",
       "ID_29ecf20f76           0.0       0.0         1              0   \n",
       "ID_2d80aed85a           0.0       0.0         0              0   \n",
       "ID_d9cf56413e           0.0       0.0         0              0   \n",
       "ID_a2d95718f5           0.0      15.0         2              0   \n",
       "ID_8fd4e085bf           0.0       0.0         0              0   \n",
       "\n",
       "               intraparenchymal_size  intraventricular_size  \\\n",
       "study                                                         \n",
       "ID_0c828b6688                      0                      0   \n",
       "ID_fe788cb8e6                      1                      0   \n",
       "ID_676bad1cd8                      0                      0   \n",
       "ID_d0df6455dc                      0                      0   \n",
       "ID_db74a340fd                      0                      0   \n",
       "ID_29ecf20f76                      1                      1   \n",
       "ID_2d80aed85a                      0                      0   \n",
       "ID_d9cf56413e                      0                      0   \n",
       "ID_a2d95718f5                      0                      0   \n",
       "ID_8fd4e085bf                      0                      0   \n",
       "\n",
       "               subarachnoid_size  subdural_size  strat_class  \n",
       "study                                                         \n",
       "ID_0c828b6688                  0              0          0.0  \n",
       "ID_fe788cb8e6                  1              0     101010.0  \n",
       "ID_676bad1cd8                  0              0          0.0  \n",
       "ID_d0df6455dc                  0              0          0.0  \n",
       "ID_db74a340fd                  0              0          0.0  \n",
       "ID_29ecf20f76                  0              0     101100.0  \n",
       "ID_2d80aed85a                  0              0          0.0  \n",
       "ID_d9cf56413e                  0              0          0.0  \n",
       "ID_a2d95718f5                  0              2     200002.0  \n",
       "ID_8fd4e085bf                  0              0          0.0  "
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "study_labels = labels_df.groupby('study').agg('sum').reindex()\n",
    "for c in classes :\n",
    "    study_labels[c+'_size'] = 0 # 0 :not present, 1:small, 2:big\n",
    "    c_idx = study_labels.query(f'{c}>0').sort_values(c).index\n",
    "    c_small, c_big = c_idx[:len(c_idx)//2], c_idx[len(c_idx)//2:]\n",
    "    study_labels.loc[c_small,c+'_size'] = 1\n",
    "    study_labels.loc[c_big,c+'_size'] = 2\n",
    "size_classes = [c+'_size' for c in classes]\n",
    "study_labels['strat_class'] = study_labels[size_classes].astype(str).sum(axis=1)\n",
    "study_labels.sample(10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/antor/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py:667: UserWarning: The least populated class in y has only 1 members, which is less than n_splits=19.\n",
      "  % (min_groups, self.n_splits)), UserWarning)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>any</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any_size</th>\n",
       "      <th>epidural_size</th>\n",
       "      <th>intraparenchymal_size</th>\n",
       "      <th>intraventricular_size</th>\n",
       "      <th>subarachnoid_size</th>\n",
       "      <th>subdural_size</th>\n",
       "      <th>strat_class</th>\n",
       "      <th>fold</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>study</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>ID_0000298a7d</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_0004c4e54c</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_000a935543</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_000f6fd7db</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ID_0010b2528e</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               any  epidural  intraparenchymal  intraventricular  \\\n",
       "study                                                              \n",
       "ID_0000298a7d  0.0       0.0               0.0               0.0   \n",
       "ID_0004c4e54c  0.0       0.0               0.0               0.0   \n",
       "ID_000a935543  0.0       0.0               0.0               0.0   \n",
       "ID_000f6fd7db  0.0       0.0               0.0               0.0   \n",
       "ID_0010b2528e  0.0       0.0               0.0               0.0   \n",
       "\n",
       "               subarachnoid  subdural  any_size  epidural_size  \\\n",
       "study                                                            \n",
       "ID_0000298a7d           0.0       0.0         0              0   \n",
       "ID_0004c4e54c           0.0       0.0         0              0   \n",
       "ID_000a935543           0.0       0.0         0              0   \n",
       "ID_000f6fd7db           0.0       0.0         0              0   \n",
       "ID_0010b2528e           0.0       0.0         0              0   \n",
       "\n",
       "               intraparenchymal_size  intraventricular_size  \\\n",
       "study                                                         \n",
       "ID_0000298a7d                      0                      0   \n",
       "ID_0004c4e54c                      0                      0   \n",
       "ID_000a935543                      0                      0   \n",
       "ID_000f6fd7db                      0                      0   \n",
       "ID_0010b2528e                      0                      0   \n",
       "\n",
       "               subarachnoid_size  subdural_size  strat_class  fold  \n",
       "study                                                               \n",
       "ID_0000298a7d                  0              0          0.0     6  \n",
       "ID_0004c4e54c                  0              0          0.0    15  \n",
       "ID_000a935543                  0              0          0.0     2  \n",
       "ID_000f6fd7db                  0              0          0.0     9  \n",
       "ID_0010b2528e                  0              0          0.0     6  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from sklearn.model_selection import StratifiedKFold\n",
    "\n",
    "#this will throw a warning that can be ignored\n",
    "skf = StratifiedKFold(n_splits=19, shuffle=True, random_state=1972)\n",
    "study_labels['fold'] = -1\n",
    "for fold, (oof_idx,f_idx) in enumerate(skf.split(study_labels, study_labels.strat_class)):\n",
    "    study_labels.loc[study_labels.iloc[f_idx].index, 'fold' ] = fold\n",
    "study_labels.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "study_to_data = {}\n",
    "for study in study_ix_to_fn.keys():\n",
    "    if study in study_labels.index:\n",
    "        study_to_data[study] = {'fold': study_labels.loc[study].fold}\n",
    "    else:\n",
    "        study_to_data[study] = {'fold': -1} #study not in label set\n",
    "pickle.dump(study_to_data, open(f\"data/{stage}_study_to_data.pickle\", \"wb\" ))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}