|
a |
|
b/4-L2-train-and-submit.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"experiment_name = 'sm'" |
|
|
10 |
] |
|
|
11 |
}, |
|
|
12 |
{ |
|
|
13 |
"cell_type": "code", |
|
|
14 |
"execution_count": 2, |
|
|
15 |
"metadata": {}, |
|
|
16 |
"outputs": [], |
|
|
17 |
"source": [ |
|
|
18 |
"from pathlib import Path\n", |
|
|
19 |
"from fastai.data_block import get_files\n", |
|
|
20 |
"import pickle\n", |
|
|
21 |
"import torch\n", |
|
|
22 |
"import numpy as np, pandas as pd" |
|
|
23 |
] |
|
|
24 |
}, |
|
|
25 |
{ |
|
|
26 |
"cell_type": "code", |
|
|
27 |
"execution_count": 3, |
|
|
28 |
"metadata": {}, |
|
|
29 |
"outputs": [], |
|
|
30 |
"source": [ |
|
|
31 |
"class defaultlist(list):\n", |
|
|
32 |
" def __init__(self, fx):\n", |
|
|
33 |
" self._fx = fx\n", |
|
|
34 |
" def _fill(self, index):\n", |
|
|
35 |
" while len(self) <= index:\n", |
|
|
36 |
" self.append(self._fx())\n", |
|
|
37 |
" def __setitem__(self, index, value):\n", |
|
|
38 |
" self._fill(index)\n", |
|
|
39 |
" list.__setitem__(self, index, value)\n", |
|
|
40 |
" def __getitem__(self, index):\n", |
|
|
41 |
" self._fill(index)\n", |
|
|
42 |
" return list.__getitem__(self, index)" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "code", |
|
|
47 |
"execution_count": 4, |
|
|
48 |
"metadata": {}, |
|
|
49 |
"outputs": [], |
|
|
50 |
"source": [ |
|
|
51 |
"data_dir = Path('data/predictions')\n", |
|
|
52 |
"base_classes = [ 'any', 'epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural' ]" |
|
|
53 |
] |
|
|
54 |
}, |
|
|
55 |
{ |
|
|
56 |
"cell_type": "code", |
|
|
57 |
"execution_count": 5, |
|
|
58 |
"metadata": {}, |
|
|
59 |
"outputs": [], |
|
|
60 |
"source": [ |
|
|
61 |
"stage = \"stage_2\"" |
|
|
62 |
] |
|
|
63 |
}, |
|
|
64 |
{ |
|
|
65 |
"cell_type": "code", |
|
|
66 |
"execution_count": 6, |
|
|
67 |
"metadata": {}, |
|
|
68 |
"outputs": [], |
|
|
69 |
"source": [ |
|
|
70 |
"fn_to_study_ix = pickle.load(open(f'data/{stage}_fn_to_study_ix.pickle', 'rb'))\n", |
|
|
71 |
"study_ix_to_fn = pickle.load(open(f'data/{stage}_study_ix_to_fn.pickle', 'rb'))\n", |
|
|
72 |
"study_to_data = pickle.load(open(f'data/{stage}_study_to_data.pickle', 'rb'))\n", |
|
|
73 |
"df = pd.read_csv(f\"data/{stage}_train_dicom_diags_norm.csv\")\n", |
|
|
74 |
"df = df.set_index(['fid'])\n" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "code", |
|
|
79 |
"execution_count": 7, |
|
|
80 |
"metadata": {}, |
|
|
81 |
"outputs": [], |
|
|
82 |
"source": [ |
|
|
83 |
"labels_df = df.loc[:,'any':'subdural']\n", |
|
|
84 |
"labels_df.index.name = 'fn'" |
|
|
85 |
] |
|
|
86 |
}, |
|
|
87 |
{ |
|
|
88 |
"cell_type": "code", |
|
|
89 |
"execution_count": 8, |
|
|
90 |
"metadata": { |
|
|
91 |
"scrolled": true |
|
|
92 |
}, |
|
|
93 |
"outputs": [ |
|
|
94 |
{ |
|
|
95 |
"data": { |
|
|
96 |
"text/plain": [ |
|
|
97 |
"(['data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0413_subdural_loss_fold1_of_5',\n", |
|
|
98 |
" 'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0406_subdural_loss_fold2_of_5',\n", |
|
|
99 |
" 'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0403_subdural_loss_fold3_of_5',\n", |
|
|
100 |
" 'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0399_subdural_loss_fold4_of_5',\n", |
|
|
101 |
" 'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0386_subdural_loss_fold5_of_5',\n", |
|
|
102 |
" 'data/predictions/densenet121_sz512_cv0.0749_weighted_loss_fold1_of_5',\n", |
|
|
103 |
" 'data/predictions/densenet121_sz512_cv0.0743_weighted_loss_fold2_of_5',\n", |
|
|
104 |
" 'data/predictions/densenet121_sz512_cv0.0748_weighted_loss_fold3_of_5',\n", |
|
|
105 |
" 'data/predictions/densenet121_sz512_cv0.0738_weighted_loss_fold4_of_5',\n", |
|
|
106 |
" 'data/predictions/densenet121_sz512_cv0.0739_weighted_loss_fold5_of_5',\n", |
|
|
107 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0375_subdural_loss_fold1_of_5',\n", |
|
|
108 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0369_subdural_loss_fold2_of_5',\n", |
|
|
109 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0371_subdural_loss_fold3_of_5',\n", |
|
|
110 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0366_subdural_loss_fold4_of_5',\n", |
|
|
111 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0365_subdural_loss_fold5_of_5',\n", |
|
|
112 |
" 'data/predictions/resnet101_sz512_cv0.0758_weighted_loss_fold1_of_5',\n", |
|
|
113 |
" 'data/predictions/resnet101_sz512_cv0.0754_weighted_loss_fold2_of_5',\n", |
|
|
114 |
" 'data/predictions/resnet101_sz512_cv0.0761_weighted_loss_fold3_of_5',\n", |
|
|
115 |
" 'data/predictions/resnet101_sz512_cv0.0751_weighted_loss_fold4_of_5',\n", |
|
|
116 |
" 'data/predictions/resnet101_sz512_cv0.0749_weighted_loss_fold5_of_5',\n", |
|
|
117 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0556_subdural_loss_fold1_of_5',\n", |
|
|
118 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0550_subdural_loss_fold2_of_5',\n", |
|
|
119 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0528_subdural_loss_fold3_of_5',\n", |
|
|
120 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0530_subdural_loss_fold4_of_5',\n", |
|
|
121 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0522_subdural_loss_fold5_of_5',\n", |
|
|
122 |
" 'data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold1_of_5',\n", |
|
|
123 |
" 'data/predictions/resnet18_sz512_cv0.0773_weighted_loss_fold2_of_5',\n", |
|
|
124 |
" 'data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold3_of_5',\n", |
|
|
125 |
" 'data/predictions/resnet18_sz512_cv0.0762_weighted_loss_fold4_of_5',\n", |
|
|
126 |
" 'data/predictions/resnet18_sz512_cv0.0768_weighted_loss_fold5_of_5',\n", |
|
|
127 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0496_subdural_loss_fold1_of_5',\n", |
|
|
128 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0484_subdural_loss_fold2_of_5',\n", |
|
|
129 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0474_subdural_loss_fold3_of_5',\n", |
|
|
130 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0466_subdural_loss_fold4_of_5',\n", |
|
|
131 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0453_subdural_loss_fold5_of_5',\n", |
|
|
132 |
" 'data/predictions/resnet34_sz512_cv0.0765_weighted_loss_fold1_of_5',\n", |
|
|
133 |
" 'data/predictions/resnet34_sz512_cv0.0763_weighted_loss_fold2_of_5',\n", |
|
|
134 |
" 'data/predictions/resnet34_sz512_cv0.0782_weighted_loss_fold3_of_5',\n", |
|
|
135 |
" 'data/predictions/resnet34_sz512_cv0.0750_weighted_loss_fold4_of_5',\n", |
|
|
136 |
" 'data/predictions/resnet34_sz512_cv0.0759_weighted_loss_fold5_of_5',\n", |
|
|
137 |
" 'data/predictions/resnet50_sz512_cv0.0761_weighted_loss_fold1_of_5',\n", |
|
|
138 |
" 'data/predictions/resnet50_sz512_cv0.0754_weighted_loss_fold2_of_5',\n", |
|
|
139 |
" 'data/predictions/resnet50_sz512_cv0.0764_weighted_loss_fold3_of_5',\n", |
|
|
140 |
" 'data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold4_of_5',\n", |
|
|
141 |
" 'data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold5_of_5',\n", |
|
|
142 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0387_subdural_loss_fold1_of_5',\n", |
|
|
143 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0378_subdural_loss_fold2_of_5',\n", |
|
|
144 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0381_subdural_loss_fold3_of_5',\n", |
|
|
145 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0376_subdural_loss_fold4_of_5',\n", |
|
|
146 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0372_subdural_loss_fold5_of_5'],\n", |
|
|
147 |
" ['data/predictions/densenet121',\n", |
|
|
148 |
" 'data/predictions/densenet121-53_train_cpu_window_uint8',\n", |
|
|
149 |
" 'data/predictions/resnet101',\n", |
|
|
150 |
" 'data/predictions/resnet101-53_train_cpu_window_uint8',\n", |
|
|
151 |
" 'data/predictions/resnet18',\n", |
|
|
152 |
" 'data/predictions/resnet18-53_train_cpu_window_uint8',\n", |
|
|
153 |
" 'data/predictions/resnet34',\n", |
|
|
154 |
" 'data/predictions/resnet34-53_train_cpu_window_uint8',\n", |
|
|
155 |
" 'data/predictions/resnet50',\n", |
|
|
156 |
" 'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8'])" |
|
|
157 |
] |
|
|
158 |
}, |
|
|
159 |
"execution_count": 8, |
|
|
160 |
"metadata": {}, |
|
|
161 |
"output_type": "execute_result" |
|
|
162 |
} |
|
|
163 |
], |
|
|
164 |
"source": [ |
|
|
165 |
"csvs = sorted([str(fn) for fn in get_files(data_dir, extensions='.csv')])\n", |
|
|
166 |
"csv = csvs[0]\n", |
|
|
167 |
"def where_test(csv):\n", |
|
|
168 |
" res = csv.find('_test') \n", |
|
|
169 |
" return res if res!= -1 else csv.find('_valid') \n", |
|
|
170 |
"where_fold = lambda csv: csv.index('fold')\n", |
|
|
171 |
"where_stem = lambda csv: len(csv)-csv[::-1].index('/')\n", |
|
|
172 |
"where_sz = lambda csv: csv.index('_sz')\n", |
|
|
173 |
"model_fns = sorted(np.unique([csv[:where_test(csv)] for csv in csvs]),\n", |
|
|
174 |
" key=lambda x:x[where_stem(x):where_sz(x)]+x[where_fold(x):where_test(x)])\n", |
|
|
175 |
"archs = np.unique([model_fn[:where_sz(model_fn)] for model_fn in model_fns]).tolist()\n", |
|
|
176 |
"n_folds = len(model_fns)//len(archs)\n", |
|
|
177 |
"model_fns, archs, " |
|
|
178 |
] |
|
|
179 |
}, |
|
|
180 |
{ |
|
|
181 |
"cell_type": "code", |
|
|
182 |
"execution_count": 9, |
|
|
183 |
"metadata": {}, |
|
|
184 |
"outputs": [ |
|
|
185 |
{ |
|
|
186 |
"name": "stdout", |
|
|
187 |
"output_type": "stream", |
|
|
188 |
"text": [ |
|
|
189 |
"0 data/predictions/densenet121_sz512_cv0.0749_weighted_loss_fold1_of_5\n", |
|
|
190 |
"1 data/predictions/densenet121_sz512_cv0.0743_weighted_loss_fold2_of_5\n", |
|
|
191 |
"2 data/predictions/densenet121_sz512_cv0.0748_weighted_loss_fold3_of_5\n", |
|
|
192 |
"3 data/predictions/densenet121_sz512_cv0.0738_weighted_loss_fold4_of_5\n", |
|
|
193 |
"4 data/predictions/densenet121_sz512_cv0.0739_weighted_loss_fold5_of_5\n", |
|
|
194 |
"0 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0413_subdural_loss_fold1_of_5\n", |
|
|
195 |
"1 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0406_subdural_loss_fold2_of_5\n", |
|
|
196 |
"2 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0403_subdural_loss_fold3_of_5\n", |
|
|
197 |
"3 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0399_subdural_loss_fold4_of_5\n", |
|
|
198 |
"4 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0386_subdural_loss_fold5_of_5\n", |
|
|
199 |
"0 data/predictions/resnet101_sz512_cv0.0758_weighted_loss_fold1_of_5\n", |
|
|
200 |
"1 data/predictions/resnet101_sz512_cv0.0754_weighted_loss_fold2_of_5\n", |
|
|
201 |
"2 data/predictions/resnet101_sz512_cv0.0761_weighted_loss_fold3_of_5\n", |
|
|
202 |
"3 data/predictions/resnet101_sz512_cv0.0751_weighted_loss_fold4_of_5\n", |
|
|
203 |
"4 data/predictions/resnet101_sz512_cv0.0749_weighted_loss_fold5_of_5\n", |
|
|
204 |
"0 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0375_subdural_loss_fold1_of_5\n", |
|
|
205 |
"1 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0369_subdural_loss_fold2_of_5\n", |
|
|
206 |
"2 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0371_subdural_loss_fold3_of_5\n", |
|
|
207 |
"3 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0366_subdural_loss_fold4_of_5\n", |
|
|
208 |
"4 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0365_subdural_loss_fold5_of_5\n", |
|
|
209 |
"0 data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold1_of_5\n", |
|
|
210 |
"1 data/predictions/resnet18_sz512_cv0.0773_weighted_loss_fold2_of_5\n", |
|
|
211 |
"2 data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold3_of_5\n", |
|
|
212 |
"3 data/predictions/resnet18_sz512_cv0.0762_weighted_loss_fold4_of_5\n", |
|
|
213 |
"4 data/predictions/resnet18_sz512_cv0.0768_weighted_loss_fold5_of_5\n", |
|
|
214 |
"0 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0556_subdural_loss_fold1_of_5\n", |
|
|
215 |
"1 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0550_subdural_loss_fold2_of_5\n", |
|
|
216 |
"2 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0528_subdural_loss_fold3_of_5\n", |
|
|
217 |
"3 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0530_subdural_loss_fold4_of_5\n", |
|
|
218 |
"4 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0522_subdural_loss_fold5_of_5\n", |
|
|
219 |
"0 data/predictions/resnet34_sz512_cv0.0765_weighted_loss_fold1_of_5\n", |
|
|
220 |
"1 data/predictions/resnet34_sz512_cv0.0763_weighted_loss_fold2_of_5\n", |
|
|
221 |
"2 data/predictions/resnet34_sz512_cv0.0782_weighted_loss_fold3_of_5\n", |
|
|
222 |
"3 data/predictions/resnet34_sz512_cv0.0750_weighted_loss_fold4_of_5\n", |
|
|
223 |
"4 data/predictions/resnet34_sz512_cv0.0759_weighted_loss_fold5_of_5\n", |
|
|
224 |
"0 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0496_subdural_loss_fold1_of_5\n", |
|
|
225 |
"1 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0484_subdural_loss_fold2_of_5\n", |
|
|
226 |
"2 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0474_subdural_loss_fold3_of_5\n", |
|
|
227 |
"3 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0466_subdural_loss_fold4_of_5\n", |
|
|
228 |
"4 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0453_subdural_loss_fold5_of_5\n", |
|
|
229 |
"0 data/predictions/resnet50_sz512_cv0.0761_weighted_loss_fold1_of_5\n", |
|
|
230 |
"1 data/predictions/resnet50_sz512_cv0.0754_weighted_loss_fold2_of_5\n", |
|
|
231 |
"2 data/predictions/resnet50_sz512_cv0.0764_weighted_loss_fold3_of_5\n", |
|
|
232 |
"3 data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold4_of_5\n", |
|
|
233 |
"4 data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold5_of_5\n", |
|
|
234 |
"0 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0387_subdural_loss_fold1_of_5\n", |
|
|
235 |
"1 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0378_subdural_loss_fold2_of_5\n", |
|
|
236 |
"2 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0381_subdural_loss_fold3_of_5\n", |
|
|
237 |
"3 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0376_subdural_loss_fold4_of_5\n", |
|
|
238 |
"4 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0372_subdural_loss_fold5_of_5\n" |
|
|
239 |
] |
|
|
240 |
} |
|
|
241 |
], |
|
|
242 |
"source": [ |
|
|
243 |
"arch_names = [arch[where_stem(arch):] for arch in archs]\n", |
|
|
244 |
"test_folds_dfs, train_arch_dfs = defaultlist(list),[]\n", |
|
|
245 |
"for arch in archs:\n", |
|
|
246 |
" train_model_dfs = []\n", |
|
|
247 |
" _arch = arch[where_stem(arch):]\n", |
|
|
248 |
" for i,model_fn in enumerate([model for model in model_fns if model.find(arch+\"_\")!=-1]):\n", |
|
|
249 |
" print(i,model_fn)\n", |
|
|
250 |
" t_df = pd.read_csv(model_fn + '_valid_fns.csv')\n", |
|
|
251 |
" t = torch.load(model_fn + '_valid.pth')\n", |
|
|
252 |
" t_mean, t_std = t.mean(dim=0), t.std(dim=0)\n", |
|
|
253 |
" train_model_dfs.append(pd.DataFrame({**{'fn' : t_df.values.squeeze(-1),},\n", |
|
|
254 |
" **{f'X{_arch}_{c}_mean' : t_mean[:,6+i].numpy() for i,c in enumerate(base_classes)},\n", |
|
|
255 |
" **{f'X{_arch}_{c}_std' : t_std[:,6+i].numpy() for i,c in enumerate(base_classes)}}))\n", |
|
|
256 |
" \n", |
|
|
257 |
" t_df = pd.read_csv(model_fn + '_test_fns.csv')\n", |
|
|
258 |
" t = torch.load(model_fn + '_test.pth')\n", |
|
|
259 |
" t_mean, t_std = t.mean(dim=0), t.std(dim=0)\n", |
|
|
260 |
" test_folds_dfs[i].append(pd.DataFrame({**{'fn' : t_df.values.squeeze(-1),},\n", |
|
|
261 |
" **{f'X{_arch}_{c}_mean' : t_mean[:,6+i].numpy() for i,c in enumerate(base_classes)},\n", |
|
|
262 |
" **{f'X{_arch}_{c}_std' : t_std[:,6+i].numpy() for i,c in enumerate(base_classes)}}))\n", |
|
|
263 |
"\n", |
|
|
264 |
" train_arch_dfs.append(pd.concat(train_model_dfs, axis=0))" |
|
|
265 |
] |
|
|
266 |
}, |
|
|
267 |
{ |
|
|
268 |
"cell_type": "code", |
|
|
269 |
"execution_count": 10, |
|
|
270 |
"metadata": {}, |
|
|
271 |
"outputs": [], |
|
|
272 |
"source": [ |
|
|
273 |
"tta_df = train_arch_dfs[0]\n", |
|
|
274 |
"for arch_df in train_arch_dfs[1:]:\n", |
|
|
275 |
" tta_df = tta_df.merge(arch_df,on='fn')" |
|
|
276 |
] |
|
|
277 |
}, |
|
|
278 |
{ |
|
|
279 |
"cell_type": "code", |
|
|
280 |
"execution_count": 11, |
|
|
281 |
"metadata": {}, |
|
|
282 |
"outputs": [], |
|
|
283 |
"source": [ |
|
|
284 |
"tta_df = tta_df.merge(labels_df,on='fn')" |
|
|
285 |
] |
|
|
286 |
}, |
|
|
287 |
{ |
|
|
288 |
"cell_type": "code", |
|
|
289 |
"execution_count": 12, |
|
|
290 |
"metadata": {}, |
|
|
291 |
"outputs": [ |
|
|
292 |
{ |
|
|
293 |
"data": { |
|
|
294 |
"text/html": [ |
|
|
295 |
"<div>\n", |
|
|
296 |
"<style scoped>\n", |
|
|
297 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
298 |
" vertical-align: middle;\n", |
|
|
299 |
" }\n", |
|
|
300 |
"\n", |
|
|
301 |
" .dataframe tbody tr th {\n", |
|
|
302 |
" vertical-align: top;\n", |
|
|
303 |
" }\n", |
|
|
304 |
"\n", |
|
|
305 |
" .dataframe thead th {\n", |
|
|
306 |
" text-align: right;\n", |
|
|
307 |
" }\n", |
|
|
308 |
"</style>\n", |
|
|
309 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
310 |
" <thead>\n", |
|
|
311 |
" <tr style=\"text-align: right;\">\n", |
|
|
312 |
" <th></th>\n", |
|
|
313 |
" <th>fn</th>\n", |
|
|
314 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
315 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
316 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
317 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
318 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
319 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
320 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
321 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
322 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
323 |
" <th>...</th>\n", |
|
|
324 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_std</th>\n", |
|
|
325 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_std</th>\n", |
|
|
326 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std</th>\n", |
|
|
327 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std</th>\n", |
|
|
328 |
" <th>any</th>\n", |
|
|
329 |
" <th>epidural</th>\n", |
|
|
330 |
" <th>intraparenchymal</th>\n", |
|
|
331 |
" <th>intraventricular</th>\n", |
|
|
332 |
" <th>subarachnoid</th>\n", |
|
|
333 |
" <th>subdural</th>\n", |
|
|
334 |
" </tr>\n", |
|
|
335 |
" </thead>\n", |
|
|
336 |
" <tbody>\n", |
|
|
337 |
" <tr>\n", |
|
|
338 |
" <th>0</th>\n", |
|
|
339 |
" <td>ID_0000950d7</td>\n", |
|
|
340 |
" <td>0.000216</td>\n", |
|
|
341 |
" <td>0.000009</td>\n", |
|
|
342 |
" <td>0.000040</td>\n", |
|
|
343 |
" <td>0.000017</td>\n", |
|
|
344 |
" <td>0.000131</td>\n", |
|
|
345 |
" <td>0.000070</td>\n", |
|
|
346 |
" <td>0.000077</td>\n", |
|
|
347 |
" <td>2.602864e-06</td>\n", |
|
|
348 |
" <td>0.000013</td>\n", |
|
|
349 |
" <td>...</td>\n", |
|
|
350 |
" <td>0.000009</td>\n", |
|
|
351 |
" <td>2.093691e-06</td>\n", |
|
|
352 |
" <td>0.000017</td>\n", |
|
|
353 |
" <td>0.000002</td>\n", |
|
|
354 |
" <td>0</td>\n", |
|
|
355 |
" <td>0</td>\n", |
|
|
356 |
" <td>0</td>\n", |
|
|
357 |
" <td>0</td>\n", |
|
|
358 |
" <td>0</td>\n", |
|
|
359 |
" <td>0</td>\n", |
|
|
360 |
" </tr>\n", |
|
|
361 |
" <tr>\n", |
|
|
362 |
" <th>1</th>\n", |
|
|
363 |
" <td>ID_0000aee4b</td>\n", |
|
|
364 |
" <td>0.000652</td>\n", |
|
|
365 |
" <td>0.000132</td>\n", |
|
|
366 |
" <td>0.000049</td>\n", |
|
|
367 |
" <td>0.000030</td>\n", |
|
|
368 |
" <td>0.000237</td>\n", |
|
|
369 |
" <td>0.000415</td>\n", |
|
|
370 |
" <td>0.000478</td>\n", |
|
|
371 |
" <td>7.363618e-05</td>\n", |
|
|
372 |
" <td>0.000018</td>\n", |
|
|
373 |
" <td>...</td>\n", |
|
|
374 |
" <td>0.000003</td>\n", |
|
|
375 |
" <td>4.035392e-07</td>\n", |
|
|
376 |
" <td>0.000253</td>\n", |
|
|
377 |
" <td>0.000225</td>\n", |
|
|
378 |
" <td>0</td>\n", |
|
|
379 |
" <td>0</td>\n", |
|
|
380 |
" <td>0</td>\n", |
|
|
381 |
" <td>0</td>\n", |
|
|
382 |
" <td>0</td>\n", |
|
|
383 |
" <td>0</td>\n", |
|
|
384 |
" </tr>\n", |
|
|
385 |
" <tr>\n", |
|
|
386 |
" <th>2</th>\n", |
|
|
387 |
" <td>ID_0001de0e8</td>\n", |
|
|
388 |
" <td>0.000875</td>\n", |
|
|
389 |
" <td>0.000079</td>\n", |
|
|
390 |
" <td>0.000283</td>\n", |
|
|
391 |
" <td>0.000013</td>\n", |
|
|
392 |
" <td>0.000218</td>\n", |
|
|
393 |
" <td>0.000636</td>\n", |
|
|
394 |
" <td>0.001155</td>\n", |
|
|
395 |
" <td>8.438517e-05</td>\n", |
|
|
396 |
" <td>0.000151</td>\n", |
|
|
397 |
" <td>...</td>\n", |
|
|
398 |
" <td>0.000247</td>\n", |
|
|
399 |
" <td>1.205952e-05</td>\n", |
|
|
400 |
" <td>0.001305</td>\n", |
|
|
401 |
" <td>0.000090</td>\n", |
|
|
402 |
" <td>0</td>\n", |
|
|
403 |
" <td>0</td>\n", |
|
|
404 |
" <td>0</td>\n", |
|
|
405 |
" <td>0</td>\n", |
|
|
406 |
" <td>0</td>\n", |
|
|
407 |
" <td>0</td>\n", |
|
|
408 |
" </tr>\n", |
|
|
409 |
" <tr>\n", |
|
|
410 |
" <th>3</th>\n", |
|
|
411 |
" <td>ID_0002003a8</td>\n", |
|
|
412 |
" <td>0.001583</td>\n", |
|
|
413 |
" <td>0.000008</td>\n", |
|
|
414 |
" <td>0.000745</td>\n", |
|
|
415 |
" <td>0.000176</td>\n", |
|
|
416 |
" <td>0.000233</td>\n", |
|
|
417 |
" <td>0.000478</td>\n", |
|
|
418 |
" <td>0.000657</td>\n", |
|
|
419 |
" <td>8.040458e-07</td>\n", |
|
|
420 |
" <td>0.000355</td>\n", |
|
|
421 |
" <td>...</td>\n", |
|
|
422 |
" <td>0.000542</td>\n", |
|
|
423 |
" <td>3.861410e-04</td>\n", |
|
|
424 |
" <td>0.000488</td>\n", |
|
|
425 |
" <td>0.000947</td>\n", |
|
|
426 |
" <td>0</td>\n", |
|
|
427 |
" <td>0</td>\n", |
|
|
428 |
" <td>0</td>\n", |
|
|
429 |
" <td>0</td>\n", |
|
|
430 |
" <td>0</td>\n", |
|
|
431 |
" <td>0</td>\n", |
|
|
432 |
" </tr>\n", |
|
|
433 |
" <tr>\n", |
|
|
434 |
" <th>4</th>\n", |
|
|
435 |
" <td>ID_000229f2a</td>\n", |
|
|
436 |
" <td>0.000251</td>\n", |
|
|
437 |
" <td>0.000041</td>\n", |
|
|
438 |
" <td>0.000084</td>\n", |
|
|
439 |
" <td>0.000039</td>\n", |
|
|
440 |
" <td>0.000162</td>\n", |
|
|
441 |
" <td>0.000084</td>\n", |
|
|
442 |
" <td>0.000072</td>\n", |
|
|
443 |
" <td>1.584314e-05</td>\n", |
|
|
444 |
" <td>0.000014</td>\n", |
|
|
445 |
" <td>...</td>\n", |
|
|
446 |
" <td>0.001312</td>\n", |
|
|
447 |
" <td>1.682060e-06</td>\n", |
|
|
448 |
" <td>0.000491</td>\n", |
|
|
449 |
" <td>0.000120</td>\n", |
|
|
450 |
" <td>0</td>\n", |
|
|
451 |
" <td>0</td>\n", |
|
|
452 |
" <td>0</td>\n", |
|
|
453 |
" <td>0</td>\n", |
|
|
454 |
" <td>0</td>\n", |
|
|
455 |
" <td>0</td>\n", |
|
|
456 |
" </tr>\n", |
|
|
457 |
" </tbody>\n", |
|
|
458 |
"</table>\n", |
|
|
459 |
"<p>5 rows × 127 columns</p>\n", |
|
|
460 |
"</div>" |
|
|
461 |
], |
|
|
462 |
"text/plain": [ |
|
|
463 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
464 |
"0 ID_0000950d7 0.000216 0.000009 \n", |
|
|
465 |
"1 ID_0000aee4b 0.000652 0.000132 \n", |
|
|
466 |
"2 ID_0001de0e8 0.000875 0.000079 \n", |
|
|
467 |
"3 ID_0002003a8 0.001583 0.000008 \n", |
|
|
468 |
"4 ID_000229f2a 0.000251 0.000041 \n", |
|
|
469 |
"\n", |
|
|
470 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
471 |
"0 0.000040 0.000017 \n", |
|
|
472 |
"1 0.000049 0.000030 \n", |
|
|
473 |
"2 0.000283 0.000013 \n", |
|
|
474 |
"3 0.000745 0.000176 \n", |
|
|
475 |
"4 0.000084 0.000039 \n", |
|
|
476 |
"\n", |
|
|
477 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
478 |
"0 0.000131 0.000070 \n", |
|
|
479 |
"1 0.000237 0.000415 \n", |
|
|
480 |
"2 0.000218 0.000636 \n", |
|
|
481 |
"3 0.000233 0.000478 \n", |
|
|
482 |
"4 0.000162 0.000084 \n", |
|
|
483 |
"\n", |
|
|
484 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
485 |
"0 0.000077 2.602864e-06 \n", |
|
|
486 |
"1 0.000478 7.363618e-05 \n", |
|
|
487 |
"2 0.001155 8.438517e-05 \n", |
|
|
488 |
"3 0.000657 8.040458e-07 \n", |
|
|
489 |
"4 0.000072 1.584314e-05 \n", |
|
|
490 |
"\n", |
|
|
491 |
" Xdensenet121_intraparenchymal_std ... \\\n", |
|
|
492 |
"0 0.000013 ... \n", |
|
|
493 |
"1 0.000018 ... \n", |
|
|
494 |
"2 0.000151 ... \n", |
|
|
495 |
"3 0.000355 ... \n", |
|
|
496 |
"4 0.000014 ... \n", |
|
|
497 |
"\n", |
|
|
498 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_std \\\n", |
|
|
499 |
"0 0.000009 \n", |
|
|
500 |
"1 0.000003 \n", |
|
|
501 |
"2 0.000247 \n", |
|
|
502 |
"3 0.000542 \n", |
|
|
503 |
"4 0.001312 \n", |
|
|
504 |
"\n", |
|
|
505 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_std \\\n", |
|
|
506 |
"0 2.093691e-06 \n", |
|
|
507 |
"1 4.035392e-07 \n", |
|
|
508 |
"2 1.205952e-05 \n", |
|
|
509 |
"3 3.861410e-04 \n", |
|
|
510 |
"4 1.682060e-06 \n", |
|
|
511 |
"\n", |
|
|
512 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std \\\n", |
|
|
513 |
"0 0.000017 \n", |
|
|
514 |
"1 0.000253 \n", |
|
|
515 |
"2 0.001305 \n", |
|
|
516 |
"3 0.000488 \n", |
|
|
517 |
"4 0.000491 \n", |
|
|
518 |
"\n", |
|
|
519 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std any epidural \\\n", |
|
|
520 |
"0 0.000002 0 0 \n", |
|
|
521 |
"1 0.000225 0 0 \n", |
|
|
522 |
"2 0.000090 0 0 \n", |
|
|
523 |
"3 0.000947 0 0 \n", |
|
|
524 |
"4 0.000120 0 0 \n", |
|
|
525 |
"\n", |
|
|
526 |
" intraparenchymal intraventricular subarachnoid subdural \n", |
|
|
527 |
"0 0 0 0 0 \n", |
|
|
528 |
"1 0 0 0 0 \n", |
|
|
529 |
"2 0 0 0 0 \n", |
|
|
530 |
"3 0 0 0 0 \n", |
|
|
531 |
"4 0 0 0 0 \n", |
|
|
532 |
"\n", |
|
|
533 |
"[5 rows x 127 columns]" |
|
|
534 |
] |
|
|
535 |
}, |
|
|
536 |
"execution_count": 12, |
|
|
537 |
"metadata": {}, |
|
|
538 |
"output_type": "execute_result" |
|
|
539 |
} |
|
|
540 |
], |
|
|
541 |
"source": [ |
|
|
542 |
"tta_df.head()" |
|
|
543 |
] |
|
|
544 |
}, |
|
|
545 |
{ |
|
|
546 |
"cell_type": "code", |
|
|
547 |
"execution_count": 13, |
|
|
548 |
"metadata": {}, |
|
|
549 |
"outputs": [ |
|
|
550 |
{ |
|
|
551 |
"data": { |
|
|
552 |
"text/plain": [ |
|
|
553 |
"(752802, 752802)" |
|
|
554 |
] |
|
|
555 |
}, |
|
|
556 |
"execution_count": 13, |
|
|
557 |
"metadata": {}, |
|
|
558 |
"output_type": "execute_result" |
|
|
559 |
} |
|
|
560 |
], |
|
|
561 |
"source": [ |
|
|
562 |
"len(tta_df), len(labels_df)" |
|
|
563 |
] |
|
|
564 |
}, |
|
|
565 |
{ |
|
|
566 |
"cell_type": "markdown", |
|
|
567 |
"metadata": {}, |
|
|
568 |
"source": [ |
|
|
569 |
"# Begin boosting data preparation" |
|
|
570 |
] |
|
|
571 |
}, |
|
|
572 |
{ |
|
|
573 |
"cell_type": "code", |
|
|
574 |
"execution_count": 14, |
|
|
575 |
"metadata": {}, |
|
|
576 |
"outputs": [ |
|
|
577 |
{ |
|
|
578 |
"data": { |
|
|
579 |
"text/html": [ |
|
|
580 |
"<div>\n", |
|
|
581 |
"<style scoped>\n", |
|
|
582 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
583 |
" vertical-align: middle;\n", |
|
|
584 |
" }\n", |
|
|
585 |
"\n", |
|
|
586 |
" .dataframe tbody tr th {\n", |
|
|
587 |
" vertical-align: top;\n", |
|
|
588 |
" }\n", |
|
|
589 |
"\n", |
|
|
590 |
" .dataframe thead th {\n", |
|
|
591 |
" text-align: right;\n", |
|
|
592 |
" }\n", |
|
|
593 |
"</style>\n", |
|
|
594 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
595 |
" <thead>\n", |
|
|
596 |
" <tr style=\"text-align: right;\">\n", |
|
|
597 |
" <th></th>\n", |
|
|
598 |
" <th>fn</th>\n", |
|
|
599 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
600 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
601 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
602 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
603 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
604 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
605 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
606 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
607 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
608 |
" <th>...</th>\n", |
|
|
609 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std</th>\n", |
|
|
610 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std</th>\n", |
|
|
611 |
" <th>any</th>\n", |
|
|
612 |
" <th>epidural</th>\n", |
|
|
613 |
" <th>intraparenchymal</th>\n", |
|
|
614 |
" <th>intraventricular</th>\n", |
|
|
615 |
" <th>subarachnoid</th>\n", |
|
|
616 |
" <th>subdural</th>\n", |
|
|
617 |
" <th>study</th>\n", |
|
|
618 |
" <th>z</th>\n", |
|
|
619 |
" </tr>\n", |
|
|
620 |
" </thead>\n", |
|
|
621 |
" <tbody>\n", |
|
|
622 |
" <tr>\n", |
|
|
623 |
" <th>0</th>\n", |
|
|
624 |
" <td>ID_0000950d7</td>\n", |
|
|
625 |
" <td>0.000216</td>\n", |
|
|
626 |
" <td>0.000009</td>\n", |
|
|
627 |
" <td>0.000040</td>\n", |
|
|
628 |
" <td>0.000017</td>\n", |
|
|
629 |
" <td>0.000131</td>\n", |
|
|
630 |
" <td>0.000070</td>\n", |
|
|
631 |
" <td>0.000077</td>\n", |
|
|
632 |
" <td>2.602864e-06</td>\n", |
|
|
633 |
" <td>0.000013</td>\n", |
|
|
634 |
" <td>...</td>\n", |
|
|
635 |
" <td>0.000017</td>\n", |
|
|
636 |
" <td>0.000002</td>\n", |
|
|
637 |
" <td>0</td>\n", |
|
|
638 |
" <td>0</td>\n", |
|
|
639 |
" <td>0</td>\n", |
|
|
640 |
" <td>0</td>\n", |
|
|
641 |
" <td>0</td>\n", |
|
|
642 |
" <td>0</td>\n", |
|
|
643 |
" <td>ID_84296c3845</td>\n", |
|
|
644 |
" <td>32</td>\n", |
|
|
645 |
" </tr>\n", |
|
|
646 |
" <tr>\n", |
|
|
647 |
" <th>1</th>\n", |
|
|
648 |
" <td>ID_0000aee4b</td>\n", |
|
|
649 |
" <td>0.000652</td>\n", |
|
|
650 |
" <td>0.000132</td>\n", |
|
|
651 |
" <td>0.000049</td>\n", |
|
|
652 |
" <td>0.000030</td>\n", |
|
|
653 |
" <td>0.000237</td>\n", |
|
|
654 |
" <td>0.000415</td>\n", |
|
|
655 |
" <td>0.000478</td>\n", |
|
|
656 |
" <td>7.363618e-05</td>\n", |
|
|
657 |
" <td>0.000018</td>\n", |
|
|
658 |
" <td>...</td>\n", |
|
|
659 |
" <td>0.000253</td>\n", |
|
|
660 |
" <td>0.000225</td>\n", |
|
|
661 |
" <td>0</td>\n", |
|
|
662 |
" <td>0</td>\n", |
|
|
663 |
" <td>0</td>\n", |
|
|
664 |
" <td>0</td>\n", |
|
|
665 |
" <td>0</td>\n", |
|
|
666 |
" <td>0</td>\n", |
|
|
667 |
" <td>ID_1e59488a44</td>\n", |
|
|
668 |
" <td>7</td>\n", |
|
|
669 |
" </tr>\n", |
|
|
670 |
" <tr>\n", |
|
|
671 |
" <th>2</th>\n", |
|
|
672 |
" <td>ID_0001de0e8</td>\n", |
|
|
673 |
" <td>0.000875</td>\n", |
|
|
674 |
" <td>0.000079</td>\n", |
|
|
675 |
" <td>0.000283</td>\n", |
|
|
676 |
" <td>0.000013</td>\n", |
|
|
677 |
" <td>0.000218</td>\n", |
|
|
678 |
" <td>0.000636</td>\n", |
|
|
679 |
" <td>0.001155</td>\n", |
|
|
680 |
" <td>8.438517e-05</td>\n", |
|
|
681 |
" <td>0.000151</td>\n", |
|
|
682 |
" <td>...</td>\n", |
|
|
683 |
" <td>0.001305</td>\n", |
|
|
684 |
" <td>0.000090</td>\n", |
|
|
685 |
" <td>0</td>\n", |
|
|
686 |
" <td>0</td>\n", |
|
|
687 |
" <td>0</td>\n", |
|
|
688 |
" <td>0</td>\n", |
|
|
689 |
" <td>0</td>\n", |
|
|
690 |
" <td>0</td>\n", |
|
|
691 |
" <td>ID_9d97cf289b</td>\n", |
|
|
692 |
" <td>22</td>\n", |
|
|
693 |
" </tr>\n", |
|
|
694 |
" <tr>\n", |
|
|
695 |
" <th>3</th>\n", |
|
|
696 |
" <td>ID_0002003a8</td>\n", |
|
|
697 |
" <td>0.001583</td>\n", |
|
|
698 |
" <td>0.000008</td>\n", |
|
|
699 |
" <td>0.000745</td>\n", |
|
|
700 |
" <td>0.000176</td>\n", |
|
|
701 |
" <td>0.000233</td>\n", |
|
|
702 |
" <td>0.000478</td>\n", |
|
|
703 |
" <td>0.000657</td>\n", |
|
|
704 |
" <td>8.040458e-07</td>\n", |
|
|
705 |
" <td>0.000355</td>\n", |
|
|
706 |
" <td>...</td>\n", |
|
|
707 |
" <td>0.000488</td>\n", |
|
|
708 |
" <td>0.000947</td>\n", |
|
|
709 |
" <td>0</td>\n", |
|
|
710 |
" <td>0</td>\n", |
|
|
711 |
" <td>0</td>\n", |
|
|
712 |
" <td>0</td>\n", |
|
|
713 |
" <td>0</td>\n", |
|
|
714 |
" <td>0</td>\n", |
|
|
715 |
" <td>ID_805824f65e</td>\n", |
|
|
716 |
" <td>17</td>\n", |
|
|
717 |
" </tr>\n", |
|
|
718 |
" <tr>\n", |
|
|
719 |
" <th>4</th>\n", |
|
|
720 |
" <td>ID_000229f2a</td>\n", |
|
|
721 |
" <td>0.000251</td>\n", |
|
|
722 |
" <td>0.000041</td>\n", |
|
|
723 |
" <td>0.000084</td>\n", |
|
|
724 |
" <td>0.000039</td>\n", |
|
|
725 |
" <td>0.000162</td>\n", |
|
|
726 |
" <td>0.000084</td>\n", |
|
|
727 |
" <td>0.000072</td>\n", |
|
|
728 |
" <td>1.584314e-05</td>\n", |
|
|
729 |
" <td>0.000014</td>\n", |
|
|
730 |
" <td>...</td>\n", |
|
|
731 |
" <td>0.000491</td>\n", |
|
|
732 |
" <td>0.000120</td>\n", |
|
|
733 |
" <td>0</td>\n", |
|
|
734 |
" <td>0</td>\n", |
|
|
735 |
" <td>0</td>\n", |
|
|
736 |
" <td>0</td>\n", |
|
|
737 |
" <td>0</td>\n", |
|
|
738 |
" <td>0</td>\n", |
|
|
739 |
" <td>ID_f54eba3225</td>\n", |
|
|
740 |
" <td>30</td>\n", |
|
|
741 |
" </tr>\n", |
|
|
742 |
" </tbody>\n", |
|
|
743 |
"</table>\n", |
|
|
744 |
"<p>5 rows × 129 columns</p>\n", |
|
|
745 |
"</div>" |
|
|
746 |
], |
|
|
747 |
"text/plain": [ |
|
|
748 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
749 |
"0 ID_0000950d7 0.000216 0.000009 \n", |
|
|
750 |
"1 ID_0000aee4b 0.000652 0.000132 \n", |
|
|
751 |
"2 ID_0001de0e8 0.000875 0.000079 \n", |
|
|
752 |
"3 ID_0002003a8 0.001583 0.000008 \n", |
|
|
753 |
"4 ID_000229f2a 0.000251 0.000041 \n", |
|
|
754 |
"\n", |
|
|
755 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
756 |
"0 0.000040 0.000017 \n", |
|
|
757 |
"1 0.000049 0.000030 \n", |
|
|
758 |
"2 0.000283 0.000013 \n", |
|
|
759 |
"3 0.000745 0.000176 \n", |
|
|
760 |
"4 0.000084 0.000039 \n", |
|
|
761 |
"\n", |
|
|
762 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
763 |
"0 0.000131 0.000070 \n", |
|
|
764 |
"1 0.000237 0.000415 \n", |
|
|
765 |
"2 0.000218 0.000636 \n", |
|
|
766 |
"3 0.000233 0.000478 \n", |
|
|
767 |
"4 0.000162 0.000084 \n", |
|
|
768 |
"\n", |
|
|
769 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
770 |
"0 0.000077 2.602864e-06 \n", |
|
|
771 |
"1 0.000478 7.363618e-05 \n", |
|
|
772 |
"2 0.001155 8.438517e-05 \n", |
|
|
773 |
"3 0.000657 8.040458e-07 \n", |
|
|
774 |
"4 0.000072 1.584314e-05 \n", |
|
|
775 |
"\n", |
|
|
776 |
" Xdensenet121_intraparenchymal_std ... \\\n", |
|
|
777 |
"0 0.000013 ... \n", |
|
|
778 |
"1 0.000018 ... \n", |
|
|
779 |
"2 0.000151 ... \n", |
|
|
780 |
"3 0.000355 ... \n", |
|
|
781 |
"4 0.000014 ... \n", |
|
|
782 |
"\n", |
|
|
783 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std \\\n", |
|
|
784 |
"0 0.000017 \n", |
|
|
785 |
"1 0.000253 \n", |
|
|
786 |
"2 0.001305 \n", |
|
|
787 |
"3 0.000488 \n", |
|
|
788 |
"4 0.000491 \n", |
|
|
789 |
"\n", |
|
|
790 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std any epidural \\\n", |
|
|
791 |
"0 0.000002 0 0 \n", |
|
|
792 |
"1 0.000225 0 0 \n", |
|
|
793 |
"2 0.000090 0 0 \n", |
|
|
794 |
"3 0.000947 0 0 \n", |
|
|
795 |
"4 0.000120 0 0 \n", |
|
|
796 |
"\n", |
|
|
797 |
" intraparenchymal intraventricular subarachnoid subdural study \\\n", |
|
|
798 |
"0 0 0 0 0 ID_84296c3845 \n", |
|
|
799 |
"1 0 0 0 0 ID_1e59488a44 \n", |
|
|
800 |
"2 0 0 0 0 ID_9d97cf289b \n", |
|
|
801 |
"3 0 0 0 0 ID_805824f65e \n", |
|
|
802 |
"4 0 0 0 0 ID_f54eba3225 \n", |
|
|
803 |
"\n", |
|
|
804 |
" z \n", |
|
|
805 |
"0 32 \n", |
|
|
806 |
"1 7 \n", |
|
|
807 |
"2 22 \n", |
|
|
808 |
"3 17 \n", |
|
|
809 |
"4 30 \n", |
|
|
810 |
"\n", |
|
|
811 |
"[5 rows x 129 columns]" |
|
|
812 |
] |
|
|
813 |
}, |
|
|
814 |
"execution_count": 14, |
|
|
815 |
"metadata": {}, |
|
|
816 |
"output_type": "execute_result" |
|
|
817 |
} |
|
|
818 |
], |
|
|
819 |
"source": [ |
|
|
820 |
"#add study and z position to dataframe to join\n", |
|
|
821 |
"tta_df['study'] = tta_df.fn.apply(lambda fn: fn_to_study_ix[fn][0] )\n", |
|
|
822 |
"tta_df['z'] = tta_df.fn.apply(lambda fn: int(fn_to_study_ix[fn][1]) )\n", |
|
|
823 |
"tta_df.head()" |
|
|
824 |
] |
|
|
825 |
}, |
|
|
826 |
{ |
|
|
827 |
"cell_type": "code", |
|
|
828 |
"execution_count": 15, |
|
|
829 |
"metadata": {}, |
|
|
830 |
"outputs": [ |
|
|
831 |
{ |
|
|
832 |
"data": { |
|
|
833 |
"text/html": [ |
|
|
834 |
"<div>\n", |
|
|
835 |
"<style scoped>\n", |
|
|
836 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
837 |
" vertical-align: middle;\n", |
|
|
838 |
" }\n", |
|
|
839 |
"\n", |
|
|
840 |
" .dataframe tbody tr th {\n", |
|
|
841 |
" vertical-align: top;\n", |
|
|
842 |
" }\n", |
|
|
843 |
"\n", |
|
|
844 |
" .dataframe thead th {\n", |
|
|
845 |
" text-align: right;\n", |
|
|
846 |
" }\n", |
|
|
847 |
"</style>\n", |
|
|
848 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
849 |
" <thead>\n", |
|
|
850 |
" <tr style=\"text-align: right;\">\n", |
|
|
851 |
" <th></th>\n", |
|
|
852 |
" <th>fn</th>\n", |
|
|
853 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
854 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
855 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
856 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
857 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
858 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
859 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
860 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
861 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
862 |
" <th>...</th>\n", |
|
|
863 |
" <th>Xresnet50_intraparenchymal_mean-1</th>\n", |
|
|
864 |
" <th>Xresnet50_intraventricular_mean-1</th>\n", |
|
|
865 |
" <th>Xresnet50_subarachnoid_mean-1</th>\n", |
|
|
866 |
" <th>Xresnet50_subdural_mean-1</th>\n", |
|
|
867 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean-1</th>\n", |
|
|
868 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean-1</th>\n", |
|
|
869 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean-1</th>\n", |
|
|
870 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean-1</th>\n", |
|
|
871 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean-1</th>\n", |
|
|
872 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean-1</th>\n", |
|
|
873 |
" </tr>\n", |
|
|
874 |
" </thead>\n", |
|
|
875 |
" <tbody>\n", |
|
|
876 |
" <tr>\n", |
|
|
877 |
" <th>0</th>\n", |
|
|
878 |
" <td>ID_0000950d7</td>\n", |
|
|
879 |
" <td>0.000216</td>\n", |
|
|
880 |
" <td>0.000009</td>\n", |
|
|
881 |
" <td>0.000040</td>\n", |
|
|
882 |
" <td>0.000017</td>\n", |
|
|
883 |
" <td>0.000131</td>\n", |
|
|
884 |
" <td>0.000070</td>\n", |
|
|
885 |
" <td>0.000077</td>\n", |
|
|
886 |
" <td>2.602864e-06</td>\n", |
|
|
887 |
" <td>0.000013</td>\n", |
|
|
888 |
" <td>...</td>\n", |
|
|
889 |
" <td>0.000003</td>\n", |
|
|
890 |
" <td>2.410099e-07</td>\n", |
|
|
891 |
" <td>0.000009</td>\n", |
|
|
892 |
" <td>0.000010</td>\n", |
|
|
893 |
" <td>0.000023</td>\n", |
|
|
894 |
" <td>0.000012</td>\n", |
|
|
895 |
" <td>0.000041</td>\n", |
|
|
896 |
" <td>0.000015</td>\n", |
|
|
897 |
" <td>0.000040</td>\n", |
|
|
898 |
" <td>0.000004</td>\n", |
|
|
899 |
" </tr>\n", |
|
|
900 |
" <tr>\n", |
|
|
901 |
" <th>1</th>\n", |
|
|
902 |
" <td>ID_0000aee4b</td>\n", |
|
|
903 |
" <td>0.000652</td>\n", |
|
|
904 |
" <td>0.000132</td>\n", |
|
|
905 |
" <td>0.000049</td>\n", |
|
|
906 |
" <td>0.000030</td>\n", |
|
|
907 |
" <td>0.000237</td>\n", |
|
|
908 |
" <td>0.000415</td>\n", |
|
|
909 |
" <td>0.000478</td>\n", |
|
|
910 |
" <td>7.363618e-05</td>\n", |
|
|
911 |
" <td>0.000018</td>\n", |
|
|
912 |
" <td>...</td>\n", |
|
|
913 |
" <td>0.000032</td>\n", |
|
|
914 |
" <td>2.871577e-05</td>\n", |
|
|
915 |
" <td>0.000192</td>\n", |
|
|
916 |
" <td>0.000307</td>\n", |
|
|
917 |
" <td>0.000320</td>\n", |
|
|
918 |
" <td>0.000031</td>\n", |
|
|
919 |
" <td>0.000005</td>\n", |
|
|
920 |
" <td>0.000004</td>\n", |
|
|
921 |
" <td>0.000129</td>\n", |
|
|
922 |
" <td>0.000094</td>\n", |
|
|
923 |
" </tr>\n", |
|
|
924 |
" <tr>\n", |
|
|
925 |
" <th>2</th>\n", |
|
|
926 |
" <td>ID_0001de0e8</td>\n", |
|
|
927 |
" <td>0.000875</td>\n", |
|
|
928 |
" <td>0.000079</td>\n", |
|
|
929 |
" <td>0.000283</td>\n", |
|
|
930 |
" <td>0.000013</td>\n", |
|
|
931 |
" <td>0.000218</td>\n", |
|
|
932 |
" <td>0.000636</td>\n", |
|
|
933 |
" <td>0.001155</td>\n", |
|
|
934 |
" <td>8.438517e-05</td>\n", |
|
|
935 |
" <td>0.000151</td>\n", |
|
|
936 |
" <td>...</td>\n", |
|
|
937 |
" <td>0.000386</td>\n", |
|
|
938 |
" <td>4.940505e-05</td>\n", |
|
|
939 |
" <td>0.001212</td>\n", |
|
|
940 |
" <td>0.001620</td>\n", |
|
|
941 |
" <td>0.002983</td>\n", |
|
|
942 |
" <td>0.000075</td>\n", |
|
|
943 |
" <td>0.000413</td>\n", |
|
|
944 |
" <td>0.000028</td>\n", |
|
|
945 |
" <td>0.001168</td>\n", |
|
|
946 |
" <td>0.000841</td>\n", |
|
|
947 |
" </tr>\n", |
|
|
948 |
" <tr>\n", |
|
|
949 |
" <th>3</th>\n", |
|
|
950 |
" <td>ID_0002003a8</td>\n", |
|
|
951 |
" <td>0.001583</td>\n", |
|
|
952 |
" <td>0.000008</td>\n", |
|
|
953 |
" <td>0.000745</td>\n", |
|
|
954 |
" <td>0.000176</td>\n", |
|
|
955 |
" <td>0.000233</td>\n", |
|
|
956 |
" <td>0.000478</td>\n", |
|
|
957 |
" <td>0.000657</td>\n", |
|
|
958 |
" <td>8.040458e-07</td>\n", |
|
|
959 |
" <td>0.000355</td>\n", |
|
|
960 |
" <td>...</td>\n", |
|
|
961 |
" <td>0.000253</td>\n", |
|
|
962 |
" <td>2.354449e-05</td>\n", |
|
|
963 |
" <td>0.000079</td>\n", |
|
|
964 |
" <td>0.000145</td>\n", |
|
|
965 |
" <td>0.000816</td>\n", |
|
|
966 |
" <td>0.000072</td>\n", |
|
|
967 |
" <td>0.000268</td>\n", |
|
|
968 |
" <td>0.000263</td>\n", |
|
|
969 |
" <td>0.000419</td>\n", |
|
|
970 |
" <td>0.000390</td>\n", |
|
|
971 |
" </tr>\n", |
|
|
972 |
" <tr>\n", |
|
|
973 |
" <th>4</th>\n", |
|
|
974 |
" <td>ID_000229f2a</td>\n", |
|
|
975 |
" <td>0.000251</td>\n", |
|
|
976 |
" <td>0.000041</td>\n", |
|
|
977 |
" <td>0.000084</td>\n", |
|
|
978 |
" <td>0.000039</td>\n", |
|
|
979 |
" <td>0.000162</td>\n", |
|
|
980 |
" <td>0.000084</td>\n", |
|
|
981 |
" <td>0.000072</td>\n", |
|
|
982 |
" <td>1.584314e-05</td>\n", |
|
|
983 |
" <td>0.000014</td>\n", |
|
|
984 |
" <td>...</td>\n", |
|
|
985 |
" <td>0.000087</td>\n", |
|
|
986 |
" <td>1.064072e-05</td>\n", |
|
|
987 |
" <td>0.000406</td>\n", |
|
|
988 |
" <td>0.000361</td>\n", |
|
|
989 |
" <td>0.000489</td>\n", |
|
|
990 |
" <td>0.000057</td>\n", |
|
|
991 |
" <td>0.000044</td>\n", |
|
|
992 |
" <td>0.000004</td>\n", |
|
|
993 |
" <td>0.000202</td>\n", |
|
|
994 |
" <td>0.000139</td>\n", |
|
|
995 |
" </tr>\n", |
|
|
996 |
" </tbody>\n", |
|
|
997 |
"</table>\n", |
|
|
998 |
"<p>5 rows × 251 columns</p>\n", |
|
|
999 |
"</div>" |
|
|
1000 |
], |
|
|
1001 |
"text/plain": [ |
|
|
1002 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
1003 |
"0 ID_0000950d7 0.000216 0.000009 \n", |
|
|
1004 |
"1 ID_0000aee4b 0.000652 0.000132 \n", |
|
|
1005 |
"2 ID_0001de0e8 0.000875 0.000079 \n", |
|
|
1006 |
"3 ID_0002003a8 0.001583 0.000008 \n", |
|
|
1007 |
"4 ID_000229f2a 0.000251 0.000041 \n", |
|
|
1008 |
"\n", |
|
|
1009 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
1010 |
"0 0.000040 0.000017 \n", |
|
|
1011 |
"1 0.000049 0.000030 \n", |
|
|
1012 |
"2 0.000283 0.000013 \n", |
|
|
1013 |
"3 0.000745 0.000176 \n", |
|
|
1014 |
"4 0.000084 0.000039 \n", |
|
|
1015 |
"\n", |
|
|
1016 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
1017 |
"0 0.000131 0.000070 \n", |
|
|
1018 |
"1 0.000237 0.000415 \n", |
|
|
1019 |
"2 0.000218 0.000636 \n", |
|
|
1020 |
"3 0.000233 0.000478 \n", |
|
|
1021 |
"4 0.000162 0.000084 \n", |
|
|
1022 |
"\n", |
|
|
1023 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
1024 |
"0 0.000077 2.602864e-06 \n", |
|
|
1025 |
"1 0.000478 7.363618e-05 \n", |
|
|
1026 |
"2 0.001155 8.438517e-05 \n", |
|
|
1027 |
"3 0.000657 8.040458e-07 \n", |
|
|
1028 |
"4 0.000072 1.584314e-05 \n", |
|
|
1029 |
"\n", |
|
|
1030 |
" Xdensenet121_intraparenchymal_std ... Xresnet50_intraparenchymal_mean-1 \\\n", |
|
|
1031 |
"0 0.000013 ... 0.000003 \n", |
|
|
1032 |
"1 0.000018 ... 0.000032 \n", |
|
|
1033 |
"2 0.000151 ... 0.000386 \n", |
|
|
1034 |
"3 0.000355 ... 0.000253 \n", |
|
|
1035 |
"4 0.000014 ... 0.000087 \n", |
|
|
1036 |
"\n", |
|
|
1037 |
" Xresnet50_intraventricular_mean-1 Xresnet50_subarachnoid_mean-1 \\\n", |
|
|
1038 |
"0 2.410099e-07 0.000009 \n", |
|
|
1039 |
"1 2.871577e-05 0.000192 \n", |
|
|
1040 |
"2 4.940505e-05 0.001212 \n", |
|
|
1041 |
"3 2.354449e-05 0.000079 \n", |
|
|
1042 |
"4 1.064072e-05 0.000406 \n", |
|
|
1043 |
"\n", |
|
|
1044 |
" Xresnet50_subdural_mean-1 \\\n", |
|
|
1045 |
"0 0.000010 \n", |
|
|
1046 |
"1 0.000307 \n", |
|
|
1047 |
"2 0.001620 \n", |
|
|
1048 |
"3 0.000145 \n", |
|
|
1049 |
"4 0.000361 \n", |
|
|
1050 |
"\n", |
|
|
1051 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean-1 \\\n", |
|
|
1052 |
"0 0.000023 \n", |
|
|
1053 |
"1 0.000320 \n", |
|
|
1054 |
"2 0.002983 \n", |
|
|
1055 |
"3 0.000816 \n", |
|
|
1056 |
"4 0.000489 \n", |
|
|
1057 |
"\n", |
|
|
1058 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean-1 \\\n", |
|
|
1059 |
"0 0.000012 \n", |
|
|
1060 |
"1 0.000031 \n", |
|
|
1061 |
"2 0.000075 \n", |
|
|
1062 |
"3 0.000072 \n", |
|
|
1063 |
"4 0.000057 \n", |
|
|
1064 |
"\n", |
|
|
1065 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean-1 \\\n", |
|
|
1066 |
"0 0.000041 \n", |
|
|
1067 |
"1 0.000005 \n", |
|
|
1068 |
"2 0.000413 \n", |
|
|
1069 |
"3 0.000268 \n", |
|
|
1070 |
"4 0.000044 \n", |
|
|
1071 |
"\n", |
|
|
1072 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean-1 \\\n", |
|
|
1073 |
"0 0.000015 \n", |
|
|
1074 |
"1 0.000004 \n", |
|
|
1075 |
"2 0.000028 \n", |
|
|
1076 |
"3 0.000263 \n", |
|
|
1077 |
"4 0.000004 \n", |
|
|
1078 |
"\n", |
|
|
1079 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean-1 \\\n", |
|
|
1080 |
"0 0.000040 \n", |
|
|
1081 |
"1 0.000129 \n", |
|
|
1082 |
"2 0.001168 \n", |
|
|
1083 |
"3 0.000419 \n", |
|
|
1084 |
"4 0.000202 \n", |
|
|
1085 |
"\n", |
|
|
1086 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean-1 \n", |
|
|
1087 |
"0 0.000004 \n", |
|
|
1088 |
"1 0.000094 \n", |
|
|
1089 |
"2 0.000841 \n", |
|
|
1090 |
"3 0.000390 \n", |
|
|
1091 |
"4 0.000139 \n", |
|
|
1092 |
"\n", |
|
|
1093 |
"[5 rows x 251 columns]" |
|
|
1094 |
] |
|
|
1095 |
}, |
|
|
1096 |
"execution_count": 15, |
|
|
1097 |
"metadata": {}, |
|
|
1098 |
"output_type": "execute_result" |
|
|
1099 |
} |
|
|
1100 |
], |
|
|
1101 |
"source": [ |
|
|
1102 |
"#now join top and bottom\n", |
|
|
1103 |
"tta_df['z+'] = tta_df.z+1\n", |
|
|
1104 |
"tta_df['z-'] = tta_df.z-1\n", |
|
|
1105 |
"#only merge means to avoid too many columns\n", |
|
|
1106 |
"merge_cols = [c for c in tta_df.columns if 'mean' in c] \n", |
|
|
1107 |
"merged_df = pd.merge(tta_df, tta_df[merge_cols+ ['study','z+']], how='left', left_on=['study', 'z'], right_on=['study','z+'], suffixes=('','+1'))\n", |
|
|
1108 |
"merged_df = pd.merge(merged_df, tta_df[merge_cols+ ['study','z-']], how='left', left_on=['study', 'z'], right_on=['study','z-'], suffixes=('','-1'))\n", |
|
|
1109 |
"merged_df.drop(['z++1','z--1'], axis=1, inplace=True) #after merge these columns are not needed\n", |
|
|
1110 |
"len(merged_df)\n", |
|
|
1111 |
"merged_df.head()\n" |
|
|
1112 |
] |
|
|
1113 |
}, |
|
|
1114 |
{ |
|
|
1115 |
"cell_type": "code", |
|
|
1116 |
"execution_count": 16, |
|
|
1117 |
"metadata": {}, |
|
|
1118 |
"outputs": [ |
|
|
1119 |
{ |
|
|
1120 |
"data": { |
|
|
1121 |
"text/html": [ |
|
|
1122 |
"<div>\n", |
|
|
1123 |
"<style scoped>\n", |
|
|
1124 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1125 |
" vertical-align: middle;\n", |
|
|
1126 |
" }\n", |
|
|
1127 |
"\n", |
|
|
1128 |
" .dataframe tbody tr th {\n", |
|
|
1129 |
" vertical-align: top;\n", |
|
|
1130 |
" }\n", |
|
|
1131 |
"\n", |
|
|
1132 |
" .dataframe thead th {\n", |
|
|
1133 |
" text-align: right;\n", |
|
|
1134 |
" }\n", |
|
|
1135 |
"</style>\n", |
|
|
1136 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1137 |
" <thead>\n", |
|
|
1138 |
" <tr style=\"text-align: right;\">\n", |
|
|
1139 |
" <th></th>\n", |
|
|
1140 |
" <th>fn</th>\n", |
|
|
1141 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
1142 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
1143 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
1144 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
1145 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
1146 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
1147 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
1148 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
1149 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
1150 |
" <th>...</th>\n", |
|
|
1151 |
" <th>Xresnet50_intraparenchymal_mean_max</th>\n", |
|
|
1152 |
" <th>Xresnet50_intraventricular_mean_max</th>\n", |
|
|
1153 |
" <th>Xresnet50_subarachnoid_mean_max</th>\n", |
|
|
1154 |
" <th>Xresnet50_subdural_mean_max</th>\n", |
|
|
1155 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n", |
|
|
1156 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n", |
|
|
1157 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n", |
|
|
1158 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n", |
|
|
1159 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n", |
|
|
1160 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n", |
|
|
1161 |
" </tr>\n", |
|
|
1162 |
" </thead>\n", |
|
|
1163 |
" <tbody>\n", |
|
|
1164 |
" <tr>\n", |
|
|
1165 |
" <th>0</th>\n", |
|
|
1166 |
" <td>ID_0000950d7</td>\n", |
|
|
1167 |
" <td>0.000216</td>\n", |
|
|
1168 |
" <td>0.000009</td>\n", |
|
|
1169 |
" <td>0.000040</td>\n", |
|
|
1170 |
" <td>0.000017</td>\n", |
|
|
1171 |
" <td>0.000131</td>\n", |
|
|
1172 |
" <td>0.000070</td>\n", |
|
|
1173 |
" <td>0.000077</td>\n", |
|
|
1174 |
" <td>2.602864e-06</td>\n", |
|
|
1175 |
" <td>0.000013</td>\n", |
|
|
1176 |
" <td>...</td>\n", |
|
|
1177 |
" <td>0.486492</td>\n", |
|
|
1178 |
" <td>0.905775</td>\n", |
|
|
1179 |
" <td>0.150154</td>\n", |
|
|
1180 |
" <td>0.099021</td>\n", |
|
|
1181 |
" <td>0.857974</td>\n", |
|
|
1182 |
" <td>0.001780</td>\n", |
|
|
1183 |
" <td>0.361130</td>\n", |
|
|
1184 |
" <td>0.789858</td>\n", |
|
|
1185 |
" <td>0.168123</td>\n", |
|
|
1186 |
" <td>0.073204</td>\n", |
|
|
1187 |
" </tr>\n", |
|
|
1188 |
" <tr>\n", |
|
|
1189 |
" <th>1</th>\n", |
|
|
1190 |
" <td>ID_0000aee4b</td>\n", |
|
|
1191 |
" <td>0.000652</td>\n", |
|
|
1192 |
" <td>0.000132</td>\n", |
|
|
1193 |
" <td>0.000049</td>\n", |
|
|
1194 |
" <td>0.000030</td>\n", |
|
|
1195 |
" <td>0.000237</td>\n", |
|
|
1196 |
" <td>0.000415</td>\n", |
|
|
1197 |
" <td>0.000478</td>\n", |
|
|
1198 |
" <td>7.363618e-05</td>\n", |
|
|
1199 |
" <td>0.000018</td>\n", |
|
|
1200 |
" <td>...</td>\n", |
|
|
1201 |
" <td>0.002535</td>\n", |
|
|
1202 |
" <td>0.002878</td>\n", |
|
|
1203 |
" <td>0.006184</td>\n", |
|
|
1204 |
" <td>0.003424</td>\n", |
|
|
1205 |
" <td>0.027332</td>\n", |
|
|
1206 |
" <td>0.000609</td>\n", |
|
|
1207 |
" <td>0.003878</td>\n", |
|
|
1208 |
" <td>0.008006</td>\n", |
|
|
1209 |
" <td>0.009463</td>\n", |
|
|
1210 |
" <td>0.006090</td>\n", |
|
|
1211 |
" </tr>\n", |
|
|
1212 |
" <tr>\n", |
|
|
1213 |
" <th>2</th>\n", |
|
|
1214 |
" <td>ID_0001de0e8</td>\n", |
|
|
1215 |
" <td>0.000875</td>\n", |
|
|
1216 |
" <td>0.000079</td>\n", |
|
|
1217 |
" <td>0.000283</td>\n", |
|
|
1218 |
" <td>0.000013</td>\n", |
|
|
1219 |
" <td>0.000218</td>\n", |
|
|
1220 |
" <td>0.000636</td>\n", |
|
|
1221 |
" <td>0.001155</td>\n", |
|
|
1222 |
" <td>8.438517e-05</td>\n", |
|
|
1223 |
" <td>0.000151</td>\n", |
|
|
1224 |
" <td>...</td>\n", |
|
|
1225 |
" <td>0.002166</td>\n", |
|
|
1226 |
" <td>0.003913</td>\n", |
|
|
1227 |
" <td>0.004683</td>\n", |
|
|
1228 |
" <td>0.005613</td>\n", |
|
|
1229 |
" <td>0.018091</td>\n", |
|
|
1230 |
" <td>0.002842</td>\n", |
|
|
1231 |
" <td>0.012398</td>\n", |
|
|
1232 |
" <td>0.009452</td>\n", |
|
|
1233 |
" <td>0.009165</td>\n", |
|
|
1234 |
" <td>0.005672</td>\n", |
|
|
1235 |
" </tr>\n", |
|
|
1236 |
" <tr>\n", |
|
|
1237 |
" <th>3</th>\n", |
|
|
1238 |
" <td>ID_0002003a8</td>\n", |
|
|
1239 |
" <td>0.001583</td>\n", |
|
|
1240 |
" <td>0.000008</td>\n", |
|
|
1241 |
" <td>0.000745</td>\n", |
|
|
1242 |
" <td>0.000176</td>\n", |
|
|
1243 |
" <td>0.000233</td>\n", |
|
|
1244 |
" <td>0.000478</td>\n", |
|
|
1245 |
" <td>0.000657</td>\n", |
|
|
1246 |
" <td>8.040458e-07</td>\n", |
|
|
1247 |
" <td>0.000355</td>\n", |
|
|
1248 |
" <td>...</td>\n", |
|
|
1249 |
" <td>0.001896</td>\n", |
|
|
1250 |
" <td>0.001544</td>\n", |
|
|
1251 |
" <td>0.004229</td>\n", |
|
|
1252 |
" <td>0.002354</td>\n", |
|
|
1253 |
" <td>0.021156</td>\n", |
|
|
1254 |
" <td>0.000476</td>\n", |
|
|
1255 |
" <td>0.005249</td>\n", |
|
|
1256 |
" <td>0.028012</td>\n", |
|
|
1257 |
" <td>0.004112</td>\n", |
|
|
1258 |
" <td>0.020228</td>\n", |
|
|
1259 |
" </tr>\n", |
|
|
1260 |
" <tr>\n", |
|
|
1261 |
" <th>4</th>\n", |
|
|
1262 |
" <td>ID_000229f2a</td>\n", |
|
|
1263 |
" <td>0.000251</td>\n", |
|
|
1264 |
" <td>0.000041</td>\n", |
|
|
1265 |
" <td>0.000084</td>\n", |
|
|
1266 |
" <td>0.000039</td>\n", |
|
|
1267 |
" <td>0.000162</td>\n", |
|
|
1268 |
" <td>0.000084</td>\n", |
|
|
1269 |
" <td>0.000072</td>\n", |
|
|
1270 |
" <td>1.584314e-05</td>\n", |
|
|
1271 |
" <td>0.000014</td>\n", |
|
|
1272 |
" <td>...</td>\n", |
|
|
1273 |
" <td>0.011392</td>\n", |
|
|
1274 |
" <td>0.059925</td>\n", |
|
|
1275 |
" <td>0.010892</td>\n", |
|
|
1276 |
" <td>0.015900</td>\n", |
|
|
1277 |
" <td>0.042269</td>\n", |
|
|
1278 |
" <td>0.001678</td>\n", |
|
|
1279 |
" <td>0.012257</td>\n", |
|
|
1280 |
" <td>0.029033</td>\n", |
|
|
1281 |
" <td>0.014108</td>\n", |
|
|
1282 |
" <td>0.011063</td>\n", |
|
|
1283 |
" </tr>\n", |
|
|
1284 |
" </tbody>\n", |
|
|
1285 |
"</table>\n", |
|
|
1286 |
"<p>5 rows × 311 columns</p>\n", |
|
|
1287 |
"</div>" |
|
|
1288 |
], |
|
|
1289 |
"text/plain": [ |
|
|
1290 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
1291 |
"0 ID_0000950d7 0.000216 0.000009 \n", |
|
|
1292 |
"1 ID_0000aee4b 0.000652 0.000132 \n", |
|
|
1293 |
"2 ID_0001de0e8 0.000875 0.000079 \n", |
|
|
1294 |
"3 ID_0002003a8 0.001583 0.000008 \n", |
|
|
1295 |
"4 ID_000229f2a 0.000251 0.000041 \n", |
|
|
1296 |
"\n", |
|
|
1297 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
1298 |
"0 0.000040 0.000017 \n", |
|
|
1299 |
"1 0.000049 0.000030 \n", |
|
|
1300 |
"2 0.000283 0.000013 \n", |
|
|
1301 |
"3 0.000745 0.000176 \n", |
|
|
1302 |
"4 0.000084 0.000039 \n", |
|
|
1303 |
"\n", |
|
|
1304 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
1305 |
"0 0.000131 0.000070 \n", |
|
|
1306 |
"1 0.000237 0.000415 \n", |
|
|
1307 |
"2 0.000218 0.000636 \n", |
|
|
1308 |
"3 0.000233 0.000478 \n", |
|
|
1309 |
"4 0.000162 0.000084 \n", |
|
|
1310 |
"\n", |
|
|
1311 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
1312 |
"0 0.000077 2.602864e-06 \n", |
|
|
1313 |
"1 0.000478 7.363618e-05 \n", |
|
|
1314 |
"2 0.001155 8.438517e-05 \n", |
|
|
1315 |
"3 0.000657 8.040458e-07 \n", |
|
|
1316 |
"4 0.000072 1.584314e-05 \n", |
|
|
1317 |
"\n", |
|
|
1318 |
" Xdensenet121_intraparenchymal_std ... \\\n", |
|
|
1319 |
"0 0.000013 ... \n", |
|
|
1320 |
"1 0.000018 ... \n", |
|
|
1321 |
"2 0.000151 ... \n", |
|
|
1322 |
"3 0.000355 ... \n", |
|
|
1323 |
"4 0.000014 ... \n", |
|
|
1324 |
"\n", |
|
|
1325 |
" Xresnet50_intraparenchymal_mean_max Xresnet50_intraventricular_mean_max \\\n", |
|
|
1326 |
"0 0.486492 0.905775 \n", |
|
|
1327 |
"1 0.002535 0.002878 \n", |
|
|
1328 |
"2 0.002166 0.003913 \n", |
|
|
1329 |
"3 0.001896 0.001544 \n", |
|
|
1330 |
"4 0.011392 0.059925 \n", |
|
|
1331 |
"\n", |
|
|
1332 |
" Xresnet50_subarachnoid_mean_max Xresnet50_subdural_mean_max \\\n", |
|
|
1333 |
"0 0.150154 0.099021 \n", |
|
|
1334 |
"1 0.006184 0.003424 \n", |
|
|
1335 |
"2 0.004683 0.005613 \n", |
|
|
1336 |
"3 0.004229 0.002354 \n", |
|
|
1337 |
"4 0.010892 0.015900 \n", |
|
|
1338 |
"\n", |
|
|
1339 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max \\\n", |
|
|
1340 |
"0 0.857974 \n", |
|
|
1341 |
"1 0.027332 \n", |
|
|
1342 |
"2 0.018091 \n", |
|
|
1343 |
"3 0.021156 \n", |
|
|
1344 |
"4 0.042269 \n", |
|
|
1345 |
"\n", |
|
|
1346 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max \\\n", |
|
|
1347 |
"0 0.001780 \n", |
|
|
1348 |
"1 0.000609 \n", |
|
|
1349 |
"2 0.002842 \n", |
|
|
1350 |
"3 0.000476 \n", |
|
|
1351 |
"4 0.001678 \n", |
|
|
1352 |
"\n", |
|
|
1353 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max \\\n", |
|
|
1354 |
"0 0.361130 \n", |
|
|
1355 |
"1 0.003878 \n", |
|
|
1356 |
"2 0.012398 \n", |
|
|
1357 |
"3 0.005249 \n", |
|
|
1358 |
"4 0.012257 \n", |
|
|
1359 |
"\n", |
|
|
1360 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max \\\n", |
|
|
1361 |
"0 0.789858 \n", |
|
|
1362 |
"1 0.008006 \n", |
|
|
1363 |
"2 0.009452 \n", |
|
|
1364 |
"3 0.028012 \n", |
|
|
1365 |
"4 0.029033 \n", |
|
|
1366 |
"\n", |
|
|
1367 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max \\\n", |
|
|
1368 |
"0 0.168123 \n", |
|
|
1369 |
"1 0.009463 \n", |
|
|
1370 |
"2 0.009165 \n", |
|
|
1371 |
"3 0.004112 \n", |
|
|
1372 |
"4 0.014108 \n", |
|
|
1373 |
"\n", |
|
|
1374 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max \n", |
|
|
1375 |
"0 0.073204 \n", |
|
|
1376 |
"1 0.006090 \n", |
|
|
1377 |
"2 0.005672 \n", |
|
|
1378 |
"3 0.020228 \n", |
|
|
1379 |
"4 0.011063 \n", |
|
|
1380 |
"\n", |
|
|
1381 |
"[5 rows x 311 columns]" |
|
|
1382 |
] |
|
|
1383 |
}, |
|
|
1384 |
"execution_count": 16, |
|
|
1385 |
"metadata": {}, |
|
|
1386 |
"output_type": "execute_result" |
|
|
1387 |
} |
|
|
1388 |
], |
|
|
1389 |
"source": [ |
|
|
1390 |
"#now add maximum value for each merge_col by study\n", |
|
|
1391 |
"group_df = merged_df[merge_cols+['study']].groupby('study').agg('max')\n", |
|
|
1392 |
"merged_df = pd.merge(merged_df, group_df, how='left', on='study', suffixes=('','_max'))\n", |
|
|
1393 |
"merged_df.head()" |
|
|
1394 |
] |
|
|
1395 |
}, |
|
|
1396 |
{ |
|
|
1397 |
"cell_type": "code", |
|
|
1398 |
"execution_count": 17, |
|
|
1399 |
"metadata": {}, |
|
|
1400 |
"outputs": [ |
|
|
1401 |
{ |
|
|
1402 |
"data": { |
|
|
1403 |
"text/html": [ |
|
|
1404 |
"<div>\n", |
|
|
1405 |
"<style scoped>\n", |
|
|
1406 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1407 |
" vertical-align: middle;\n", |
|
|
1408 |
" }\n", |
|
|
1409 |
"\n", |
|
|
1410 |
" .dataframe tbody tr th {\n", |
|
|
1411 |
" vertical-align: top;\n", |
|
|
1412 |
" }\n", |
|
|
1413 |
"\n", |
|
|
1414 |
" .dataframe thead th {\n", |
|
|
1415 |
" text-align: right;\n", |
|
|
1416 |
" }\n", |
|
|
1417 |
"</style>\n", |
|
|
1418 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1419 |
" <thead>\n", |
|
|
1420 |
" <tr style=\"text-align: right;\">\n", |
|
|
1421 |
" <th></th>\n", |
|
|
1422 |
" <th>fn</th>\n", |
|
|
1423 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
1424 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
1425 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
1426 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
1427 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
1428 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
1429 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
1430 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
1431 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
1432 |
" <th>...</th>\n", |
|
|
1433 |
" <th>Xresnet50_intraparenchymal_mean_max</th>\n", |
|
|
1434 |
" <th>Xresnet50_intraventricular_mean_max</th>\n", |
|
|
1435 |
" <th>Xresnet50_subarachnoid_mean_max</th>\n", |
|
|
1436 |
" <th>Xresnet50_subdural_mean_max</th>\n", |
|
|
1437 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n", |
|
|
1438 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n", |
|
|
1439 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n", |
|
|
1440 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n", |
|
|
1441 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n", |
|
|
1442 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n", |
|
|
1443 |
" </tr>\n", |
|
|
1444 |
" </thead>\n", |
|
|
1445 |
" <tbody>\n", |
|
|
1446 |
" <tr>\n", |
|
|
1447 |
" <th>0</th>\n", |
|
|
1448 |
" <td>ID_0000950d7</td>\n", |
|
|
1449 |
" <td>0.000216</td>\n", |
|
|
1450 |
" <td>0.000009</td>\n", |
|
|
1451 |
" <td>0.000040</td>\n", |
|
|
1452 |
" <td>0.000017</td>\n", |
|
|
1453 |
" <td>0.000131</td>\n", |
|
|
1454 |
" <td>0.000070</td>\n", |
|
|
1455 |
" <td>0.000077</td>\n", |
|
|
1456 |
" <td>2.602864e-06</td>\n", |
|
|
1457 |
" <td>0.000013</td>\n", |
|
|
1458 |
" <td>...</td>\n", |
|
|
1459 |
" <td>0.486492</td>\n", |
|
|
1460 |
" <td>0.905775</td>\n", |
|
|
1461 |
" <td>0.150154</td>\n", |
|
|
1462 |
" <td>0.099021</td>\n", |
|
|
1463 |
" <td>0.857974</td>\n", |
|
|
1464 |
" <td>0.001780</td>\n", |
|
|
1465 |
" <td>0.361130</td>\n", |
|
|
1466 |
" <td>0.789858</td>\n", |
|
|
1467 |
" <td>0.168123</td>\n", |
|
|
1468 |
" <td>0.073204</td>\n", |
|
|
1469 |
" </tr>\n", |
|
|
1470 |
" <tr>\n", |
|
|
1471 |
" <th>1</th>\n", |
|
|
1472 |
" <td>ID_0000aee4b</td>\n", |
|
|
1473 |
" <td>0.000652</td>\n", |
|
|
1474 |
" <td>0.000132</td>\n", |
|
|
1475 |
" <td>0.000049</td>\n", |
|
|
1476 |
" <td>0.000030</td>\n", |
|
|
1477 |
" <td>0.000237</td>\n", |
|
|
1478 |
" <td>0.000415</td>\n", |
|
|
1479 |
" <td>0.000478</td>\n", |
|
|
1480 |
" <td>7.363618e-05</td>\n", |
|
|
1481 |
" <td>0.000018</td>\n", |
|
|
1482 |
" <td>...</td>\n", |
|
|
1483 |
" <td>0.002535</td>\n", |
|
|
1484 |
" <td>0.002878</td>\n", |
|
|
1485 |
" <td>0.006184</td>\n", |
|
|
1486 |
" <td>0.003424</td>\n", |
|
|
1487 |
" <td>0.027332</td>\n", |
|
|
1488 |
" <td>0.000609</td>\n", |
|
|
1489 |
" <td>0.003878</td>\n", |
|
|
1490 |
" <td>0.008006</td>\n", |
|
|
1491 |
" <td>0.009463</td>\n", |
|
|
1492 |
" <td>0.006090</td>\n", |
|
|
1493 |
" </tr>\n", |
|
|
1494 |
" <tr>\n", |
|
|
1495 |
" <th>2</th>\n", |
|
|
1496 |
" <td>ID_0001de0e8</td>\n", |
|
|
1497 |
" <td>0.000875</td>\n", |
|
|
1498 |
" <td>0.000079</td>\n", |
|
|
1499 |
" <td>0.000283</td>\n", |
|
|
1500 |
" <td>0.000013</td>\n", |
|
|
1501 |
" <td>0.000218</td>\n", |
|
|
1502 |
" <td>0.000636</td>\n", |
|
|
1503 |
" <td>0.001155</td>\n", |
|
|
1504 |
" <td>8.438517e-05</td>\n", |
|
|
1505 |
" <td>0.000151</td>\n", |
|
|
1506 |
" <td>...</td>\n", |
|
|
1507 |
" <td>0.002166</td>\n", |
|
|
1508 |
" <td>0.003913</td>\n", |
|
|
1509 |
" <td>0.004683</td>\n", |
|
|
1510 |
" <td>0.005613</td>\n", |
|
|
1511 |
" <td>0.018091</td>\n", |
|
|
1512 |
" <td>0.002842</td>\n", |
|
|
1513 |
" <td>0.012398</td>\n", |
|
|
1514 |
" <td>0.009452</td>\n", |
|
|
1515 |
" <td>0.009165</td>\n", |
|
|
1516 |
" <td>0.005672</td>\n", |
|
|
1517 |
" </tr>\n", |
|
|
1518 |
" <tr>\n", |
|
|
1519 |
" <th>3</th>\n", |
|
|
1520 |
" <td>ID_0002003a8</td>\n", |
|
|
1521 |
" <td>0.001583</td>\n", |
|
|
1522 |
" <td>0.000008</td>\n", |
|
|
1523 |
" <td>0.000745</td>\n", |
|
|
1524 |
" <td>0.000176</td>\n", |
|
|
1525 |
" <td>0.000233</td>\n", |
|
|
1526 |
" <td>0.000478</td>\n", |
|
|
1527 |
" <td>0.000657</td>\n", |
|
|
1528 |
" <td>8.040458e-07</td>\n", |
|
|
1529 |
" <td>0.000355</td>\n", |
|
|
1530 |
" <td>...</td>\n", |
|
|
1531 |
" <td>0.001896</td>\n", |
|
|
1532 |
" <td>0.001544</td>\n", |
|
|
1533 |
" <td>0.004229</td>\n", |
|
|
1534 |
" <td>0.002354</td>\n", |
|
|
1535 |
" <td>0.021156</td>\n", |
|
|
1536 |
" <td>0.000476</td>\n", |
|
|
1537 |
" <td>0.005249</td>\n", |
|
|
1538 |
" <td>0.028012</td>\n", |
|
|
1539 |
" <td>0.004112</td>\n", |
|
|
1540 |
" <td>0.020228</td>\n", |
|
|
1541 |
" </tr>\n", |
|
|
1542 |
" <tr>\n", |
|
|
1543 |
" <th>4</th>\n", |
|
|
1544 |
" <td>ID_000229f2a</td>\n", |
|
|
1545 |
" <td>0.000251</td>\n", |
|
|
1546 |
" <td>0.000041</td>\n", |
|
|
1547 |
" <td>0.000084</td>\n", |
|
|
1548 |
" <td>0.000039</td>\n", |
|
|
1549 |
" <td>0.000162</td>\n", |
|
|
1550 |
" <td>0.000084</td>\n", |
|
|
1551 |
" <td>0.000072</td>\n", |
|
|
1552 |
" <td>1.584314e-05</td>\n", |
|
|
1553 |
" <td>0.000014</td>\n", |
|
|
1554 |
" <td>...</td>\n", |
|
|
1555 |
" <td>0.011392</td>\n", |
|
|
1556 |
" <td>0.059925</td>\n", |
|
|
1557 |
" <td>0.010892</td>\n", |
|
|
1558 |
" <td>0.015900</td>\n", |
|
|
1559 |
" <td>0.042269</td>\n", |
|
|
1560 |
" <td>0.001678</td>\n", |
|
|
1561 |
" <td>0.012257</td>\n", |
|
|
1562 |
" <td>0.029033</td>\n", |
|
|
1563 |
" <td>0.014108</td>\n", |
|
|
1564 |
" <td>0.011063</td>\n", |
|
|
1565 |
" </tr>\n", |
|
|
1566 |
" </tbody>\n", |
|
|
1567 |
"</table>\n", |
|
|
1568 |
"<p>5 rows × 311 columns</p>\n", |
|
|
1569 |
"</div>" |
|
|
1570 |
], |
|
|
1571 |
"text/plain": [ |
|
|
1572 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
1573 |
"0 ID_0000950d7 0.000216 0.000009 \n", |
|
|
1574 |
"1 ID_0000aee4b 0.000652 0.000132 \n", |
|
|
1575 |
"2 ID_0001de0e8 0.000875 0.000079 \n", |
|
|
1576 |
"3 ID_0002003a8 0.001583 0.000008 \n", |
|
|
1577 |
"4 ID_000229f2a 0.000251 0.000041 \n", |
|
|
1578 |
"\n", |
|
|
1579 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
1580 |
"0 0.000040 0.000017 \n", |
|
|
1581 |
"1 0.000049 0.000030 \n", |
|
|
1582 |
"2 0.000283 0.000013 \n", |
|
|
1583 |
"3 0.000745 0.000176 \n", |
|
|
1584 |
"4 0.000084 0.000039 \n", |
|
|
1585 |
"\n", |
|
|
1586 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
1587 |
"0 0.000131 0.000070 \n", |
|
|
1588 |
"1 0.000237 0.000415 \n", |
|
|
1589 |
"2 0.000218 0.000636 \n", |
|
|
1590 |
"3 0.000233 0.000478 \n", |
|
|
1591 |
"4 0.000162 0.000084 \n", |
|
|
1592 |
"\n", |
|
|
1593 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
1594 |
"0 0.000077 2.602864e-06 \n", |
|
|
1595 |
"1 0.000478 7.363618e-05 \n", |
|
|
1596 |
"2 0.001155 8.438517e-05 \n", |
|
|
1597 |
"3 0.000657 8.040458e-07 \n", |
|
|
1598 |
"4 0.000072 1.584314e-05 \n", |
|
|
1599 |
"\n", |
|
|
1600 |
" Xdensenet121_intraparenchymal_std ... \\\n", |
|
|
1601 |
"0 0.000013 ... \n", |
|
|
1602 |
"1 0.000018 ... \n", |
|
|
1603 |
"2 0.000151 ... \n", |
|
|
1604 |
"3 0.000355 ... \n", |
|
|
1605 |
"4 0.000014 ... \n", |
|
|
1606 |
"\n", |
|
|
1607 |
" Xresnet50_intraparenchymal_mean_max Xresnet50_intraventricular_mean_max \\\n", |
|
|
1608 |
"0 0.486492 0.905775 \n", |
|
|
1609 |
"1 0.002535 0.002878 \n", |
|
|
1610 |
"2 0.002166 0.003913 \n", |
|
|
1611 |
"3 0.001896 0.001544 \n", |
|
|
1612 |
"4 0.011392 0.059925 \n", |
|
|
1613 |
"\n", |
|
|
1614 |
" Xresnet50_subarachnoid_mean_max Xresnet50_subdural_mean_max \\\n", |
|
|
1615 |
"0 0.150154 0.099021 \n", |
|
|
1616 |
"1 0.006184 0.003424 \n", |
|
|
1617 |
"2 0.004683 0.005613 \n", |
|
|
1618 |
"3 0.004229 0.002354 \n", |
|
|
1619 |
"4 0.010892 0.015900 \n", |
|
|
1620 |
"\n", |
|
|
1621 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max \\\n", |
|
|
1622 |
"0 0.857974 \n", |
|
|
1623 |
"1 0.027332 \n", |
|
|
1624 |
"2 0.018091 \n", |
|
|
1625 |
"3 0.021156 \n", |
|
|
1626 |
"4 0.042269 \n", |
|
|
1627 |
"\n", |
|
|
1628 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max \\\n", |
|
|
1629 |
"0 0.001780 \n", |
|
|
1630 |
"1 0.000609 \n", |
|
|
1631 |
"2 0.002842 \n", |
|
|
1632 |
"3 0.000476 \n", |
|
|
1633 |
"4 0.001678 \n", |
|
|
1634 |
"\n", |
|
|
1635 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max \\\n", |
|
|
1636 |
"0 0.361130 \n", |
|
|
1637 |
"1 0.003878 \n", |
|
|
1638 |
"2 0.012398 \n", |
|
|
1639 |
"3 0.005249 \n", |
|
|
1640 |
"4 0.012257 \n", |
|
|
1641 |
"\n", |
|
|
1642 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max \\\n", |
|
|
1643 |
"0 0.789858 \n", |
|
|
1644 |
"1 0.008006 \n", |
|
|
1645 |
"2 0.009452 \n", |
|
|
1646 |
"3 0.028012 \n", |
|
|
1647 |
"4 0.029033 \n", |
|
|
1648 |
"\n", |
|
|
1649 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max \\\n", |
|
|
1650 |
"0 0.168123 \n", |
|
|
1651 |
"1 0.009463 \n", |
|
|
1652 |
"2 0.009165 \n", |
|
|
1653 |
"3 0.004112 \n", |
|
|
1654 |
"4 0.014108 \n", |
|
|
1655 |
"\n", |
|
|
1656 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max \n", |
|
|
1657 |
"0 0.073204 \n", |
|
|
1658 |
"1 0.006090 \n", |
|
|
1659 |
"2 0.005672 \n", |
|
|
1660 |
"3 0.020228 \n", |
|
|
1661 |
"4 0.011063 \n", |
|
|
1662 |
"\n", |
|
|
1663 |
"[5 rows x 311 columns]" |
|
|
1664 |
] |
|
|
1665 |
}, |
|
|
1666 |
"execution_count": 17, |
|
|
1667 |
"metadata": {}, |
|
|
1668 |
"output_type": "execute_result" |
|
|
1669 |
} |
|
|
1670 |
], |
|
|
1671 |
"source": [ |
|
|
1672 |
"#manage NANs created by merging\n", |
|
|
1673 |
"merged_cols = [c for c in merged_df.columns if c.endswith('1')]\n", |
|
|
1674 |
"\n", |
|
|
1675 |
"for c in merged_cols:\n", |
|
|
1676 |
" merged_df[c].fillna(merged_df[c.replace('-1', '').replace('+1', '')], inplace=True)\n", |
|
|
1677 |
" \n", |
|
|
1678 |
"merged_df.head()" |
|
|
1679 |
] |
|
|
1680 |
}, |
|
|
1681 |
{ |
|
|
1682 |
"cell_type": "code", |
|
|
1683 |
"execution_count": 18, |
|
|
1684 |
"metadata": {}, |
|
|
1685 |
"outputs": [ |
|
|
1686 |
{ |
|
|
1687 |
"data": { |
|
|
1688 |
"text/plain": [ |
|
|
1689 |
"2.0 40785\n", |
|
|
1690 |
"0.0 40527\n", |
|
|
1691 |
"3.0 40439\n", |
|
|
1692 |
"1.0 40068\n", |
|
|
1693 |
"5.0 39983\n", |
|
|
1694 |
"4.0 39953\n", |
|
|
1695 |
"11.0 39882\n", |
|
|
1696 |
"6.0 39779\n", |
|
|
1697 |
"9.0 39644\n", |
|
|
1698 |
"7.0 39625\n", |
|
|
1699 |
"10.0 39378\n", |
|
|
1700 |
"8.0 39360\n", |
|
|
1701 |
"16.0 39355\n", |
|
|
1702 |
"13.0 39301\n", |
|
|
1703 |
"12.0 39183\n", |
|
|
1704 |
"17.0 39136\n", |
|
|
1705 |
"15.0 38904\n", |
|
|
1706 |
"14.0 38781\n", |
|
|
1707 |
"18.0 38719\n", |
|
|
1708 |
"Name: fold, dtype: int64" |
|
|
1709 |
] |
|
|
1710 |
}, |
|
|
1711 |
"execution_count": 18, |
|
|
1712 |
"metadata": {}, |
|
|
1713 |
"output_type": "execute_result" |
|
|
1714 |
} |
|
|
1715 |
], |
|
|
1716 |
"source": [ |
|
|
1717 |
"#add fold for training\n", |
|
|
1718 |
"merged_df['fold'] = merged_df.study.apply(lambda s: study_to_data[s]['fold'])\n", |
|
|
1719 |
"merged_df.fold.value_counts()" |
|
|
1720 |
] |
|
|
1721 |
}, |
|
|
1722 |
{ |
|
|
1723 |
"cell_type": "markdown", |
|
|
1724 |
"metadata": {}, |
|
|
1725 |
"source": [ |
|
|
1726 |
"# Prepare test data frame" |
|
|
1727 |
] |
|
|
1728 |
}, |
|
|
1729 |
{ |
|
|
1730 |
"cell_type": "code", |
|
|
1731 |
"execution_count": 19, |
|
|
1732 |
"metadata": {}, |
|
|
1733 |
"outputs": [ |
|
|
1734 |
{ |
|
|
1735 |
"data": { |
|
|
1736 |
"text/plain": [ |
|
|
1737 |
"['Xdensenet121_any_mean',\n", |
|
|
1738 |
" 'Xdensenet121_epidural_mean',\n", |
|
|
1739 |
" 'Xdensenet121_intraparenchymal_mean',\n", |
|
|
1740 |
" 'Xdensenet121_intraventricular_mean',\n", |
|
|
1741 |
" 'Xdensenet121_subarachnoid_mean',\n", |
|
|
1742 |
" 'Xdensenet121_subdural_mean',\n", |
|
|
1743 |
" 'Xdensenet121-53_train_cpu_window_uint8_any_mean',\n", |
|
|
1744 |
" 'Xdensenet121-53_train_cpu_window_uint8_epidural_mean',\n", |
|
|
1745 |
" 'Xdensenet121-53_train_cpu_window_uint8_intraparenchymal_mean',\n", |
|
|
1746 |
" 'Xdensenet121-53_train_cpu_window_uint8_intraventricular_mean',\n", |
|
|
1747 |
" 'Xdensenet121-53_train_cpu_window_uint8_subarachnoid_mean',\n", |
|
|
1748 |
" 'Xdensenet121-53_train_cpu_window_uint8_subdural_mean',\n", |
|
|
1749 |
" 'Xresnet101_any_mean',\n", |
|
|
1750 |
" 'Xresnet101_epidural_mean',\n", |
|
|
1751 |
" 'Xresnet101_intraparenchymal_mean',\n", |
|
|
1752 |
" 'Xresnet101_intraventricular_mean',\n", |
|
|
1753 |
" 'Xresnet101_subarachnoid_mean',\n", |
|
|
1754 |
" 'Xresnet101_subdural_mean',\n", |
|
|
1755 |
" 'Xresnet101-53_train_cpu_window_uint8_any_mean',\n", |
|
|
1756 |
" 'Xresnet101-53_train_cpu_window_uint8_epidural_mean',\n", |
|
|
1757 |
" 'Xresnet101-53_train_cpu_window_uint8_intraparenchymal_mean',\n", |
|
|
1758 |
" 'Xresnet101-53_train_cpu_window_uint8_intraventricular_mean',\n", |
|
|
1759 |
" 'Xresnet101-53_train_cpu_window_uint8_subarachnoid_mean',\n", |
|
|
1760 |
" 'Xresnet101-53_train_cpu_window_uint8_subdural_mean',\n", |
|
|
1761 |
" 'Xresnet18_any_mean',\n", |
|
|
1762 |
" 'Xresnet18_epidural_mean',\n", |
|
|
1763 |
" 'Xresnet18_intraparenchymal_mean',\n", |
|
|
1764 |
" 'Xresnet18_intraventricular_mean',\n", |
|
|
1765 |
" 'Xresnet18_subarachnoid_mean',\n", |
|
|
1766 |
" 'Xresnet18_subdural_mean',\n", |
|
|
1767 |
" 'Xresnet18-53_train_cpu_window_uint8_any_mean',\n", |
|
|
1768 |
" 'Xresnet18-53_train_cpu_window_uint8_epidural_mean',\n", |
|
|
1769 |
" 'Xresnet18-53_train_cpu_window_uint8_intraparenchymal_mean',\n", |
|
|
1770 |
" 'Xresnet18-53_train_cpu_window_uint8_intraventricular_mean',\n", |
|
|
1771 |
" 'Xresnet18-53_train_cpu_window_uint8_subarachnoid_mean',\n", |
|
|
1772 |
" 'Xresnet18-53_train_cpu_window_uint8_subdural_mean',\n", |
|
|
1773 |
" 'Xresnet34_any_mean',\n", |
|
|
1774 |
" 'Xresnet34_epidural_mean',\n", |
|
|
1775 |
" 'Xresnet34_intraparenchymal_mean',\n", |
|
|
1776 |
" 'Xresnet34_intraventricular_mean',\n", |
|
|
1777 |
" 'Xresnet34_subarachnoid_mean',\n", |
|
|
1778 |
" 'Xresnet34_subdural_mean',\n", |
|
|
1779 |
" 'Xresnet34-53_train_cpu_window_uint8_any_mean',\n", |
|
|
1780 |
" 'Xresnet34-53_train_cpu_window_uint8_epidural_mean',\n", |
|
|
1781 |
" 'Xresnet34-53_train_cpu_window_uint8_intraparenchymal_mean',\n", |
|
|
1782 |
" 'Xresnet34-53_train_cpu_window_uint8_intraventricular_mean',\n", |
|
|
1783 |
" 'Xresnet34-53_train_cpu_window_uint8_subarachnoid_mean',\n", |
|
|
1784 |
" 'Xresnet34-53_train_cpu_window_uint8_subdural_mean',\n", |
|
|
1785 |
" 'Xresnet50_any_mean',\n", |
|
|
1786 |
" 'Xresnet50_epidural_mean',\n", |
|
|
1787 |
" 'Xresnet50_intraparenchymal_mean',\n", |
|
|
1788 |
" 'Xresnet50_intraventricular_mean',\n", |
|
|
1789 |
" 'Xresnet50_subarachnoid_mean',\n", |
|
|
1790 |
" 'Xresnet50_subdural_mean',\n", |
|
|
1791 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean',\n", |
|
|
1792 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean',\n", |
|
|
1793 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean',\n", |
|
|
1794 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean',\n", |
|
|
1795 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean',\n", |
|
|
1796 |
" 'Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean']" |
|
|
1797 |
] |
|
|
1798 |
}, |
|
|
1799 |
"execution_count": 19, |
|
|
1800 |
"metadata": {}, |
|
|
1801 |
"output_type": "execute_result" |
|
|
1802 |
} |
|
|
1803 |
], |
|
|
1804 |
"source": [ |
|
|
1805 |
"merge_cols" |
|
|
1806 |
] |
|
|
1807 |
}, |
|
|
1808 |
{ |
|
|
1809 |
"cell_type": "code", |
|
|
1810 |
"execution_count": 20, |
|
|
1811 |
"metadata": {}, |
|
|
1812 |
"outputs": [ |
|
|
1813 |
{ |
|
|
1814 |
"data": { |
|
|
1815 |
"text/html": [ |
|
|
1816 |
"<div>\n", |
|
|
1817 |
"<style scoped>\n", |
|
|
1818 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1819 |
" vertical-align: middle;\n", |
|
|
1820 |
" }\n", |
|
|
1821 |
"\n", |
|
|
1822 |
" .dataframe tbody tr th {\n", |
|
|
1823 |
" vertical-align: top;\n", |
|
|
1824 |
" }\n", |
|
|
1825 |
"\n", |
|
|
1826 |
" .dataframe thead th {\n", |
|
|
1827 |
" text-align: right;\n", |
|
|
1828 |
" }\n", |
|
|
1829 |
"</style>\n", |
|
|
1830 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1831 |
" <thead>\n", |
|
|
1832 |
" <tr style=\"text-align: right;\">\n", |
|
|
1833 |
" <th></th>\n", |
|
|
1834 |
" <th>fn</th>\n", |
|
|
1835 |
" <th>Xdensenet121_any_mean</th>\n", |
|
|
1836 |
" <th>Xdensenet121_epidural_mean</th>\n", |
|
|
1837 |
" <th>Xdensenet121_intraparenchymal_mean</th>\n", |
|
|
1838 |
" <th>Xdensenet121_intraventricular_mean</th>\n", |
|
|
1839 |
" <th>Xdensenet121_subarachnoid_mean</th>\n", |
|
|
1840 |
" <th>Xdensenet121_subdural_mean</th>\n", |
|
|
1841 |
" <th>Xdensenet121_any_std</th>\n", |
|
|
1842 |
" <th>Xdensenet121_epidural_std</th>\n", |
|
|
1843 |
" <th>Xdensenet121_intraparenchymal_std</th>\n", |
|
|
1844 |
" <th>...</th>\n", |
|
|
1845 |
" <th>Xresnet50_intraparenchymal_mean_max</th>\n", |
|
|
1846 |
" <th>Xresnet50_intraventricular_mean_max</th>\n", |
|
|
1847 |
" <th>Xresnet50_subarachnoid_mean_max</th>\n", |
|
|
1848 |
" <th>Xresnet50_subdural_mean_max</th>\n", |
|
|
1849 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n", |
|
|
1850 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n", |
|
|
1851 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n", |
|
|
1852 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n", |
|
|
1853 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n", |
|
|
1854 |
" <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n", |
|
|
1855 |
" </tr>\n", |
|
|
1856 |
" </thead>\n", |
|
|
1857 |
" <tbody>\n", |
|
|
1858 |
" <tr>\n", |
|
|
1859 |
" <th>0</th>\n", |
|
|
1860 |
" <td>ID_0fbf6a978</td>\n", |
|
|
1861 |
" <td>0.652952</td>\n", |
|
|
1862 |
" <td>0.064774</td>\n", |
|
|
1863 |
" <td>0.077681</td>\n", |
|
|
1864 |
" <td>0.005225</td>\n", |
|
|
1865 |
" <td>0.292178</td>\n", |
|
|
1866 |
" <td>0.338067</td>\n", |
|
|
1867 |
" <td>0.096585</td>\n", |
|
|
1868 |
" <td>3.203979e-02</td>\n", |
|
|
1869 |
" <td>0.054162</td>\n", |
|
|
1870 |
" <td>...</td>\n", |
|
|
1871 |
" <td>0.996345</td>\n", |
|
|
1872 |
" <td>0.973147</td>\n", |
|
|
1873 |
" <td>0.959216</td>\n", |
|
|
1874 |
" <td>0.376672</td>\n", |
|
|
1875 |
" <td>0.998088</td>\n", |
|
|
1876 |
" <td>0.032759</td>\n", |
|
|
1877 |
" <td>0.990556</td>\n", |
|
|
1878 |
" <td>0.993277</td>\n", |
|
|
1879 |
" <td>0.982379</td>\n", |
|
|
1880 |
" <td>0.296742</td>\n", |
|
|
1881 |
" </tr>\n", |
|
|
1882 |
" <tr>\n", |
|
|
1883 |
" <th>1</th>\n", |
|
|
1884 |
" <td>ID_d62ec3412</td>\n", |
|
|
1885 |
" <td>0.000902</td>\n", |
|
|
1886 |
" <td>0.000007</td>\n", |
|
|
1887 |
" <td>0.000197</td>\n", |
|
|
1888 |
" <td>0.000157</td>\n", |
|
|
1889 |
" <td>0.000337</td>\n", |
|
|
1890 |
" <td>0.000279</td>\n", |
|
|
1891 |
" <td>0.000446</td>\n", |
|
|
1892 |
" <td>3.052288e-06</td>\n", |
|
|
1893 |
" <td>0.000050</td>\n", |
|
|
1894 |
" <td>...</td>\n", |
|
|
1895 |
" <td>0.005606</td>\n", |
|
|
1896 |
" <td>0.011685</td>\n", |
|
|
1897 |
" <td>0.056988</td>\n", |
|
|
1898 |
" <td>0.012356</td>\n", |
|
|
1899 |
" <td>0.180219</td>\n", |
|
|
1900 |
" <td>0.004658</td>\n", |
|
|
1901 |
" <td>0.034183</td>\n", |
|
|
1902 |
" <td>0.070213</td>\n", |
|
|
1903 |
" <td>0.048766</td>\n", |
|
|
1904 |
" <td>0.028650</td>\n", |
|
|
1905 |
" </tr>\n", |
|
|
1906 |
" <tr>\n", |
|
|
1907 |
" <th>2</th>\n", |
|
|
1908 |
" <td>ID_cb544194b</td>\n", |
|
|
1909 |
" <td>0.013207</td>\n", |
|
|
1910 |
" <td>0.000106</td>\n", |
|
|
1911 |
" <td>0.000226</td>\n", |
|
|
1912 |
" <td>0.000060</td>\n", |
|
|
1913 |
" <td>0.003247</td>\n", |
|
|
1914 |
" <td>0.008092</td>\n", |
|
|
1915 |
" <td>0.005803</td>\n", |
|
|
1916 |
" <td>3.079419e-05</td>\n", |
|
|
1917 |
" <td>0.000056</td>\n", |
|
|
1918 |
" <td>...</td>\n", |
|
|
1919 |
" <td>0.003033</td>\n", |
|
|
1920 |
" <td>0.001944</td>\n", |
|
|
1921 |
" <td>0.181010</td>\n", |
|
|
1922 |
" <td>0.168275</td>\n", |
|
|
1923 |
" <td>0.316041</td>\n", |
|
|
1924 |
" <td>0.002888</td>\n", |
|
|
1925 |
" <td>0.028160</td>\n", |
|
|
1926 |
" <td>0.006408</td>\n", |
|
|
1927 |
" <td>0.157353</td>\n", |
|
|
1928 |
" <td>0.208944</td>\n", |
|
|
1929 |
" </tr>\n", |
|
|
1930 |
" <tr>\n", |
|
|
1931 |
" <th>3</th>\n", |
|
|
1932 |
" <td>ID_0d62513ec</td>\n", |
|
|
1933 |
" <td>0.004513</td>\n", |
|
|
1934 |
" <td>0.000018</td>\n", |
|
|
1935 |
" <td>0.000599</td>\n", |
|
|
1936 |
" <td>0.000379</td>\n", |
|
|
1937 |
" <td>0.001197</td>\n", |
|
|
1938 |
" <td>0.002964</td>\n", |
|
|
1939 |
" <td>0.001034</td>\n", |
|
|
1940 |
" <td>5.030724e-06</td>\n", |
|
|
1941 |
" <td>0.000253</td>\n", |
|
|
1942 |
" <td>...</td>\n", |
|
|
1943 |
" <td>0.001040</td>\n", |
|
|
1944 |
" <td>0.001171</td>\n", |
|
|
1945 |
" <td>0.003586</td>\n", |
|
|
1946 |
" <td>0.014528</td>\n", |
|
|
1947 |
" <td>0.013856</td>\n", |
|
|
1948 |
" <td>0.000814</td>\n", |
|
|
1949 |
" <td>0.003383</td>\n", |
|
|
1950 |
" <td>0.003476</td>\n", |
|
|
1951 |
" <td>0.002704</td>\n", |
|
|
1952 |
" <td>0.016037</td>\n", |
|
|
1953 |
" </tr>\n", |
|
|
1954 |
" <tr>\n", |
|
|
1955 |
" <th>4</th>\n", |
|
|
1956 |
" <td>ID_fc45b2151</td>\n", |
|
|
1957 |
" <td>0.000032</td>\n", |
|
|
1958 |
" <td>0.000001</td>\n", |
|
|
1959 |
" <td>0.000014</td>\n", |
|
|
1960 |
" <td>0.000009</td>\n", |
|
|
1961 |
" <td>0.000016</td>\n", |
|
|
1962 |
" <td>0.000031</td>\n", |
|
|
1963 |
" <td>0.000014</td>\n", |
|
|
1964 |
" <td>3.315683e-07</td>\n", |
|
|
1965 |
" <td>0.000004</td>\n", |
|
|
1966 |
" <td>...</td>\n", |
|
|
1967 |
" <td>0.001387</td>\n", |
|
|
1968 |
" <td>0.001326</td>\n", |
|
|
1969 |
" <td>0.004180</td>\n", |
|
|
1970 |
" <td>0.003761</td>\n", |
|
|
1971 |
" <td>0.019404</td>\n", |
|
|
1972 |
" <td>0.000497</td>\n", |
|
|
1973 |
" <td>0.003189</td>\n", |
|
|
1974 |
" <td>0.000700</td>\n", |
|
|
1975 |
" <td>0.010232</td>\n", |
|
|
1976 |
" <td>0.004891</td>\n", |
|
|
1977 |
" </tr>\n", |
|
|
1978 |
" </tbody>\n", |
|
|
1979 |
"</table>\n", |
|
|
1980 |
"<p>5 rows × 305 columns</p>\n", |
|
|
1981 |
"</div>" |
|
|
1982 |
], |
|
|
1983 |
"text/plain": [ |
|
|
1984 |
" fn Xdensenet121_any_mean Xdensenet121_epidural_mean \\\n", |
|
|
1985 |
"0 ID_0fbf6a978 0.652952 0.064774 \n", |
|
|
1986 |
"1 ID_d62ec3412 0.000902 0.000007 \n", |
|
|
1987 |
"2 ID_cb544194b 0.013207 0.000106 \n", |
|
|
1988 |
"3 ID_0d62513ec 0.004513 0.000018 \n", |
|
|
1989 |
"4 ID_fc45b2151 0.000032 0.000001 \n", |
|
|
1990 |
"\n", |
|
|
1991 |
" Xdensenet121_intraparenchymal_mean Xdensenet121_intraventricular_mean \\\n", |
|
|
1992 |
"0 0.077681 0.005225 \n", |
|
|
1993 |
"1 0.000197 0.000157 \n", |
|
|
1994 |
"2 0.000226 0.000060 \n", |
|
|
1995 |
"3 0.000599 0.000379 \n", |
|
|
1996 |
"4 0.000014 0.000009 \n", |
|
|
1997 |
"\n", |
|
|
1998 |
" Xdensenet121_subarachnoid_mean Xdensenet121_subdural_mean \\\n", |
|
|
1999 |
"0 0.292178 0.338067 \n", |
|
|
2000 |
"1 0.000337 0.000279 \n", |
|
|
2001 |
"2 0.003247 0.008092 \n", |
|
|
2002 |
"3 0.001197 0.002964 \n", |
|
|
2003 |
"4 0.000016 0.000031 \n", |
|
|
2004 |
"\n", |
|
|
2005 |
" Xdensenet121_any_std Xdensenet121_epidural_std \\\n", |
|
|
2006 |
"0 0.096585 3.203979e-02 \n", |
|
|
2007 |
"1 0.000446 3.052288e-06 \n", |
|
|
2008 |
"2 0.005803 3.079419e-05 \n", |
|
|
2009 |
"3 0.001034 5.030724e-06 \n", |
|
|
2010 |
"4 0.000014 3.315683e-07 \n", |
|
|
2011 |
"\n", |
|
|
2012 |
" Xdensenet121_intraparenchymal_std ... \\\n", |
|
|
2013 |
"0 0.054162 ... \n", |
|
|
2014 |
"1 0.000050 ... \n", |
|
|
2015 |
"2 0.000056 ... \n", |
|
|
2016 |
"3 0.000253 ... \n", |
|
|
2017 |
"4 0.000004 ... \n", |
|
|
2018 |
"\n", |
|
|
2019 |
" Xresnet50_intraparenchymal_mean_max Xresnet50_intraventricular_mean_max \\\n", |
|
|
2020 |
"0 0.996345 0.973147 \n", |
|
|
2021 |
"1 0.005606 0.011685 \n", |
|
|
2022 |
"2 0.003033 0.001944 \n", |
|
|
2023 |
"3 0.001040 0.001171 \n", |
|
|
2024 |
"4 0.001387 0.001326 \n", |
|
|
2025 |
"\n", |
|
|
2026 |
" Xresnet50_subarachnoid_mean_max Xresnet50_subdural_mean_max \\\n", |
|
|
2027 |
"0 0.959216 0.376672 \n", |
|
|
2028 |
"1 0.056988 0.012356 \n", |
|
|
2029 |
"2 0.181010 0.168275 \n", |
|
|
2030 |
"3 0.003586 0.014528 \n", |
|
|
2031 |
"4 0.004180 0.003761 \n", |
|
|
2032 |
"\n", |
|
|
2033 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max \\\n", |
|
|
2034 |
"0 0.998088 \n", |
|
|
2035 |
"1 0.180219 \n", |
|
|
2036 |
"2 0.316041 \n", |
|
|
2037 |
"3 0.013856 \n", |
|
|
2038 |
"4 0.019404 \n", |
|
|
2039 |
"\n", |
|
|
2040 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max \\\n", |
|
|
2041 |
"0 0.032759 \n", |
|
|
2042 |
"1 0.004658 \n", |
|
|
2043 |
"2 0.002888 \n", |
|
|
2044 |
"3 0.000814 \n", |
|
|
2045 |
"4 0.000497 \n", |
|
|
2046 |
"\n", |
|
|
2047 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max \\\n", |
|
|
2048 |
"0 0.990556 \n", |
|
|
2049 |
"1 0.034183 \n", |
|
|
2050 |
"2 0.028160 \n", |
|
|
2051 |
"3 0.003383 \n", |
|
|
2052 |
"4 0.003189 \n", |
|
|
2053 |
"\n", |
|
|
2054 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max \\\n", |
|
|
2055 |
"0 0.993277 \n", |
|
|
2056 |
"1 0.070213 \n", |
|
|
2057 |
"2 0.006408 \n", |
|
|
2058 |
"3 0.003476 \n", |
|
|
2059 |
"4 0.000700 \n", |
|
|
2060 |
"\n", |
|
|
2061 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max \\\n", |
|
|
2062 |
"0 0.982379 \n", |
|
|
2063 |
"1 0.048766 \n", |
|
|
2064 |
"2 0.157353 \n", |
|
|
2065 |
"3 0.002704 \n", |
|
|
2066 |
"4 0.010232 \n", |
|
|
2067 |
"\n", |
|
|
2068 |
" Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max \n", |
|
|
2069 |
"0 0.296742 \n", |
|
|
2070 |
"1 0.028650 \n", |
|
|
2071 |
"2 0.208944 \n", |
|
|
2072 |
"3 0.016037 \n", |
|
|
2073 |
"4 0.004891 \n", |
|
|
2074 |
"\n", |
|
|
2075 |
"[5 rows x 305 columns]" |
|
|
2076 |
] |
|
|
2077 |
}, |
|
|
2078 |
"execution_count": 20, |
|
|
2079 |
"metadata": {}, |
|
|
2080 |
"output_type": "execute_result" |
|
|
2081 |
} |
|
|
2082 |
], |
|
|
2083 |
"source": [ |
|
|
2084 |
"#fill and create test dataframe\n", |
|
|
2085 |
"test_dfs = []\n", |
|
|
2086 |
"\n", |
|
|
2087 |
"for i in range(len(test_folds_dfs)):\n", |
|
|
2088 |
" current_test_fold = test_folds_dfs[i]\n", |
|
|
2089 |
" test_df = current_test_fold[0]\n", |
|
|
2090 |
" for arch_df in current_test_fold[1:]:\n", |
|
|
2091 |
" test_df = test_df.merge(arch_df,on='fn')\n", |
|
|
2092 |
" test_dfs.append(test_df)\n", |
|
|
2093 |
"\n", |
|
|
2094 |
"for i in range(len(test_dfs)):\n", |
|
|
2095 |
" #add study and z position to dataframe to join\n", |
|
|
2096 |
" test_dfs[i]['study'] = test_dfs[i].fn.apply(lambda fn: fn_to_study_ix[fn][0] )\n", |
|
|
2097 |
" test_dfs[i]['z'] = test_dfs[i].fn.apply(lambda fn: int(fn_to_study_ix[fn][1]) )\n", |
|
|
2098 |
" \n", |
|
|
2099 |
" #now join top and bottom\n", |
|
|
2100 |
" test_dfs[i]['z+'] = test_dfs[i].z+1\n", |
|
|
2101 |
" test_dfs[i]['z-'] = test_dfs[i].z-1\n", |
|
|
2102 |
" \n", |
|
|
2103 |
" #only merge means to avoid too many columns\n", |
|
|
2104 |
" merge_cols = [c for c in tta_df.columns if 'mean' in c] \n", |
|
|
2105 |
" test_dfs[i] = pd.merge(test_dfs[i], test_dfs[i][merge_cols+ ['study','z+']], how='left', left_on=['study', 'z'], right_on=['study','z+'], suffixes=('','+1'))\n", |
|
|
2106 |
" test_dfs[i] = pd.merge(test_dfs[i], test_dfs[i][merge_cols+ ['study','z-']], how='left', left_on=['study', 'z'], right_on=['study','z-'], suffixes=('','-1'))\n", |
|
|
2107 |
" test_dfs[i].drop(['z++1','z--1'], axis=1, inplace=True) #after merge these columns are not needed\n", |
|
|
2108 |
" \n", |
|
|
2109 |
" #now add maximum value for each merge_col by study\n", |
|
|
2110 |
" group_df = test_dfs[i][merge_cols+['study']].groupby('study').agg('max')\n", |
|
|
2111 |
" test_dfs[i] = pd.merge(test_dfs[i], group_df, how='left', on='study', suffixes=('','_max'))\n", |
|
|
2112 |
" \n", |
|
|
2113 |
" #manage NANs created by merging\n", |
|
|
2114 |
" merged_cols = [c for c in test_dfs[i].columns if c.endswith('1')]\n", |
|
|
2115 |
"\n", |
|
|
2116 |
" for c in merged_cols:\n", |
|
|
2117 |
" test_dfs[i][c].fillna(test_dfs[i][c.replace('-1', '').replace('+1', '')], inplace=True)\n", |
|
|
2118 |
"\n", |
|
|
2119 |
"test_dfs[0].head()" |
|
|
2120 |
] |
|
|
2121 |
}, |
|
|
2122 |
{ |
|
|
2123 |
"cell_type": "markdown", |
|
|
2124 |
"metadata": {}, |
|
|
2125 |
"source": [ |
|
|
2126 |
"# Train XG Boost" |
|
|
2127 |
] |
|
|
2128 |
}, |
|
|
2129 |
{ |
|
|
2130 |
"cell_type": "code", |
|
|
2131 |
"execution_count": 21, |
|
|
2132 |
"metadata": { |
|
|
2133 |
"scrolled": true |
|
|
2134 |
}, |
|
|
2135 |
"outputs": [ |
|
|
2136 |
{ |
|
|
2137 |
"data": { |
|
|
2138 |
"text/plain": [ |
|
|
2139 |
"(633568, 119234)" |
|
|
2140 |
] |
|
|
2141 |
}, |
|
|
2142 |
"execution_count": 21, |
|
|
2143 |
"metadata": {}, |
|
|
2144 |
"output_type": "execute_result" |
|
|
2145 |
} |
|
|
2146 |
], |
|
|
2147 |
"source": [ |
|
|
2148 |
"folds = [1,5,12] #three random folds\n", |
|
|
2149 |
"\n", |
|
|
2150 |
"train_df = merged_df.query('fold not in @folds')\n", |
|
|
2151 |
"val_df = merged_df.query('fold in @folds')\n", |
|
|
2152 |
"\n", |
|
|
2153 |
"len(train_df),len(val_df)\n" |
|
|
2154 |
] |
|
|
2155 |
}, |
|
|
2156 |
{ |
|
|
2157 |
"cell_type": "code", |
|
|
2158 |
"execution_count": 22, |
|
|
2159 |
"metadata": {}, |
|
|
2160 |
"outputs": [ |
|
|
2161 |
{ |
|
|
2162 |
"name": "stdout", |
|
|
2163 |
"output_type": "stream", |
|
|
2164 |
"text": [ |
|
|
2165 |
"any Xresnet34_any_mean 0.10142146307769834\n", |
|
|
2166 |
"epidural Xresnet34_epidural_mean 0.012571424002310823\n", |
|
|
2167 |
"intraparenchymal Xresnet34_intraparenchymal_mean 0.04222755602983461\n", |
|
|
2168 |
"intraventricular Xresnet34_intraventricular_mean 0.025140569354671405\n", |
|
|
2169 |
"subarachnoid Xresnet34_subarachnoid_mean 0.06708897203821126\n", |
|
|
2170 |
"subdural Xresnet34_subdural_mean 0.08416194895275723\n" |
|
|
2171 |
] |
|
|
2172 |
} |
|
|
2173 |
], |
|
|
2174 |
"source": [ |
|
|
2175 |
"#first check log loss for current model predictions\n", |
|
|
2176 |
"from sklearn.metrics import log_loss\n", |
|
|
2177 |
"\n", |
|
|
2178 |
"resnet34_vars = [c for c in merged_df.columns if c.startswith('Xresnet34') and c.endswith('mean')]\n", |
|
|
2179 |
"y_true = val_df[base_classes]\n", |
|
|
2180 |
"y_pred = val_df[resnet34_vars]\n", |
|
|
2181 |
"\n", |
|
|
2182 |
"for tc,pc in zip(y_true.columns,y_pred.columns):\n", |
|
|
2183 |
" loss = log_loss( y_true[tc], y_pred[pc] )\n", |
|
|
2184 |
" print(tc,pc,loss)\n" |
|
|
2185 |
] |
|
|
2186 |
}, |
|
|
2187 |
{ |
|
|
2188 |
"cell_type": "code", |
|
|
2189 |
"execution_count": 23, |
|
|
2190 |
"metadata": {}, |
|
|
2191 |
"outputs": [], |
|
|
2192 |
"source": [ |
|
|
2193 |
"import xgboost as xgb\n", |
|
|
2194 |
"import os\n", |
|
|
2195 |
"from sklearn.multioutput import MultiOutputRegressor\n", |
|
|
2196 |
"#select only variables from deep learning model\n", |
|
|
2197 |
"model_vars = [c for c in merged_df.columns if c.startswith('X')]\n", |
|
|
2198 |
"model_vars.append('z')" |
|
|
2199 |
] |
|
|
2200 |
}, |
|
|
2201 |
{ |
|
|
2202 |
"cell_type": "code", |
|
|
2203 |
"execution_count": 24, |
|
|
2204 |
"metadata": {}, |
|
|
2205 |
"outputs": [], |
|
|
2206 |
"source": [ |
|
|
2207 |
"x_train = train_df[model_vars]\n", |
|
|
2208 |
"y_train = train_df[base_classes]" |
|
|
2209 |
] |
|
|
2210 |
}, |
|
|
2211 |
{ |
|
|
2212 |
"cell_type": "code", |
|
|
2213 |
"execution_count": 25, |
|
|
2214 |
"metadata": {}, |
|
|
2215 |
"outputs": [ |
|
|
2216 |
{ |
|
|
2217 |
"name": "stdout", |
|
|
2218 |
"output_type": "stream", |
|
|
2219 |
"text": [ |
|
|
2220 |
"Training xgboost\n", |
|
|
2221 |
"Done training\n" |
|
|
2222 |
] |
|
|
2223 |
} |
|
|
2224 |
], |
|
|
2225 |
"source": [ |
|
|
2226 |
"xgb_clf = MultiOutputRegressor(xgb.XGBRegressor(objective='binary:logistic',tree_method='gpu_hist',\n", |
|
|
2227 |
" n_estimators=60, reg_lambda=14.0005, \n", |
|
|
2228 |
" max_depth=5,learning_rate=0.1188,gamma=0.0, reg_alpha=0.2043,\n", |
|
|
2229 |
" min_child_weight=0.0,max_delta_step=0.0,subsample=1.0,colsample_bytree=1.0,\n", |
|
|
2230 |
" colsample_bylevel=1.0,silent=0,nthread=-1,\n", |
|
|
2231 |
" scale_pos_weight=1.0,base_score=0.05,seed=1337,missing=None,))\n", |
|
|
2232 |
"print('Training xgboost')\n", |
|
|
2233 |
"xgb_clf.fit(x_train, y_train) \n", |
|
|
2234 |
"\n", |
|
|
2235 |
"#save trained xgb model\n", |
|
|
2236 |
"pickle.dump(xgb_clf, open('data/xgb_%s.pickle'%experiment_name, 'wb'))\n", |
|
|
2237 |
"\n", |
|
|
2238 |
"print('Done training')" |
|
|
2239 |
] |
|
|
2240 |
}, |
|
|
2241 |
{ |
|
|
2242 |
"cell_type": "code", |
|
|
2243 |
"execution_count": 26, |
|
|
2244 |
"metadata": {}, |
|
|
2245 |
"outputs": [], |
|
|
2246 |
"source": [ |
|
|
2247 |
"from catboost import CatBoostClassifier" |
|
|
2248 |
] |
|
|
2249 |
}, |
|
|
2250 |
{ |
|
|
2251 |
"cell_type": "code", |
|
|
2252 |
"execution_count": 27, |
|
|
2253 |
"metadata": {}, |
|
|
2254 |
"outputs": [ |
|
|
2255 |
{ |
|
|
2256 |
"name": "stderr", |
|
|
2257 |
"output_type": "stream", |
|
|
2258 |
"text": [ |
|
|
2259 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
2260 |
] |
|
|
2261 |
}, |
|
|
2262 |
{ |
|
|
2263 |
"name": "stdout", |
|
|
2264 |
"output_type": "stream", |
|
|
2265 |
"text": [ |
|
|
2266 |
"0:\tlearn: 0.6300112\ttotal: 14.2ms\tremaining: 7.09s\n", |
|
|
2267 |
"1:\tlearn: 0.5741290\ttotal: 26.4ms\tremaining: 6.57s\n", |
|
|
2268 |
"2:\tlearn: 0.5230950\ttotal: 38.3ms\tremaining: 6.34s\n", |
|
|
2269 |
"3:\tlearn: 0.4800382\ttotal: 50.3ms\tremaining: 6.24s\n", |
|
|
2270 |
"4:\tlearn: 0.4403254\ttotal: 62.3ms\tremaining: 6.17s\n", |
|
|
2271 |
"5:\tlearn: 0.4049130\ttotal: 74.4ms\tremaining: 6.12s\n", |
|
|
2272 |
"6:\tlearn: 0.3740459\ttotal: 86.5ms\tremaining: 6.09s\n", |
|
|
2273 |
"7:\tlearn: 0.3459914\ttotal: 98.3ms\tremaining: 6.05s\n", |
|
|
2274 |
"8:\tlearn: 0.3212827\ttotal: 111ms\tremaining: 6.04s\n", |
|
|
2275 |
"9:\tlearn: 0.2979507\ttotal: 121ms\tremaining: 5.93s\n", |
|
|
2276 |
"10:\tlearn: 0.2788469\ttotal: 131ms\tremaining: 5.82s\n", |
|
|
2277 |
"11:\tlearn: 0.2622651\ttotal: 141ms\tremaining: 5.74s\n", |
|
|
2278 |
"12:\tlearn: 0.2476561\ttotal: 151ms\tremaining: 5.65s\n", |
|
|
2279 |
"13:\tlearn: 0.2341966\ttotal: 161ms\tremaining: 5.59s\n", |
|
|
2280 |
"14:\tlearn: 0.2213328\ttotal: 171ms\tremaining: 5.53s\n", |
|
|
2281 |
"15:\tlearn: 0.2089498\ttotal: 181ms\tremaining: 5.47s\n", |
|
|
2282 |
"16:\tlearn: 0.1993485\ttotal: 191ms\tremaining: 5.42s\n", |
|
|
2283 |
"17:\tlearn: 0.1911051\ttotal: 201ms\tremaining: 5.38s\n", |
|
|
2284 |
"18:\tlearn: 0.1830265\ttotal: 211ms\tremaining: 5.35s\n", |
|
|
2285 |
"19:\tlearn: 0.1755564\ttotal: 221ms\tremaining: 5.31s\n", |
|
|
2286 |
"20:\tlearn: 0.1699449\ttotal: 231ms\tremaining: 5.28s\n", |
|
|
2287 |
"21:\tlearn: 0.1640489\ttotal: 242ms\tremaining: 5.25s\n", |
|
|
2288 |
"22:\tlearn: 0.1592242\ttotal: 252ms\tremaining: 5.22s\n", |
|
|
2289 |
"23:\tlearn: 0.1546858\ttotal: 262ms\tremaining: 5.2s\n", |
|
|
2290 |
"24:\tlearn: 0.1499386\ttotal: 273ms\tremaining: 5.19s\n", |
|
|
2291 |
"25:\tlearn: 0.1456647\ttotal: 284ms\tremaining: 5.17s\n", |
|
|
2292 |
"26:\tlearn: 0.1420225\ttotal: 294ms\tremaining: 5.15s\n", |
|
|
2293 |
"27:\tlearn: 0.1391272\ttotal: 305ms\tremaining: 5.13s\n", |
|
|
2294 |
"28:\tlearn: 0.1355032\ttotal: 315ms\tremaining: 5.11s\n", |
|
|
2295 |
"29:\tlearn: 0.1329247\ttotal: 324ms\tremaining: 5.07s\n", |
|
|
2296 |
"30:\tlearn: 0.1306117\ttotal: 333ms\tremaining: 5.04s\n", |
|
|
2297 |
"31:\tlearn: 0.1285685\ttotal: 342ms\tremaining: 5s\n", |
|
|
2298 |
"32:\tlearn: 0.1260248\ttotal: 351ms\tremaining: 4.97s\n", |
|
|
2299 |
"33:\tlearn: 0.1236927\ttotal: 361ms\tremaining: 4.95s\n", |
|
|
2300 |
"34:\tlearn: 0.1213834\ttotal: 370ms\tremaining: 4.92s\n", |
|
|
2301 |
"35:\tlearn: 0.1199382\ttotal: 379ms\tremaining: 4.89s\n", |
|
|
2302 |
"36:\tlearn: 0.1184845\ttotal: 389ms\tremaining: 4.86s\n", |
|
|
2303 |
"37:\tlearn: 0.1169902\ttotal: 398ms\tremaining: 4.84s\n", |
|
|
2304 |
"38:\tlearn: 0.1161344\ttotal: 407ms\tremaining: 4.82s\n", |
|
|
2305 |
"39:\tlearn: 0.1149421\ttotal: 417ms\tremaining: 4.79s\n", |
|
|
2306 |
"40:\tlearn: 0.1138034\ttotal: 426ms\tremaining: 4.77s\n", |
|
|
2307 |
"41:\tlearn: 0.1125137\ttotal: 435ms\tremaining: 4.75s\n", |
|
|
2308 |
"42:\tlearn: 0.1112134\ttotal: 445ms\tremaining: 4.73s\n", |
|
|
2309 |
"43:\tlearn: 0.1104542\ttotal: 455ms\tremaining: 4.72s\n", |
|
|
2310 |
"44:\tlearn: 0.1092666\ttotal: 465ms\tremaining: 4.7s\n", |
|
|
2311 |
"45:\tlearn: 0.1084544\ttotal: 474ms\tremaining: 4.67s\n", |
|
|
2312 |
"46:\tlearn: 0.1076119\ttotal: 483ms\tremaining: 4.65s\n", |
|
|
2313 |
"47:\tlearn: 0.1069453\ttotal: 493ms\tremaining: 4.64s\n", |
|
|
2314 |
"48:\tlearn: 0.1061312\ttotal: 502ms\tremaining: 4.62s\n", |
|
|
2315 |
"49:\tlearn: 0.1055290\ttotal: 512ms\tremaining: 4.6s\n", |
|
|
2316 |
"50:\tlearn: 0.1048533\ttotal: 521ms\tremaining: 4.59s\n", |
|
|
2317 |
"51:\tlearn: 0.1044990\ttotal: 530ms\tremaining: 4.57s\n", |
|
|
2318 |
"52:\tlearn: 0.1040365\ttotal: 539ms\tremaining: 4.55s\n", |
|
|
2319 |
"53:\tlearn: 0.1036207\ttotal: 548ms\tremaining: 4.53s\n", |
|
|
2320 |
"54:\tlearn: 0.1032693\ttotal: 558ms\tremaining: 4.51s\n", |
|
|
2321 |
"55:\tlearn: 0.1030260\ttotal: 567ms\tremaining: 4.5s\n", |
|
|
2322 |
"56:\tlearn: 0.1024502\ttotal: 577ms\tremaining: 4.48s\n", |
|
|
2323 |
"57:\tlearn: 0.1020441\ttotal: 586ms\tremaining: 4.47s\n", |
|
|
2324 |
"58:\tlearn: 0.1017107\ttotal: 595ms\tremaining: 4.45s\n", |
|
|
2325 |
"59:\tlearn: 0.1014103\ttotal: 605ms\tremaining: 4.43s\n", |
|
|
2326 |
"60:\tlearn: 0.1011275\ttotal: 614ms\tremaining: 4.42s\n", |
|
|
2327 |
"61:\tlearn: 0.1008895\ttotal: 623ms\tremaining: 4.4s\n", |
|
|
2328 |
"62:\tlearn: 0.1004416\ttotal: 633ms\tremaining: 4.39s\n", |
|
|
2329 |
"63:\tlearn: 0.1000993\ttotal: 643ms\tremaining: 4.38s\n", |
|
|
2330 |
"64:\tlearn: 0.0998388\ttotal: 652ms\tremaining: 4.36s\n", |
|
|
2331 |
"65:\tlearn: 0.0995690\ttotal: 661ms\tremaining: 4.34s\n", |
|
|
2332 |
"66:\tlearn: 0.0994369\ttotal: 670ms\tremaining: 4.33s\n", |
|
|
2333 |
"67:\tlearn: 0.0993174\ttotal: 679ms\tremaining: 4.32s\n", |
|
|
2334 |
"68:\tlearn: 0.0991101\ttotal: 689ms\tremaining: 4.3s\n", |
|
|
2335 |
"69:\tlearn: 0.0989078\ttotal: 698ms\tremaining: 4.29s\n", |
|
|
2336 |
"70:\tlearn: 0.0988200\ttotal: 708ms\tremaining: 4.28s\n", |
|
|
2337 |
"71:\tlearn: 0.0986636\ttotal: 718ms\tremaining: 4.27s\n", |
|
|
2338 |
"72:\tlearn: 0.0984328\ttotal: 727ms\tremaining: 4.25s\n", |
|
|
2339 |
"73:\tlearn: 0.0982657\ttotal: 737ms\tremaining: 4.24s\n", |
|
|
2340 |
"74:\tlearn: 0.0980886\ttotal: 746ms\tremaining: 4.23s\n", |
|
|
2341 |
"75:\tlearn: 0.0979807\ttotal: 756ms\tremaining: 4.21s\n", |
|
|
2342 |
"76:\tlearn: 0.0978737\ttotal: 765ms\tremaining: 4.2s\n", |
|
|
2343 |
"77:\tlearn: 0.0977060\ttotal: 775ms\tremaining: 4.19s\n", |
|
|
2344 |
"78:\tlearn: 0.0974788\ttotal: 784ms\tremaining: 4.18s\n", |
|
|
2345 |
"79:\tlearn: 0.0973238\ttotal: 793ms\tremaining: 4.16s\n", |
|
|
2346 |
"80:\tlearn: 0.0971318\ttotal: 802ms\tremaining: 4.15s\n", |
|
|
2347 |
"81:\tlearn: 0.0969733\ttotal: 812ms\tremaining: 4.14s\n", |
|
|
2348 |
"82:\tlearn: 0.0968933\ttotal: 821ms\tremaining: 4.13s\n", |
|
|
2349 |
"83:\tlearn: 0.0968379\ttotal: 831ms\tremaining: 4.11s\n", |
|
|
2350 |
"84:\tlearn: 0.0967174\ttotal: 841ms\tremaining: 4.1s\n", |
|
|
2351 |
"85:\tlearn: 0.0966029\ttotal: 850ms\tremaining: 4.09s\n", |
|
|
2352 |
"86:\tlearn: 0.0965067\ttotal: 860ms\tremaining: 4.08s\n", |
|
|
2353 |
"87:\tlearn: 0.0963891\ttotal: 869ms\tremaining: 4.07s\n", |
|
|
2354 |
"88:\tlearn: 0.0962795\ttotal: 879ms\tremaining: 4.06s\n", |
|
|
2355 |
"89:\tlearn: 0.0962401\ttotal: 888ms\tremaining: 4.04s\n", |
|
|
2356 |
"90:\tlearn: 0.0961455\ttotal: 897ms\tremaining: 4.03s\n", |
|
|
2357 |
"91:\tlearn: 0.0960883\ttotal: 907ms\tremaining: 4.02s\n", |
|
|
2358 |
"92:\tlearn: 0.0960120\ttotal: 916ms\tremaining: 4.01s\n", |
|
|
2359 |
"93:\tlearn: 0.0959163\ttotal: 926ms\tremaining: 4s\n", |
|
|
2360 |
"94:\tlearn: 0.0958372\ttotal: 935ms\tremaining: 3.99s\n", |
|
|
2361 |
"95:\tlearn: 0.0957638\ttotal: 944ms\tremaining: 3.97s\n", |
|
|
2362 |
"96:\tlearn: 0.0957313\ttotal: 953ms\tremaining: 3.96s\n", |
|
|
2363 |
"97:\tlearn: 0.0956490\ttotal: 962ms\tremaining: 3.95s\n", |
|
|
2364 |
"98:\tlearn: 0.0956129\ttotal: 971ms\tremaining: 3.93s\n", |
|
|
2365 |
"99:\tlearn: 0.0955379\ttotal: 981ms\tremaining: 3.92s\n", |
|
|
2366 |
"100:\tlearn: 0.0954983\ttotal: 990ms\tremaining: 3.91s\n", |
|
|
2367 |
"101:\tlearn: 0.0954296\ttotal: 1000ms\tremaining: 3.9s\n", |
|
|
2368 |
"102:\tlearn: 0.0953629\ttotal: 1.01s\tremaining: 3.89s\n", |
|
|
2369 |
"103:\tlearn: 0.0953287\ttotal: 1.02s\tremaining: 3.88s\n", |
|
|
2370 |
"104:\tlearn: 0.0952725\ttotal: 1.03s\tremaining: 3.87s\n", |
|
|
2371 |
"105:\tlearn: 0.0952146\ttotal: 1.04s\tremaining: 3.85s\n", |
|
|
2372 |
"106:\tlearn: 0.0951494\ttotal: 1.05s\tremaining: 3.84s\n", |
|
|
2373 |
"107:\tlearn: 0.0950849\ttotal: 1.05s\tremaining: 3.83s\n", |
|
|
2374 |
"108:\tlearn: 0.0950191\ttotal: 1.06s\tremaining: 3.82s\n", |
|
|
2375 |
"109:\tlearn: 0.0949847\ttotal: 1.07s\tremaining: 3.81s\n", |
|
|
2376 |
"110:\tlearn: 0.0949598\ttotal: 1.08s\tremaining: 3.8s\n", |
|
|
2377 |
"111:\tlearn: 0.0949287\ttotal: 1.09s\tremaining: 3.79s\n", |
|
|
2378 |
"112:\tlearn: 0.0948765\ttotal: 1.1s\tremaining: 3.77s\n", |
|
|
2379 |
"113:\tlearn: 0.0948421\ttotal: 1.11s\tremaining: 3.77s\n", |
|
|
2380 |
"114:\tlearn: 0.0948193\ttotal: 1.12s\tremaining: 3.75s\n", |
|
|
2381 |
"115:\tlearn: 0.0947775\ttotal: 1.13s\tremaining: 3.74s\n", |
|
|
2382 |
"116:\tlearn: 0.0947377\ttotal: 1.14s\tremaining: 3.73s\n", |
|
|
2383 |
"117:\tlearn: 0.0947034\ttotal: 1.15s\tremaining: 3.72s\n", |
|
|
2384 |
"118:\tlearn: 0.0946827\ttotal: 1.16s\tremaining: 3.71s\n", |
|
|
2385 |
"119:\tlearn: 0.0946670\ttotal: 1.17s\tremaining: 3.7s\n", |
|
|
2386 |
"120:\tlearn: 0.0945899\ttotal: 1.18s\tremaining: 3.69s\n", |
|
|
2387 |
"121:\tlearn: 0.0945644\ttotal: 1.19s\tremaining: 3.68s\n", |
|
|
2388 |
"122:\tlearn: 0.0945393\ttotal: 1.2s\tremaining: 3.67s\n", |
|
|
2389 |
"123:\tlearn: 0.0945250\ttotal: 1.2s\tremaining: 3.65s\n", |
|
|
2390 |
"124:\tlearn: 0.0944740\ttotal: 1.21s\tremaining: 3.64s\n", |
|
|
2391 |
"125:\tlearn: 0.0944444\ttotal: 1.22s\tremaining: 3.63s\n", |
|
|
2392 |
"126:\tlearn: 0.0944015\ttotal: 1.23s\tremaining: 3.62s\n", |
|
|
2393 |
"127:\tlearn: 0.0943836\ttotal: 1.24s\tremaining: 3.61s\n", |
|
|
2394 |
"128:\tlearn: 0.0943628\ttotal: 1.25s\tremaining: 3.6s\n", |
|
|
2395 |
"129:\tlearn: 0.0943235\ttotal: 1.26s\tremaining: 3.59s\n", |
|
|
2396 |
"130:\tlearn: 0.0942970\ttotal: 1.27s\tremaining: 3.58s\n", |
|
|
2397 |
"131:\tlearn: 0.0942677\ttotal: 1.28s\tremaining: 3.57s\n", |
|
|
2398 |
"132:\tlearn: 0.0942458\ttotal: 1.29s\tremaining: 3.56s\n", |
|
|
2399 |
"133:\tlearn: 0.0942096\ttotal: 1.3s\tremaining: 3.55s\n", |
|
|
2400 |
"134:\tlearn: 0.0941956\ttotal: 1.31s\tremaining: 3.54s\n", |
|
|
2401 |
"135:\tlearn: 0.0941755\ttotal: 1.32s\tremaining: 3.53s\n", |
|
|
2402 |
"136:\tlearn: 0.0941279\ttotal: 1.33s\tremaining: 3.52s\n", |
|
|
2403 |
"137:\tlearn: 0.0941018\ttotal: 1.34s\tremaining: 3.51s\n", |
|
|
2404 |
"138:\tlearn: 0.0940813\ttotal: 1.35s\tremaining: 3.5s\n", |
|
|
2405 |
"139:\tlearn: 0.0940571\ttotal: 1.36s\tremaining: 3.49s\n", |
|
|
2406 |
"140:\tlearn: 0.0940259\ttotal: 1.36s\tremaining: 3.48s\n", |
|
|
2407 |
"141:\tlearn: 0.0940047\ttotal: 1.37s\tremaining: 3.46s\n", |
|
|
2408 |
"142:\tlearn: 0.0939843\ttotal: 1.38s\tremaining: 3.45s\n", |
|
|
2409 |
"143:\tlearn: 0.0939435\ttotal: 1.39s\tremaining: 3.44s\n", |
|
|
2410 |
"144:\tlearn: 0.0939285\ttotal: 1.4s\tremaining: 3.43s\n", |
|
|
2411 |
"145:\tlearn: 0.0939070\ttotal: 1.41s\tremaining: 3.42s\n", |
|
|
2412 |
"146:\tlearn: 0.0938900\ttotal: 1.42s\tremaining: 3.41s\n", |
|
|
2413 |
"147:\tlearn: 0.0938695\ttotal: 1.43s\tremaining: 3.4s\n", |
|
|
2414 |
"148:\tlearn: 0.0938554\ttotal: 1.44s\tremaining: 3.39s\n", |
|
|
2415 |
"149:\tlearn: 0.0938196\ttotal: 1.45s\tremaining: 3.38s\n", |
|
|
2416 |
"150:\tlearn: 0.0938047\ttotal: 1.46s\tremaining: 3.37s\n", |
|
|
2417 |
"151:\tlearn: 0.0937761\ttotal: 1.47s\tremaining: 3.36s\n", |
|
|
2418 |
"152:\tlearn: 0.0937590\ttotal: 1.48s\tremaining: 3.35s\n", |
|
|
2419 |
"153:\tlearn: 0.0937412\ttotal: 1.49s\tremaining: 3.34s\n", |
|
|
2420 |
"154:\tlearn: 0.0937275\ttotal: 1.5s\tremaining: 3.33s\n", |
|
|
2421 |
"155:\tlearn: 0.0937024\ttotal: 1.51s\tremaining: 3.32s\n", |
|
|
2422 |
"156:\tlearn: 0.0936852\ttotal: 1.52s\tremaining: 3.31s\n", |
|
|
2423 |
"157:\tlearn: 0.0936676\ttotal: 1.52s\tremaining: 3.3s\n", |
|
|
2424 |
"158:\tlearn: 0.0936547\ttotal: 1.53s\tremaining: 3.29s\n", |
|
|
2425 |
"159:\tlearn: 0.0936431\ttotal: 1.54s\tremaining: 3.28s\n", |
|
|
2426 |
"160:\tlearn: 0.0936291\ttotal: 1.55s\tremaining: 3.27s\n", |
|
|
2427 |
"161:\tlearn: 0.0936203\ttotal: 1.56s\tremaining: 3.26s\n", |
|
|
2428 |
"162:\tlearn: 0.0936116\ttotal: 1.57s\tremaining: 3.25s\n", |
|
|
2429 |
"163:\tlearn: 0.0936000\ttotal: 1.58s\tremaining: 3.24s\n", |
|
|
2430 |
"164:\tlearn: 0.0935866\ttotal: 1.59s\tremaining: 3.23s\n", |
|
|
2431 |
"165:\tlearn: 0.0935625\ttotal: 1.6s\tremaining: 3.22s\n", |
|
|
2432 |
"166:\tlearn: 0.0935365\ttotal: 1.61s\tremaining: 3.21s\n", |
|
|
2433 |
"167:\tlearn: 0.0935277\ttotal: 1.62s\tremaining: 3.2s\n", |
|
|
2434 |
"168:\tlearn: 0.0935130\ttotal: 1.63s\tremaining: 3.19s\n", |
|
|
2435 |
"169:\tlearn: 0.0934925\ttotal: 1.64s\tremaining: 3.18s\n", |
|
|
2436 |
"170:\tlearn: 0.0934811\ttotal: 1.65s\tremaining: 3.17s\n", |
|
|
2437 |
"171:\tlearn: 0.0934672\ttotal: 1.66s\tremaining: 3.16s\n" |
|
|
2438 |
] |
|
|
2439 |
}, |
|
|
2440 |
{ |
|
|
2441 |
"name": "stdout", |
|
|
2442 |
"output_type": "stream", |
|
|
2443 |
"text": [ |
|
|
2444 |
"172:\tlearn: 0.0934468\ttotal: 1.67s\tremaining: 3.15s\n", |
|
|
2445 |
"173:\tlearn: 0.0934345\ttotal: 1.67s\tremaining: 3.14s\n", |
|
|
2446 |
"174:\tlearn: 0.0934145\ttotal: 1.68s\tremaining: 3.13s\n", |
|
|
2447 |
"175:\tlearn: 0.0933990\ttotal: 1.69s\tremaining: 3.12s\n", |
|
|
2448 |
"176:\tlearn: 0.0933845\ttotal: 1.7s\tremaining: 3.11s\n", |
|
|
2449 |
"177:\tlearn: 0.0933601\ttotal: 1.71s\tremaining: 3.1s\n", |
|
|
2450 |
"178:\tlearn: 0.0933383\ttotal: 1.72s\tremaining: 3.09s\n", |
|
|
2451 |
"179:\tlearn: 0.0933203\ttotal: 1.73s\tremaining: 3.08s\n", |
|
|
2452 |
"180:\tlearn: 0.0933110\ttotal: 1.74s\tremaining: 3.07s\n", |
|
|
2453 |
"181:\tlearn: 0.0932970\ttotal: 1.75s\tremaining: 3.06s\n", |
|
|
2454 |
"182:\tlearn: 0.0932868\ttotal: 1.76s\tremaining: 3.05s\n", |
|
|
2455 |
"183:\tlearn: 0.0932782\ttotal: 1.77s\tremaining: 3.04s\n", |
|
|
2456 |
"184:\tlearn: 0.0932692\ttotal: 1.78s\tremaining: 3.02s\n", |
|
|
2457 |
"185:\tlearn: 0.0932546\ttotal: 1.79s\tremaining: 3.02s\n", |
|
|
2458 |
"186:\tlearn: 0.0932453\ttotal: 1.8s\tremaining: 3.01s\n", |
|
|
2459 |
"187:\tlearn: 0.0932303\ttotal: 1.8s\tremaining: 3s\n", |
|
|
2460 |
"188:\tlearn: 0.0932159\ttotal: 1.81s\tremaining: 2.99s\n", |
|
|
2461 |
"189:\tlearn: 0.0932028\ttotal: 1.82s\tremaining: 2.98s\n", |
|
|
2462 |
"190:\tlearn: 0.0931912\ttotal: 1.83s\tremaining: 2.97s\n", |
|
|
2463 |
"191:\tlearn: 0.0931771\ttotal: 1.84s\tremaining: 2.96s\n", |
|
|
2464 |
"192:\tlearn: 0.0931634\ttotal: 1.85s\tremaining: 2.95s\n", |
|
|
2465 |
"193:\tlearn: 0.0931568\ttotal: 1.86s\tremaining: 2.94s\n", |
|
|
2466 |
"194:\tlearn: 0.0931457\ttotal: 1.87s\tremaining: 2.93s\n", |
|
|
2467 |
"195:\tlearn: 0.0931376\ttotal: 1.88s\tremaining: 2.92s\n", |
|
|
2468 |
"196:\tlearn: 0.0931241\ttotal: 1.89s\tremaining: 2.91s\n", |
|
|
2469 |
"197:\tlearn: 0.0931123\ttotal: 1.9s\tremaining: 2.9s\n", |
|
|
2470 |
"198:\tlearn: 0.0930869\ttotal: 1.91s\tremaining: 2.89s\n", |
|
|
2471 |
"199:\tlearn: 0.0930772\ttotal: 1.92s\tremaining: 2.88s\n", |
|
|
2472 |
"200:\tlearn: 0.0930540\ttotal: 1.93s\tremaining: 2.87s\n", |
|
|
2473 |
"201:\tlearn: 0.0930342\ttotal: 1.94s\tremaining: 2.86s\n", |
|
|
2474 |
"202:\tlearn: 0.0930191\ttotal: 1.95s\tremaining: 2.85s\n", |
|
|
2475 |
"203:\tlearn: 0.0930077\ttotal: 1.96s\tremaining: 2.84s\n", |
|
|
2476 |
"204:\tlearn: 0.0929947\ttotal: 1.97s\tremaining: 2.83s\n", |
|
|
2477 |
"205:\tlearn: 0.0929805\ttotal: 1.97s\tremaining: 2.82s\n", |
|
|
2478 |
"206:\tlearn: 0.0929658\ttotal: 1.98s\tremaining: 2.81s\n", |
|
|
2479 |
"207:\tlearn: 0.0929549\ttotal: 1.99s\tremaining: 2.8s\n", |
|
|
2480 |
"208:\tlearn: 0.0929388\ttotal: 2s\tremaining: 2.79s\n", |
|
|
2481 |
"209:\tlearn: 0.0929296\ttotal: 2.01s\tremaining: 2.78s\n", |
|
|
2482 |
"210:\tlearn: 0.0929163\ttotal: 2.02s\tremaining: 2.77s\n", |
|
|
2483 |
"211:\tlearn: 0.0928999\ttotal: 2.03s\tremaining: 2.76s\n", |
|
|
2484 |
"212:\tlearn: 0.0928833\ttotal: 2.04s\tremaining: 2.75s\n", |
|
|
2485 |
"213:\tlearn: 0.0928729\ttotal: 2.05s\tremaining: 2.74s\n", |
|
|
2486 |
"214:\tlearn: 0.0928594\ttotal: 2.06s\tremaining: 2.73s\n", |
|
|
2487 |
"215:\tlearn: 0.0928526\ttotal: 2.07s\tremaining: 2.72s\n", |
|
|
2488 |
"216:\tlearn: 0.0928466\ttotal: 2.08s\tremaining: 2.71s\n", |
|
|
2489 |
"217:\tlearn: 0.0928334\ttotal: 2.09s\tremaining: 2.7s\n", |
|
|
2490 |
"218:\tlearn: 0.0928170\ttotal: 2.1s\tremaining: 2.69s\n", |
|
|
2491 |
"219:\tlearn: 0.0927946\ttotal: 2.1s\tremaining: 2.68s\n", |
|
|
2492 |
"220:\tlearn: 0.0927841\ttotal: 2.11s\tremaining: 2.67s\n", |
|
|
2493 |
"221:\tlearn: 0.0927606\ttotal: 2.12s\tremaining: 2.66s\n", |
|
|
2494 |
"222:\tlearn: 0.0927474\ttotal: 2.13s\tremaining: 2.65s\n", |
|
|
2495 |
"223:\tlearn: 0.0927350\ttotal: 2.14s\tremaining: 2.64s\n", |
|
|
2496 |
"224:\tlearn: 0.0927256\ttotal: 2.15s\tremaining: 2.63s\n", |
|
|
2497 |
"225:\tlearn: 0.0927178\ttotal: 2.16s\tremaining: 2.62s\n", |
|
|
2498 |
"226:\tlearn: 0.0927107\ttotal: 2.17s\tremaining: 2.61s\n", |
|
|
2499 |
"227:\tlearn: 0.0926953\ttotal: 2.18s\tremaining: 2.6s\n", |
|
|
2500 |
"228:\tlearn: 0.0926875\ttotal: 2.19s\tremaining: 2.59s\n", |
|
|
2501 |
"229:\tlearn: 0.0926792\ttotal: 2.2s\tremaining: 2.58s\n", |
|
|
2502 |
"230:\tlearn: 0.0926650\ttotal: 2.21s\tremaining: 2.57s\n", |
|
|
2503 |
"231:\tlearn: 0.0926508\ttotal: 2.22s\tremaining: 2.56s\n", |
|
|
2504 |
"232:\tlearn: 0.0926445\ttotal: 2.23s\tremaining: 2.55s\n", |
|
|
2505 |
"233:\tlearn: 0.0926321\ttotal: 2.24s\tremaining: 2.54s\n", |
|
|
2506 |
"234:\tlearn: 0.0926194\ttotal: 2.25s\tremaining: 2.53s\n", |
|
|
2507 |
"235:\tlearn: 0.0926083\ttotal: 2.25s\tremaining: 2.52s\n", |
|
|
2508 |
"236:\tlearn: 0.0925886\ttotal: 2.26s\tremaining: 2.51s\n", |
|
|
2509 |
"237:\tlearn: 0.0925818\ttotal: 2.27s\tremaining: 2.5s\n", |
|
|
2510 |
"238:\tlearn: 0.0925714\ttotal: 2.28s\tremaining: 2.49s\n", |
|
|
2511 |
"239:\tlearn: 0.0925585\ttotal: 2.29s\tremaining: 2.48s\n", |
|
|
2512 |
"240:\tlearn: 0.0925490\ttotal: 2.3s\tremaining: 2.47s\n", |
|
|
2513 |
"241:\tlearn: 0.0925285\ttotal: 2.31s\tremaining: 2.46s\n", |
|
|
2514 |
"242:\tlearn: 0.0925133\ttotal: 2.32s\tremaining: 2.45s\n", |
|
|
2515 |
"243:\tlearn: 0.0925030\ttotal: 2.33s\tremaining: 2.44s\n", |
|
|
2516 |
"244:\tlearn: 0.0924863\ttotal: 2.34s\tremaining: 2.43s\n", |
|
|
2517 |
"245:\tlearn: 0.0924781\ttotal: 2.35s\tremaining: 2.42s\n", |
|
|
2518 |
"246:\tlearn: 0.0924630\ttotal: 2.36s\tremaining: 2.41s\n", |
|
|
2519 |
"247:\tlearn: 0.0924481\ttotal: 2.37s\tremaining: 2.4s\n", |
|
|
2520 |
"248:\tlearn: 0.0924371\ttotal: 2.38s\tremaining: 2.39s\n", |
|
|
2521 |
"249:\tlearn: 0.0924301\ttotal: 2.38s\tremaining: 2.38s\n", |
|
|
2522 |
"250:\tlearn: 0.0924087\ttotal: 2.39s\tremaining: 2.38s\n", |
|
|
2523 |
"251:\tlearn: 0.0923900\ttotal: 2.4s\tremaining: 2.37s\n", |
|
|
2524 |
"252:\tlearn: 0.0923752\ttotal: 2.41s\tremaining: 2.36s\n", |
|
|
2525 |
"253:\tlearn: 0.0923634\ttotal: 2.42s\tremaining: 2.35s\n", |
|
|
2526 |
"254:\tlearn: 0.0923540\ttotal: 2.43s\tremaining: 2.34s\n", |
|
|
2527 |
"255:\tlearn: 0.0923452\ttotal: 2.44s\tremaining: 2.33s\n", |
|
|
2528 |
"256:\tlearn: 0.0923294\ttotal: 2.45s\tremaining: 2.32s\n", |
|
|
2529 |
"257:\tlearn: 0.0923185\ttotal: 2.46s\tremaining: 2.31s\n", |
|
|
2530 |
"258:\tlearn: 0.0923100\ttotal: 2.47s\tremaining: 2.3s\n", |
|
|
2531 |
"259:\tlearn: 0.0922951\ttotal: 2.48s\tremaining: 2.29s\n", |
|
|
2532 |
"260:\tlearn: 0.0922860\ttotal: 2.49s\tremaining: 2.28s\n", |
|
|
2533 |
"261:\tlearn: 0.0922766\ttotal: 2.5s\tremaining: 2.27s\n", |
|
|
2534 |
"262:\tlearn: 0.0922660\ttotal: 2.51s\tremaining: 2.26s\n", |
|
|
2535 |
"263:\tlearn: 0.0922539\ttotal: 2.52s\tremaining: 2.25s\n", |
|
|
2536 |
"264:\tlearn: 0.0922464\ttotal: 2.52s\tremaining: 2.24s\n", |
|
|
2537 |
"265:\tlearn: 0.0922426\ttotal: 2.53s\tremaining: 2.23s\n", |
|
|
2538 |
"266:\tlearn: 0.0922223\ttotal: 2.54s\tremaining: 2.22s\n", |
|
|
2539 |
"267:\tlearn: 0.0922038\ttotal: 2.55s\tremaining: 2.21s\n", |
|
|
2540 |
"268:\tlearn: 0.0921958\ttotal: 2.56s\tremaining: 2.2s\n", |
|
|
2541 |
"269:\tlearn: 0.0921801\ttotal: 2.57s\tremaining: 2.19s\n", |
|
|
2542 |
"270:\tlearn: 0.0921706\ttotal: 2.58s\tremaining: 2.18s\n", |
|
|
2543 |
"271:\tlearn: 0.0921602\ttotal: 2.59s\tremaining: 2.17s\n", |
|
|
2544 |
"272:\tlearn: 0.0921513\ttotal: 2.6s\tremaining: 2.16s\n", |
|
|
2545 |
"273:\tlearn: 0.0921387\ttotal: 2.61s\tremaining: 2.15s\n", |
|
|
2546 |
"274:\tlearn: 0.0921271\ttotal: 2.62s\tremaining: 2.14s\n", |
|
|
2547 |
"275:\tlearn: 0.0921144\ttotal: 2.63s\tremaining: 2.13s\n", |
|
|
2548 |
"276:\tlearn: 0.0920966\ttotal: 2.64s\tremaining: 2.12s\n", |
|
|
2549 |
"277:\tlearn: 0.0920806\ttotal: 2.65s\tremaining: 2.11s\n", |
|
|
2550 |
"278:\tlearn: 0.0920678\ttotal: 2.66s\tremaining: 2.1s\n", |
|
|
2551 |
"279:\tlearn: 0.0920608\ttotal: 2.67s\tremaining: 2.09s\n", |
|
|
2552 |
"280:\tlearn: 0.0920570\ttotal: 2.67s\tremaining: 2.08s\n", |
|
|
2553 |
"281:\tlearn: 0.0920428\ttotal: 2.68s\tremaining: 2.08s\n", |
|
|
2554 |
"282:\tlearn: 0.0920333\ttotal: 2.69s\tremaining: 2.06s\n", |
|
|
2555 |
"283:\tlearn: 0.0920171\ttotal: 2.7s\tremaining: 2.06s\n", |
|
|
2556 |
"284:\tlearn: 0.0920029\ttotal: 2.71s\tremaining: 2.05s\n", |
|
|
2557 |
"285:\tlearn: 0.0919891\ttotal: 2.72s\tremaining: 2.04s\n", |
|
|
2558 |
"286:\tlearn: 0.0919823\ttotal: 2.73s\tremaining: 2.03s\n", |
|
|
2559 |
"287:\tlearn: 0.0919673\ttotal: 2.74s\tremaining: 2.02s\n", |
|
|
2560 |
"288:\tlearn: 0.0919612\ttotal: 2.75s\tremaining: 2.01s\n", |
|
|
2561 |
"289:\tlearn: 0.0919544\ttotal: 2.76s\tremaining: 2s\n", |
|
|
2562 |
"290:\tlearn: 0.0919475\ttotal: 2.77s\tremaining: 1.99s\n", |
|
|
2563 |
"291:\tlearn: 0.0919417\ttotal: 2.78s\tremaining: 1.98s\n", |
|
|
2564 |
"292:\tlearn: 0.0919280\ttotal: 2.79s\tremaining: 1.97s\n", |
|
|
2565 |
"293:\tlearn: 0.0919168\ttotal: 2.79s\tremaining: 1.96s\n", |
|
|
2566 |
"294:\tlearn: 0.0919058\ttotal: 2.8s\tremaining: 1.95s\n", |
|
|
2567 |
"295:\tlearn: 0.0918868\ttotal: 2.81s\tremaining: 1.94s\n", |
|
|
2568 |
"296:\tlearn: 0.0918784\ttotal: 2.82s\tremaining: 1.93s\n", |
|
|
2569 |
"297:\tlearn: 0.0918701\ttotal: 2.83s\tremaining: 1.92s\n", |
|
|
2570 |
"298:\tlearn: 0.0918570\ttotal: 2.84s\tremaining: 1.91s\n", |
|
|
2571 |
"299:\tlearn: 0.0918417\ttotal: 2.85s\tremaining: 1.9s\n", |
|
|
2572 |
"300:\tlearn: 0.0918252\ttotal: 2.86s\tremaining: 1.89s\n", |
|
|
2573 |
"301:\tlearn: 0.0918034\ttotal: 2.87s\tremaining: 1.88s\n", |
|
|
2574 |
"302:\tlearn: 0.0917880\ttotal: 2.88s\tremaining: 1.87s\n", |
|
|
2575 |
"303:\tlearn: 0.0917783\ttotal: 2.89s\tremaining: 1.86s\n", |
|
|
2576 |
"304:\tlearn: 0.0917628\ttotal: 2.9s\tremaining: 1.85s\n", |
|
|
2577 |
"305:\tlearn: 0.0917497\ttotal: 2.91s\tremaining: 1.84s\n", |
|
|
2578 |
"306:\tlearn: 0.0917291\ttotal: 2.92s\tremaining: 1.83s\n", |
|
|
2579 |
"307:\tlearn: 0.0917202\ttotal: 2.93s\tremaining: 1.82s\n", |
|
|
2580 |
"308:\tlearn: 0.0917129\ttotal: 2.94s\tremaining: 1.81s\n", |
|
|
2581 |
"309:\tlearn: 0.0917084\ttotal: 2.94s\tremaining: 1.8s\n", |
|
|
2582 |
"310:\tlearn: 0.0916967\ttotal: 2.95s\tremaining: 1.79s\n", |
|
|
2583 |
"311:\tlearn: 0.0916868\ttotal: 2.96s\tremaining: 1.78s\n", |
|
|
2584 |
"312:\tlearn: 0.0916800\ttotal: 2.97s\tremaining: 1.78s\n", |
|
|
2585 |
"313:\tlearn: 0.0916725\ttotal: 2.98s\tremaining: 1.77s\n", |
|
|
2586 |
"314:\tlearn: 0.0916608\ttotal: 2.99s\tremaining: 1.76s\n", |
|
|
2587 |
"315:\tlearn: 0.0916427\ttotal: 3s\tremaining: 1.75s\n", |
|
|
2588 |
"316:\tlearn: 0.0916359\ttotal: 3.01s\tremaining: 1.74s\n", |
|
|
2589 |
"317:\tlearn: 0.0916253\ttotal: 3.02s\tremaining: 1.73s\n", |
|
|
2590 |
"318:\tlearn: 0.0916145\ttotal: 3.03s\tremaining: 1.72s\n", |
|
|
2591 |
"319:\tlearn: 0.0916020\ttotal: 3.04s\tremaining: 1.71s\n", |
|
|
2592 |
"320:\tlearn: 0.0915869\ttotal: 3.05s\tremaining: 1.7s\n", |
|
|
2593 |
"321:\tlearn: 0.0915773\ttotal: 3.06s\tremaining: 1.69s\n", |
|
|
2594 |
"322:\tlearn: 0.0915699\ttotal: 3.07s\tremaining: 1.68s\n", |
|
|
2595 |
"323:\tlearn: 0.0915608\ttotal: 3.08s\tremaining: 1.67s\n", |
|
|
2596 |
"324:\tlearn: 0.0915489\ttotal: 3.09s\tremaining: 1.66s\n", |
|
|
2597 |
"325:\tlearn: 0.0915378\ttotal: 3.1s\tremaining: 1.65s\n", |
|
|
2598 |
"326:\tlearn: 0.0915265\ttotal: 3.1s\tremaining: 1.64s\n", |
|
|
2599 |
"327:\tlearn: 0.0915081\ttotal: 3.11s\tremaining: 1.63s\n", |
|
|
2600 |
"328:\tlearn: 0.0915004\ttotal: 3.12s\tremaining: 1.62s\n", |
|
|
2601 |
"329:\tlearn: 0.0914841\ttotal: 3.13s\tremaining: 1.61s\n", |
|
|
2602 |
"330:\tlearn: 0.0914726\ttotal: 3.14s\tremaining: 1.6s\n", |
|
|
2603 |
"331:\tlearn: 0.0914665\ttotal: 3.15s\tremaining: 1.59s\n", |
|
|
2604 |
"332:\tlearn: 0.0914569\ttotal: 3.16s\tremaining: 1.58s\n", |
|
|
2605 |
"333:\tlearn: 0.0914473\ttotal: 3.17s\tremaining: 1.58s\n", |
|
|
2606 |
"334:\tlearn: 0.0914425\ttotal: 3.18s\tremaining: 1.57s\n", |
|
|
2607 |
"335:\tlearn: 0.0914281\ttotal: 3.19s\tremaining: 1.56s\n", |
|
|
2608 |
"336:\tlearn: 0.0914202\ttotal: 3.2s\tremaining: 1.55s\n", |
|
|
2609 |
"337:\tlearn: 0.0914085\ttotal: 3.21s\tremaining: 1.54s\n", |
|
|
2610 |
"338:\tlearn: 0.0914035\ttotal: 3.22s\tremaining: 1.53s\n", |
|
|
2611 |
"339:\tlearn: 0.0913941\ttotal: 3.23s\tremaining: 1.52s\n", |
|
|
2612 |
"340:\tlearn: 0.0913853\ttotal: 3.24s\tremaining: 1.51s\n", |
|
|
2613 |
"341:\tlearn: 0.0913765\ttotal: 3.25s\tremaining: 1.5s\n", |
|
|
2614 |
"342:\tlearn: 0.0913731\ttotal: 3.25s\tremaining: 1.49s\n", |
|
|
2615 |
"343:\tlearn: 0.0913658\ttotal: 3.26s\tremaining: 1.48s\n", |
|
|
2616 |
"344:\tlearn: 0.0913589\ttotal: 3.27s\tremaining: 1.47s\n", |
|
|
2617 |
"345:\tlearn: 0.0913451\ttotal: 3.28s\tremaining: 1.46s\n", |
|
|
2618 |
"346:\tlearn: 0.0913348\ttotal: 3.29s\tremaining: 1.45s\n", |
|
|
2619 |
"347:\tlearn: 0.0913207\ttotal: 3.3s\tremaining: 1.44s\n" |
|
|
2620 |
] |
|
|
2621 |
}, |
|
|
2622 |
{ |
|
|
2623 |
"name": "stdout", |
|
|
2624 |
"output_type": "stream", |
|
|
2625 |
"text": [ |
|
|
2626 |
"348:\tlearn: 0.0913087\ttotal: 3.31s\tremaining: 1.43s\n", |
|
|
2627 |
"349:\tlearn: 0.0912978\ttotal: 3.32s\tremaining: 1.42s\n", |
|
|
2628 |
"350:\tlearn: 0.0912920\ttotal: 3.33s\tremaining: 1.41s\n", |
|
|
2629 |
"351:\tlearn: 0.0912756\ttotal: 3.34s\tremaining: 1.4s\n", |
|
|
2630 |
"352:\tlearn: 0.0912644\ttotal: 3.35s\tremaining: 1.39s\n", |
|
|
2631 |
"353:\tlearn: 0.0912562\ttotal: 3.36s\tremaining: 1.38s\n", |
|
|
2632 |
"354:\tlearn: 0.0912447\ttotal: 3.37s\tremaining: 1.38s\n", |
|
|
2633 |
"355:\tlearn: 0.0912348\ttotal: 3.38s\tremaining: 1.37s\n", |
|
|
2634 |
"356:\tlearn: 0.0912289\ttotal: 3.39s\tremaining: 1.36s\n", |
|
|
2635 |
"357:\tlearn: 0.0912219\ttotal: 3.4s\tremaining: 1.35s\n", |
|
|
2636 |
"358:\tlearn: 0.0912160\ttotal: 3.4s\tremaining: 1.34s\n", |
|
|
2637 |
"359:\tlearn: 0.0912070\ttotal: 3.41s\tremaining: 1.33s\n", |
|
|
2638 |
"360:\tlearn: 0.0911920\ttotal: 3.42s\tremaining: 1.32s\n", |
|
|
2639 |
"361:\tlearn: 0.0911824\ttotal: 3.43s\tremaining: 1.31s\n", |
|
|
2640 |
"362:\tlearn: 0.0911693\ttotal: 3.44s\tremaining: 1.3s\n", |
|
|
2641 |
"363:\tlearn: 0.0911595\ttotal: 3.45s\tremaining: 1.29s\n", |
|
|
2642 |
"364:\tlearn: 0.0911541\ttotal: 3.46s\tremaining: 1.28s\n", |
|
|
2643 |
"365:\tlearn: 0.0911481\ttotal: 3.47s\tremaining: 1.27s\n", |
|
|
2644 |
"366:\tlearn: 0.0911380\ttotal: 3.48s\tremaining: 1.26s\n", |
|
|
2645 |
"367:\tlearn: 0.0911258\ttotal: 3.49s\tremaining: 1.25s\n", |
|
|
2646 |
"368:\tlearn: 0.0911066\ttotal: 3.5s\tremaining: 1.24s\n", |
|
|
2647 |
"369:\tlearn: 0.0910961\ttotal: 3.51s\tremaining: 1.23s\n", |
|
|
2648 |
"370:\tlearn: 0.0910849\ttotal: 3.52s\tremaining: 1.22s\n", |
|
|
2649 |
"371:\tlearn: 0.0910755\ttotal: 3.52s\tremaining: 1.21s\n", |
|
|
2650 |
"372:\tlearn: 0.0910592\ttotal: 3.53s\tremaining: 1.2s\n", |
|
|
2651 |
"373:\tlearn: 0.0910500\ttotal: 3.54s\tremaining: 1.19s\n", |
|
|
2652 |
"374:\tlearn: 0.0910452\ttotal: 3.55s\tremaining: 1.18s\n", |
|
|
2653 |
"375:\tlearn: 0.0910393\ttotal: 3.56s\tremaining: 1.17s\n", |
|
|
2654 |
"376:\tlearn: 0.0910267\ttotal: 3.57s\tremaining: 1.17s\n", |
|
|
2655 |
"377:\tlearn: 0.0910145\ttotal: 3.58s\tremaining: 1.16s\n", |
|
|
2656 |
"378:\tlearn: 0.0910013\ttotal: 3.59s\tremaining: 1.15s\n", |
|
|
2657 |
"379:\tlearn: 0.0909896\ttotal: 3.6s\tremaining: 1.14s\n", |
|
|
2658 |
"380:\tlearn: 0.0909831\ttotal: 3.61s\tremaining: 1.13s\n", |
|
|
2659 |
"381:\tlearn: 0.0909788\ttotal: 3.62s\tremaining: 1.12s\n", |
|
|
2660 |
"382:\tlearn: 0.0909657\ttotal: 3.63s\tremaining: 1.11s\n", |
|
|
2661 |
"383:\tlearn: 0.0909558\ttotal: 3.64s\tremaining: 1.1s\n", |
|
|
2662 |
"384:\tlearn: 0.0909487\ttotal: 3.65s\tremaining: 1.09s\n", |
|
|
2663 |
"385:\tlearn: 0.0909341\ttotal: 3.65s\tremaining: 1.08s\n", |
|
|
2664 |
"386:\tlearn: 0.0909256\ttotal: 3.67s\tremaining: 1.07s\n", |
|
|
2665 |
"387:\tlearn: 0.0909218\ttotal: 3.67s\tremaining: 1.06s\n", |
|
|
2666 |
"388:\tlearn: 0.0909145\ttotal: 3.68s\tremaining: 1.05s\n", |
|
|
2667 |
"389:\tlearn: 0.0909050\ttotal: 3.69s\tremaining: 1.04s\n", |
|
|
2668 |
"390:\tlearn: 0.0908981\ttotal: 3.7s\tremaining: 1.03s\n", |
|
|
2669 |
"391:\tlearn: 0.0908925\ttotal: 3.71s\tremaining: 1.02s\n", |
|
|
2670 |
"392:\tlearn: 0.0908879\ttotal: 3.72s\tremaining: 1.01s\n", |
|
|
2671 |
"393:\tlearn: 0.0908783\ttotal: 3.73s\tremaining: 1s\n", |
|
|
2672 |
"394:\tlearn: 0.0908748\ttotal: 3.74s\tremaining: 994ms\n", |
|
|
2673 |
"395:\tlearn: 0.0908687\ttotal: 3.75s\tremaining: 985ms\n", |
|
|
2674 |
"396:\tlearn: 0.0908620\ttotal: 3.76s\tremaining: 975ms\n", |
|
|
2675 |
"397:\tlearn: 0.0908472\ttotal: 3.77s\tremaining: 966ms\n", |
|
|
2676 |
"398:\tlearn: 0.0908421\ttotal: 3.78s\tremaining: 956ms\n", |
|
|
2677 |
"399:\tlearn: 0.0908364\ttotal: 3.79s\tremaining: 947ms\n", |
|
|
2678 |
"400:\tlearn: 0.0908307\ttotal: 3.8s\tremaining: 937ms\n", |
|
|
2679 |
"401:\tlearn: 0.0908262\ttotal: 3.81s\tremaining: 928ms\n", |
|
|
2680 |
"402:\tlearn: 0.0908105\ttotal: 3.81s\tremaining: 918ms\n", |
|
|
2681 |
"403:\tlearn: 0.0908012\ttotal: 3.82s\tremaining: 909ms\n", |
|
|
2682 |
"404:\tlearn: 0.0907890\ttotal: 3.83s\tremaining: 899ms\n", |
|
|
2683 |
"405:\tlearn: 0.0907689\ttotal: 3.84s\tremaining: 890ms\n", |
|
|
2684 |
"406:\tlearn: 0.0907546\ttotal: 3.85s\tremaining: 880ms\n", |
|
|
2685 |
"407:\tlearn: 0.0907495\ttotal: 3.86s\tremaining: 871ms\n", |
|
|
2686 |
"408:\tlearn: 0.0907369\ttotal: 3.87s\tremaining: 861ms\n", |
|
|
2687 |
"409:\tlearn: 0.0907325\ttotal: 3.88s\tremaining: 852ms\n", |
|
|
2688 |
"410:\tlearn: 0.0907199\ttotal: 3.89s\tremaining: 842ms\n", |
|
|
2689 |
"411:\tlearn: 0.0907097\ttotal: 3.9s\tremaining: 833ms\n", |
|
|
2690 |
"412:\tlearn: 0.0907060\ttotal: 3.91s\tremaining: 823ms\n", |
|
|
2691 |
"413:\tlearn: 0.0906952\ttotal: 3.92s\tremaining: 814ms\n", |
|
|
2692 |
"414:\tlearn: 0.0906899\ttotal: 3.93s\tremaining: 804ms\n", |
|
|
2693 |
"415:\tlearn: 0.0906826\ttotal: 3.94s\tremaining: 795ms\n", |
|
|
2694 |
"416:\tlearn: 0.0906728\ttotal: 3.94s\tremaining: 785ms\n", |
|
|
2695 |
"417:\tlearn: 0.0906648\ttotal: 3.95s\tremaining: 776ms\n", |
|
|
2696 |
"418:\tlearn: 0.0906596\ttotal: 3.96s\tremaining: 766ms\n", |
|
|
2697 |
"419:\tlearn: 0.0906452\ttotal: 3.97s\tremaining: 757ms\n", |
|
|
2698 |
"420:\tlearn: 0.0906351\ttotal: 3.98s\tremaining: 747ms\n", |
|
|
2699 |
"421:\tlearn: 0.0906262\ttotal: 3.99s\tremaining: 738ms\n", |
|
|
2700 |
"422:\tlearn: 0.0906111\ttotal: 4s\tremaining: 728ms\n", |
|
|
2701 |
"423:\tlearn: 0.0906065\ttotal: 4.01s\tremaining: 719ms\n", |
|
|
2702 |
"424:\tlearn: 0.0905956\ttotal: 4.02s\tremaining: 709ms\n", |
|
|
2703 |
"425:\tlearn: 0.0905896\ttotal: 4.03s\tremaining: 700ms\n", |
|
|
2704 |
"426:\tlearn: 0.0905837\ttotal: 4.04s\tremaining: 690ms\n", |
|
|
2705 |
"427:\tlearn: 0.0905778\ttotal: 4.05s\tremaining: 681ms\n", |
|
|
2706 |
"428:\tlearn: 0.0905641\ttotal: 4.06s\tremaining: 671ms\n", |
|
|
2707 |
"429:\tlearn: 0.0905560\ttotal: 4.07s\tremaining: 662ms\n", |
|
|
2708 |
"430:\tlearn: 0.0905439\ttotal: 4.08s\tremaining: 652ms\n", |
|
|
2709 |
"431:\tlearn: 0.0905265\ttotal: 4.08s\tremaining: 643ms\n", |
|
|
2710 |
"432:\tlearn: 0.0905093\ttotal: 4.09s\tremaining: 634ms\n", |
|
|
2711 |
"433:\tlearn: 0.0905056\ttotal: 4.1s\tremaining: 624ms\n", |
|
|
2712 |
"434:\tlearn: 0.0904968\ttotal: 4.11s\tremaining: 615ms\n", |
|
|
2713 |
"435:\tlearn: 0.0904918\ttotal: 4.12s\tremaining: 605ms\n", |
|
|
2714 |
"436:\tlearn: 0.0904782\ttotal: 4.13s\tremaining: 596ms\n", |
|
|
2715 |
"437:\tlearn: 0.0904650\ttotal: 4.14s\tremaining: 586ms\n", |
|
|
2716 |
"438:\tlearn: 0.0904520\ttotal: 4.15s\tremaining: 577ms\n", |
|
|
2717 |
"439:\tlearn: 0.0904388\ttotal: 4.16s\tremaining: 567ms\n", |
|
|
2718 |
"440:\tlearn: 0.0904249\ttotal: 4.17s\tremaining: 558ms\n", |
|
|
2719 |
"441:\tlearn: 0.0904196\ttotal: 4.18s\tremaining: 548ms\n", |
|
|
2720 |
"442:\tlearn: 0.0904124\ttotal: 4.19s\tremaining: 539ms\n", |
|
|
2721 |
"443:\tlearn: 0.0904014\ttotal: 4.2s\tremaining: 529ms\n", |
|
|
2722 |
"444:\tlearn: 0.0903851\ttotal: 4.21s\tremaining: 520ms\n", |
|
|
2723 |
"445:\tlearn: 0.0903786\ttotal: 4.21s\tremaining: 510ms\n", |
|
|
2724 |
"446:\tlearn: 0.0903740\ttotal: 4.22s\tremaining: 501ms\n", |
|
|
2725 |
"447:\tlearn: 0.0903587\ttotal: 4.23s\tremaining: 491ms\n", |
|
|
2726 |
"448:\tlearn: 0.0903461\ttotal: 4.24s\tremaining: 482ms\n", |
|
|
2727 |
"449:\tlearn: 0.0903364\ttotal: 4.25s\tremaining: 472ms\n", |
|
|
2728 |
"450:\tlearn: 0.0903315\ttotal: 4.26s\tremaining: 463ms\n", |
|
|
2729 |
"451:\tlearn: 0.0903254\ttotal: 4.27s\tremaining: 454ms\n", |
|
|
2730 |
"452:\tlearn: 0.0903187\ttotal: 4.28s\tremaining: 444ms\n", |
|
|
2731 |
"453:\tlearn: 0.0903098\ttotal: 4.29s\tremaining: 435ms\n", |
|
|
2732 |
"454:\tlearn: 0.0903034\ttotal: 4.3s\tremaining: 425ms\n", |
|
|
2733 |
"455:\tlearn: 0.0902943\ttotal: 4.31s\tremaining: 416ms\n", |
|
|
2734 |
"456:\tlearn: 0.0902880\ttotal: 4.32s\tremaining: 406ms\n", |
|
|
2735 |
"457:\tlearn: 0.0902839\ttotal: 4.33s\tremaining: 397ms\n", |
|
|
2736 |
"458:\tlearn: 0.0902773\ttotal: 4.34s\tremaining: 387ms\n", |
|
|
2737 |
"459:\tlearn: 0.0902665\ttotal: 4.34s\tremaining: 378ms\n", |
|
|
2738 |
"460:\tlearn: 0.0902596\ttotal: 4.36s\tremaining: 368ms\n", |
|
|
2739 |
"461:\tlearn: 0.0902556\ttotal: 4.36s\tremaining: 359ms\n", |
|
|
2740 |
"462:\tlearn: 0.0902502\ttotal: 4.37s\tremaining: 349ms\n", |
|
|
2741 |
"463:\tlearn: 0.0902458\ttotal: 4.38s\tremaining: 340ms\n", |
|
|
2742 |
"464:\tlearn: 0.0902413\ttotal: 4.39s\tremaining: 331ms\n", |
|
|
2743 |
"465:\tlearn: 0.0902311\ttotal: 4.4s\tremaining: 321ms\n", |
|
|
2744 |
"466:\tlearn: 0.0902198\ttotal: 4.41s\tremaining: 312ms\n", |
|
|
2745 |
"467:\tlearn: 0.0902098\ttotal: 4.42s\tremaining: 302ms\n", |
|
|
2746 |
"468:\tlearn: 0.0902016\ttotal: 4.43s\tremaining: 293ms\n", |
|
|
2747 |
"469:\tlearn: 0.0901831\ttotal: 4.44s\tremaining: 283ms\n", |
|
|
2748 |
"470:\tlearn: 0.0901764\ttotal: 4.45s\tremaining: 274ms\n", |
|
|
2749 |
"471:\tlearn: 0.0901688\ttotal: 4.46s\tremaining: 264ms\n", |
|
|
2750 |
"472:\tlearn: 0.0901635\ttotal: 4.47s\tremaining: 255ms\n", |
|
|
2751 |
"473:\tlearn: 0.0901541\ttotal: 4.47s\tremaining: 246ms\n", |
|
|
2752 |
"474:\tlearn: 0.0901461\ttotal: 4.49s\tremaining: 236ms\n", |
|
|
2753 |
"475:\tlearn: 0.0901386\ttotal: 4.49s\tremaining: 227ms\n", |
|
|
2754 |
"476:\tlearn: 0.0901324\ttotal: 4.5s\tremaining: 217ms\n", |
|
|
2755 |
"477:\tlearn: 0.0901269\ttotal: 4.51s\tremaining: 208ms\n", |
|
|
2756 |
"478:\tlearn: 0.0901183\ttotal: 4.52s\tremaining: 198ms\n", |
|
|
2757 |
"479:\tlearn: 0.0901111\ttotal: 4.53s\tremaining: 189ms\n", |
|
|
2758 |
"480:\tlearn: 0.0901017\ttotal: 4.54s\tremaining: 179ms\n", |
|
|
2759 |
"481:\tlearn: 0.0900939\ttotal: 4.55s\tremaining: 170ms\n", |
|
|
2760 |
"482:\tlearn: 0.0900876\ttotal: 4.56s\tremaining: 160ms\n", |
|
|
2761 |
"483:\tlearn: 0.0900802\ttotal: 4.57s\tremaining: 151ms\n", |
|
|
2762 |
"484:\tlearn: 0.0900718\ttotal: 4.58s\tremaining: 142ms\n", |
|
|
2763 |
"485:\tlearn: 0.0900682\ttotal: 4.59s\tremaining: 132ms\n", |
|
|
2764 |
"486:\tlearn: 0.0900608\ttotal: 4.6s\tremaining: 123ms\n", |
|
|
2765 |
"487:\tlearn: 0.0900561\ttotal: 4.61s\tremaining: 113ms\n", |
|
|
2766 |
"488:\tlearn: 0.0900452\ttotal: 4.62s\tremaining: 104ms\n", |
|
|
2767 |
"489:\tlearn: 0.0900373\ttotal: 4.63s\tremaining: 94.4ms\n", |
|
|
2768 |
"490:\tlearn: 0.0900252\ttotal: 4.63s\tremaining: 85ms\n", |
|
|
2769 |
"491:\tlearn: 0.0900145\ttotal: 4.64s\tremaining: 75.5ms\n", |
|
|
2770 |
"492:\tlearn: 0.0900041\ttotal: 4.65s\tremaining: 66.1ms\n", |
|
|
2771 |
"493:\tlearn: 0.0899984\ttotal: 4.66s\tremaining: 56.6ms\n", |
|
|
2772 |
"494:\tlearn: 0.0899915\ttotal: 4.67s\tremaining: 47.2ms\n", |
|
|
2773 |
"495:\tlearn: 0.0899834\ttotal: 4.68s\tremaining: 37.8ms\n", |
|
|
2774 |
"496:\tlearn: 0.0899760\ttotal: 4.69s\tremaining: 28.3ms\n", |
|
|
2775 |
"497:\tlearn: 0.0899698\ttotal: 4.7s\tremaining: 18.9ms\n", |
|
|
2776 |
"498:\tlearn: 0.0899580\ttotal: 4.71s\tremaining: 9.44ms\n", |
|
|
2777 |
"499:\tlearn: 0.0899515\ttotal: 4.72s\tremaining: 0us\n" |
|
|
2778 |
] |
|
|
2779 |
}, |
|
|
2780 |
{ |
|
|
2781 |
"name": "stderr", |
|
|
2782 |
"output_type": "stream", |
|
|
2783 |
"text": [ |
|
|
2784 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
2785 |
] |
|
|
2786 |
}, |
|
|
2787 |
{ |
|
|
2788 |
"name": "stdout", |
|
|
2789 |
"output_type": "stream", |
|
|
2790 |
"text": [ |
|
|
2791 |
"0:\tlearn: 0.5965772\ttotal: 13.1ms\tremaining: 6.56s\n", |
|
|
2792 |
"1:\tlearn: 0.5142973\ttotal: 24.5ms\tremaining: 6.11s\n", |
|
|
2793 |
"2:\tlearn: 0.4387375\ttotal: 35.3ms\tremaining: 5.84s\n", |
|
|
2794 |
"3:\tlearn: 0.3714045\ttotal: 45.5ms\tremaining: 5.64s\n", |
|
|
2795 |
"4:\tlearn: 0.3138431\ttotal: 55.3ms\tremaining: 5.47s\n", |
|
|
2796 |
"5:\tlearn: 0.2661446\ttotal: 65.4ms\tremaining: 5.38s\n", |
|
|
2797 |
"6:\tlearn: 0.2261139\ttotal: 75.8ms\tremaining: 5.34s\n", |
|
|
2798 |
"7:\tlearn: 0.1931082\ttotal: 85.9ms\tremaining: 5.28s\n", |
|
|
2799 |
"8:\tlearn: 0.1658817\ttotal: 96.2ms\tremaining: 5.25s\n", |
|
|
2800 |
"9:\tlearn: 0.1431357\ttotal: 107ms\tremaining: 5.23s\n", |
|
|
2801 |
"10:\tlearn: 0.1247113\ttotal: 117ms\tremaining: 5.19s\n", |
|
|
2802 |
"11:\tlearn: 0.1092862\ttotal: 127ms\tremaining: 5.17s\n", |
|
|
2803 |
"12:\tlearn: 0.0967858\ttotal: 137ms\tremaining: 5.14s\n", |
|
|
2804 |
"13:\tlearn: 0.0859732\ttotal: 147ms\tremaining: 5.11s\n", |
|
|
2805 |
"14:\tlearn: 0.0768869\ttotal: 157ms\tremaining: 5.08s\n", |
|
|
2806 |
"15:\tlearn: 0.0690225\ttotal: 167ms\tremaining: 5.05s\n", |
|
|
2807 |
"16:\tlearn: 0.0623332\ttotal: 177ms\tremaining: 5.03s\n", |
|
|
2808 |
"17:\tlearn: 0.0568060\ttotal: 187ms\tremaining: 5s\n", |
|
|
2809 |
"18:\tlearn: 0.0520948\ttotal: 197ms\tremaining: 4.99s\n", |
|
|
2810 |
"19:\tlearn: 0.0479619\ttotal: 207ms\tremaining: 4.97s\n", |
|
|
2811 |
"20:\tlearn: 0.0443993\ttotal: 217ms\tremaining: 4.95s\n", |
|
|
2812 |
"21:\tlearn: 0.0412075\ttotal: 227ms\tremaining: 4.93s\n", |
|
|
2813 |
"22:\tlearn: 0.0383108\ttotal: 238ms\tremaining: 4.93s\n", |
|
|
2814 |
"23:\tlearn: 0.0357585\ttotal: 248ms\tremaining: 4.93s\n", |
|
|
2815 |
"24:\tlearn: 0.0333889\ttotal: 259ms\tremaining: 4.92s\n", |
|
|
2816 |
"25:\tlearn: 0.0317587\ttotal: 269ms\tremaining: 4.9s\n", |
|
|
2817 |
"26:\tlearn: 0.0299149\ttotal: 279ms\tremaining: 4.88s\n", |
|
|
2818 |
"27:\tlearn: 0.0285869\ttotal: 289ms\tremaining: 4.87s\n", |
|
|
2819 |
"28:\tlearn: 0.0273259\ttotal: 299ms\tremaining: 4.85s\n", |
|
|
2820 |
"29:\tlearn: 0.0261462\ttotal: 308ms\tremaining: 4.83s\n", |
|
|
2821 |
"30:\tlearn: 0.0251609\ttotal: 318ms\tremaining: 4.81s\n", |
|
|
2822 |
"31:\tlearn: 0.0241793\ttotal: 328ms\tremaining: 4.8s\n", |
|
|
2823 |
"32:\tlearn: 0.0232748\ttotal: 338ms\tremaining: 4.79s\n", |
|
|
2824 |
"33:\tlearn: 0.0226227\ttotal: 347ms\tremaining: 4.76s\n", |
|
|
2825 |
"34:\tlearn: 0.0219224\ttotal: 356ms\tremaining: 4.74s\n", |
|
|
2826 |
"35:\tlearn: 0.0213849\ttotal: 366ms\tremaining: 4.71s\n", |
|
|
2827 |
"36:\tlearn: 0.0208571\ttotal: 375ms\tremaining: 4.69s\n", |
|
|
2828 |
"37:\tlearn: 0.0204173\ttotal: 384ms\tremaining: 4.67s\n", |
|
|
2829 |
"38:\tlearn: 0.0198892\ttotal: 394ms\tremaining: 4.66s\n", |
|
|
2830 |
"39:\tlearn: 0.0194294\ttotal: 404ms\tremaining: 4.65s\n", |
|
|
2831 |
"40:\tlearn: 0.0190587\ttotal: 414ms\tremaining: 4.63s\n", |
|
|
2832 |
"41:\tlearn: 0.0187579\ttotal: 423ms\tremaining: 4.61s\n", |
|
|
2833 |
"42:\tlearn: 0.0184165\ttotal: 433ms\tremaining: 4.6s\n", |
|
|
2834 |
"43:\tlearn: 0.0181767\ttotal: 442ms\tremaining: 4.58s\n", |
|
|
2835 |
"44:\tlearn: 0.0178781\ttotal: 451ms\tremaining: 4.56s\n", |
|
|
2836 |
"45:\tlearn: 0.0175983\ttotal: 461ms\tremaining: 4.55s\n", |
|
|
2837 |
"46:\tlearn: 0.0173603\ttotal: 470ms\tremaining: 4.53s\n", |
|
|
2838 |
"47:\tlearn: 0.0171686\ttotal: 480ms\tremaining: 4.52s\n", |
|
|
2839 |
"48:\tlearn: 0.0170170\ttotal: 489ms\tremaining: 4.5s\n", |
|
|
2840 |
"49:\tlearn: 0.0168135\ttotal: 498ms\tremaining: 4.48s\n", |
|
|
2841 |
"50:\tlearn: 0.0166397\ttotal: 508ms\tremaining: 4.47s\n", |
|
|
2842 |
"51:\tlearn: 0.0164622\ttotal: 517ms\tremaining: 4.46s\n", |
|
|
2843 |
"52:\tlearn: 0.0162877\ttotal: 526ms\tremaining: 4.44s\n", |
|
|
2844 |
"53:\tlearn: 0.0160909\ttotal: 536ms\tremaining: 4.43s\n", |
|
|
2845 |
"54:\tlearn: 0.0159541\ttotal: 546ms\tremaining: 4.42s\n", |
|
|
2846 |
"55:\tlearn: 0.0158254\ttotal: 555ms\tremaining: 4.4s\n", |
|
|
2847 |
"56:\tlearn: 0.0157155\ttotal: 565ms\tremaining: 4.39s\n", |
|
|
2848 |
"57:\tlearn: 0.0156448\ttotal: 574ms\tremaining: 4.37s\n", |
|
|
2849 |
"58:\tlearn: 0.0155310\ttotal: 583ms\tremaining: 4.36s\n", |
|
|
2850 |
"59:\tlearn: 0.0154302\ttotal: 593ms\tremaining: 4.35s\n", |
|
|
2851 |
"60:\tlearn: 0.0153376\ttotal: 602ms\tremaining: 4.33s\n", |
|
|
2852 |
"61:\tlearn: 0.0152438\ttotal: 611ms\tremaining: 4.32s\n", |
|
|
2853 |
"62:\tlearn: 0.0151754\ttotal: 620ms\tremaining: 4.3s\n", |
|
|
2854 |
"63:\tlearn: 0.0150915\ttotal: 630ms\tremaining: 4.29s\n", |
|
|
2855 |
"64:\tlearn: 0.0150292\ttotal: 639ms\tremaining: 4.28s\n", |
|
|
2856 |
"65:\tlearn: 0.0149785\ttotal: 648ms\tremaining: 4.26s\n", |
|
|
2857 |
"66:\tlearn: 0.0149257\ttotal: 658ms\tremaining: 4.25s\n", |
|
|
2858 |
"67:\tlearn: 0.0148712\ttotal: 667ms\tremaining: 4.24s\n", |
|
|
2859 |
"68:\tlearn: 0.0148061\ttotal: 677ms\tremaining: 4.23s\n", |
|
|
2860 |
"69:\tlearn: 0.0147465\ttotal: 686ms\tremaining: 4.21s\n", |
|
|
2861 |
"70:\tlearn: 0.0146895\ttotal: 696ms\tremaining: 4.2s\n", |
|
|
2862 |
"71:\tlearn: 0.0146388\ttotal: 705ms\tremaining: 4.19s\n", |
|
|
2863 |
"72:\tlearn: 0.0145921\ttotal: 714ms\tremaining: 4.18s\n", |
|
|
2864 |
"73:\tlearn: 0.0145434\ttotal: 724ms\tremaining: 4.17s\n", |
|
|
2865 |
"74:\tlearn: 0.0144994\ttotal: 733ms\tremaining: 4.15s\n", |
|
|
2866 |
"75:\tlearn: 0.0144550\ttotal: 743ms\tremaining: 4.14s\n", |
|
|
2867 |
"76:\tlearn: 0.0144263\ttotal: 753ms\tremaining: 4.13s\n", |
|
|
2868 |
"77:\tlearn: 0.0143896\ttotal: 762ms\tremaining: 4.12s\n", |
|
|
2869 |
"78:\tlearn: 0.0143429\ttotal: 771ms\tremaining: 4.11s\n", |
|
|
2870 |
"79:\tlearn: 0.0143055\ttotal: 781ms\tremaining: 4.1s\n", |
|
|
2871 |
"80:\tlearn: 0.0142731\ttotal: 791ms\tremaining: 4.09s\n", |
|
|
2872 |
"81:\tlearn: 0.0142350\ttotal: 800ms\tremaining: 4.08s\n", |
|
|
2873 |
"82:\tlearn: 0.0141981\ttotal: 809ms\tremaining: 4.06s\n", |
|
|
2874 |
"83:\tlearn: 0.0141657\ttotal: 819ms\tremaining: 4.05s\n", |
|
|
2875 |
"84:\tlearn: 0.0141463\ttotal: 828ms\tremaining: 4.04s\n", |
|
|
2876 |
"85:\tlearn: 0.0141300\ttotal: 837ms\tremaining: 4.03s\n", |
|
|
2877 |
"86:\tlearn: 0.0140994\ttotal: 847ms\tremaining: 4.02s\n", |
|
|
2878 |
"87:\tlearn: 0.0140573\ttotal: 857ms\tremaining: 4.01s\n", |
|
|
2879 |
"88:\tlearn: 0.0140215\ttotal: 866ms\tremaining: 4s\n", |
|
|
2880 |
"89:\tlearn: 0.0140053\ttotal: 875ms\tremaining: 3.98s\n", |
|
|
2881 |
"90:\tlearn: 0.0139662\ttotal: 884ms\tremaining: 3.97s\n", |
|
|
2882 |
"91:\tlearn: 0.0139375\ttotal: 894ms\tremaining: 3.96s\n", |
|
|
2883 |
"92:\tlearn: 0.0139127\ttotal: 903ms\tremaining: 3.95s\n", |
|
|
2884 |
"93:\tlearn: 0.0138904\ttotal: 913ms\tremaining: 3.94s\n", |
|
|
2885 |
"94:\tlearn: 0.0138608\ttotal: 922ms\tremaining: 3.93s\n", |
|
|
2886 |
"95:\tlearn: 0.0138388\ttotal: 931ms\tremaining: 3.92s\n", |
|
|
2887 |
"96:\tlearn: 0.0138078\ttotal: 940ms\tremaining: 3.91s\n", |
|
|
2888 |
"97:\tlearn: 0.0137758\ttotal: 949ms\tremaining: 3.89s\n", |
|
|
2889 |
"98:\tlearn: 0.0137451\ttotal: 959ms\tremaining: 3.88s\n", |
|
|
2890 |
"99:\tlearn: 0.0137177\ttotal: 968ms\tremaining: 3.87s\n", |
|
|
2891 |
"100:\tlearn: 0.0136927\ttotal: 978ms\tremaining: 3.86s\n", |
|
|
2892 |
"101:\tlearn: 0.0136756\ttotal: 987ms\tremaining: 3.85s\n", |
|
|
2893 |
"102:\tlearn: 0.0136456\ttotal: 996ms\tremaining: 3.84s\n", |
|
|
2894 |
"103:\tlearn: 0.0136270\ttotal: 1s\tremaining: 3.83s\n", |
|
|
2895 |
"104:\tlearn: 0.0136037\ttotal: 1.01s\tremaining: 3.82s\n", |
|
|
2896 |
"105:\tlearn: 0.0135869\ttotal: 1.02s\tremaining: 3.8s\n", |
|
|
2897 |
"106:\tlearn: 0.0135691\ttotal: 1.03s\tremaining: 3.79s\n", |
|
|
2898 |
"107:\tlearn: 0.0135570\ttotal: 1.04s\tremaining: 3.78s\n", |
|
|
2899 |
"108:\tlearn: 0.0135481\ttotal: 1.05s\tremaining: 3.77s\n", |
|
|
2900 |
"109:\tlearn: 0.0135260\ttotal: 1.06s\tremaining: 3.75s\n", |
|
|
2901 |
"110:\tlearn: 0.0135097\ttotal: 1.07s\tremaining: 3.74s\n", |
|
|
2902 |
"111:\tlearn: 0.0134961\ttotal: 1.07s\tremaining: 3.73s\n", |
|
|
2903 |
"112:\tlearn: 0.0134733\ttotal: 1.08s\tremaining: 3.71s\n", |
|
|
2904 |
"113:\tlearn: 0.0134476\ttotal: 1.09s\tremaining: 3.7s\n", |
|
|
2905 |
"114:\tlearn: 0.0134318\ttotal: 1.1s\tremaining: 3.69s\n", |
|
|
2906 |
"115:\tlearn: 0.0134124\ttotal: 1.11s\tremaining: 3.68s\n", |
|
|
2907 |
"116:\tlearn: 0.0133959\ttotal: 1.12s\tremaining: 3.67s\n", |
|
|
2908 |
"117:\tlearn: 0.0133843\ttotal: 1.13s\tremaining: 3.66s\n", |
|
|
2909 |
"118:\tlearn: 0.0133595\ttotal: 1.14s\tremaining: 3.65s\n", |
|
|
2910 |
"119:\tlearn: 0.0133408\ttotal: 1.15s\tremaining: 3.64s\n", |
|
|
2911 |
"120:\tlearn: 0.0133284\ttotal: 1.16s\tremaining: 3.63s\n", |
|
|
2912 |
"121:\tlearn: 0.0133155\ttotal: 1.17s\tremaining: 3.62s\n", |
|
|
2913 |
"122:\tlearn: 0.0132979\ttotal: 1.18s\tremaining: 3.61s\n", |
|
|
2914 |
"123:\tlearn: 0.0132908\ttotal: 1.19s\tremaining: 3.6s\n", |
|
|
2915 |
"124:\tlearn: 0.0132810\ttotal: 1.2s\tremaining: 3.58s\n", |
|
|
2916 |
"125:\tlearn: 0.0132659\ttotal: 1.2s\tremaining: 3.57s\n", |
|
|
2917 |
"126:\tlearn: 0.0132569\ttotal: 1.21s\tremaining: 3.56s\n", |
|
|
2918 |
"127:\tlearn: 0.0132474\ttotal: 1.22s\tremaining: 3.55s\n", |
|
|
2919 |
"128:\tlearn: 0.0132321\ttotal: 1.23s\tremaining: 3.54s\n", |
|
|
2920 |
"129:\tlearn: 0.0132161\ttotal: 1.24s\tremaining: 3.53s\n", |
|
|
2921 |
"130:\tlearn: 0.0132086\ttotal: 1.25s\tremaining: 3.52s\n", |
|
|
2922 |
"131:\tlearn: 0.0131822\ttotal: 1.26s\tremaining: 3.51s\n", |
|
|
2923 |
"132:\tlearn: 0.0131685\ttotal: 1.27s\tremaining: 3.5s\n", |
|
|
2924 |
"133:\tlearn: 0.0131553\ttotal: 1.28s\tremaining: 3.49s\n", |
|
|
2925 |
"134:\tlearn: 0.0131413\ttotal: 1.29s\tremaining: 3.48s\n", |
|
|
2926 |
"135:\tlearn: 0.0131353\ttotal: 1.29s\tremaining: 3.47s\n", |
|
|
2927 |
"136:\tlearn: 0.0131189\ttotal: 1.3s\tremaining: 3.46s\n", |
|
|
2928 |
"137:\tlearn: 0.0131034\ttotal: 1.31s\tremaining: 3.44s\n", |
|
|
2929 |
"138:\tlearn: 0.0130901\ttotal: 1.32s\tremaining: 3.44s\n", |
|
|
2930 |
"139:\tlearn: 0.0130807\ttotal: 1.33s\tremaining: 3.42s\n", |
|
|
2931 |
"140:\tlearn: 0.0130620\ttotal: 1.34s\tremaining: 3.42s\n", |
|
|
2932 |
"141:\tlearn: 0.0130411\ttotal: 1.35s\tremaining: 3.4s\n", |
|
|
2933 |
"142:\tlearn: 0.0130236\ttotal: 1.36s\tremaining: 3.4s\n", |
|
|
2934 |
"143:\tlearn: 0.0130095\ttotal: 1.37s\tremaining: 3.39s\n", |
|
|
2935 |
"144:\tlearn: 0.0129955\ttotal: 1.38s\tremaining: 3.38s\n", |
|
|
2936 |
"145:\tlearn: 0.0129820\ttotal: 1.39s\tremaining: 3.37s\n", |
|
|
2937 |
"146:\tlearn: 0.0129708\ttotal: 1.4s\tremaining: 3.36s\n", |
|
|
2938 |
"147:\tlearn: 0.0129582\ttotal: 1.41s\tremaining: 3.35s\n", |
|
|
2939 |
"148:\tlearn: 0.0129492\ttotal: 1.42s\tremaining: 3.34s\n", |
|
|
2940 |
"149:\tlearn: 0.0129391\ttotal: 1.43s\tremaining: 3.33s\n", |
|
|
2941 |
"150:\tlearn: 0.0129246\ttotal: 1.44s\tremaining: 3.32s\n", |
|
|
2942 |
"151:\tlearn: 0.0129129\ttotal: 1.45s\tremaining: 3.31s\n", |
|
|
2943 |
"152:\tlearn: 0.0128975\ttotal: 1.45s\tremaining: 3.3s\n", |
|
|
2944 |
"153:\tlearn: 0.0128863\ttotal: 1.46s\tremaining: 3.29s\n", |
|
|
2945 |
"154:\tlearn: 0.0128776\ttotal: 1.47s\tremaining: 3.28s\n", |
|
|
2946 |
"155:\tlearn: 0.0128592\ttotal: 1.48s\tremaining: 3.27s\n", |
|
|
2947 |
"156:\tlearn: 0.0128519\ttotal: 1.49s\tremaining: 3.26s\n", |
|
|
2948 |
"157:\tlearn: 0.0128371\ttotal: 1.5s\tremaining: 3.25s\n", |
|
|
2949 |
"158:\tlearn: 0.0128200\ttotal: 1.51s\tremaining: 3.24s\n", |
|
|
2950 |
"159:\tlearn: 0.0128064\ttotal: 1.52s\tremaining: 3.23s\n", |
|
|
2951 |
"160:\tlearn: 0.0127982\ttotal: 1.53s\tremaining: 3.22s\n", |
|
|
2952 |
"161:\tlearn: 0.0127883\ttotal: 1.54s\tremaining: 3.21s\n", |
|
|
2953 |
"162:\tlearn: 0.0127743\ttotal: 1.55s\tremaining: 3.2s\n", |
|
|
2954 |
"163:\tlearn: 0.0127599\ttotal: 1.56s\tremaining: 3.19s\n", |
|
|
2955 |
"164:\tlearn: 0.0127507\ttotal: 1.57s\tremaining: 3.19s\n", |
|
|
2956 |
"165:\tlearn: 0.0127391\ttotal: 1.58s\tremaining: 3.18s\n", |
|
|
2957 |
"166:\tlearn: 0.0127299\ttotal: 1.59s\tremaining: 3.17s\n", |
|
|
2958 |
"167:\tlearn: 0.0127207\ttotal: 1.6s\tremaining: 3.16s\n", |
|
|
2959 |
"168:\tlearn: 0.0127126\ttotal: 1.61s\tremaining: 3.15s\n", |
|
|
2960 |
"169:\tlearn: 0.0127018\ttotal: 1.62s\tremaining: 3.14s\n", |
|
|
2961 |
"170:\tlearn: 0.0126898\ttotal: 1.63s\tremaining: 3.13s\n", |
|
|
2962 |
"171:\tlearn: 0.0126790\ttotal: 1.63s\tremaining: 3.12s\n", |
|
|
2963 |
"172:\tlearn: 0.0126711\ttotal: 1.64s\tremaining: 3.11s\n", |
|
|
2964 |
"173:\tlearn: 0.0126584\ttotal: 1.65s\tremaining: 3.1s\n" |
|
|
2965 |
] |
|
|
2966 |
}, |
|
|
2967 |
{ |
|
|
2968 |
"name": "stdout", |
|
|
2969 |
"output_type": "stream", |
|
|
2970 |
"text": [ |
|
|
2971 |
"174:\tlearn: 0.0126423\ttotal: 1.66s\tremaining: 3.09s\n", |
|
|
2972 |
"175:\tlearn: 0.0126366\ttotal: 1.67s\tremaining: 3.08s\n", |
|
|
2973 |
"176:\tlearn: 0.0126281\ttotal: 1.68s\tremaining: 3.07s\n", |
|
|
2974 |
"177:\tlearn: 0.0126216\ttotal: 1.69s\tremaining: 3.06s\n", |
|
|
2975 |
"178:\tlearn: 0.0125998\ttotal: 1.7s\tremaining: 3.05s\n", |
|
|
2976 |
"179:\tlearn: 0.0125890\ttotal: 1.71s\tremaining: 3.04s\n", |
|
|
2977 |
"180:\tlearn: 0.0125807\ttotal: 1.72s\tremaining: 3.03s\n", |
|
|
2978 |
"181:\tlearn: 0.0125723\ttotal: 1.73s\tremaining: 3.02s\n", |
|
|
2979 |
"182:\tlearn: 0.0125649\ttotal: 1.74s\tremaining: 3.01s\n", |
|
|
2980 |
"183:\tlearn: 0.0125561\ttotal: 1.74s\tremaining: 3s\n", |
|
|
2981 |
"184:\tlearn: 0.0125445\ttotal: 1.75s\tremaining: 2.99s\n", |
|
|
2982 |
"185:\tlearn: 0.0125369\ttotal: 1.76s\tremaining: 2.98s\n", |
|
|
2983 |
"186:\tlearn: 0.0125233\ttotal: 1.77s\tremaining: 2.97s\n", |
|
|
2984 |
"187:\tlearn: 0.0125077\ttotal: 1.78s\tremaining: 2.96s\n", |
|
|
2985 |
"188:\tlearn: 0.0125039\ttotal: 1.79s\tremaining: 2.95s\n", |
|
|
2986 |
"189:\tlearn: 0.0124927\ttotal: 1.8s\tremaining: 2.94s\n", |
|
|
2987 |
"190:\tlearn: 0.0124829\ttotal: 1.81s\tremaining: 2.93s\n", |
|
|
2988 |
"191:\tlearn: 0.0124743\ttotal: 1.82s\tremaining: 2.92s\n", |
|
|
2989 |
"192:\tlearn: 0.0124617\ttotal: 1.83s\tremaining: 2.91s\n", |
|
|
2990 |
"193:\tlearn: 0.0124530\ttotal: 1.84s\tremaining: 2.9s\n", |
|
|
2991 |
"194:\tlearn: 0.0124451\ttotal: 1.84s\tremaining: 2.89s\n", |
|
|
2992 |
"195:\tlearn: 0.0124306\ttotal: 1.85s\tremaining: 2.88s\n", |
|
|
2993 |
"196:\tlearn: 0.0124154\ttotal: 1.86s\tremaining: 2.87s\n", |
|
|
2994 |
"197:\tlearn: 0.0124099\ttotal: 1.87s\tremaining: 2.86s\n", |
|
|
2995 |
"198:\tlearn: 0.0123974\ttotal: 1.88s\tremaining: 2.85s\n", |
|
|
2996 |
"199:\tlearn: 0.0123882\ttotal: 1.89s\tremaining: 2.84s\n", |
|
|
2997 |
"200:\tlearn: 0.0123814\ttotal: 1.9s\tremaining: 2.83s\n", |
|
|
2998 |
"201:\tlearn: 0.0123719\ttotal: 1.91s\tremaining: 2.82s\n", |
|
|
2999 |
"202:\tlearn: 0.0123656\ttotal: 1.92s\tremaining: 2.81s\n", |
|
|
3000 |
"203:\tlearn: 0.0123620\ttotal: 1.93s\tremaining: 2.8s\n", |
|
|
3001 |
"204:\tlearn: 0.0123546\ttotal: 1.94s\tremaining: 2.79s\n", |
|
|
3002 |
"205:\tlearn: 0.0123435\ttotal: 1.95s\tremaining: 2.78s\n", |
|
|
3003 |
"206:\tlearn: 0.0123318\ttotal: 1.96s\tremaining: 2.77s\n", |
|
|
3004 |
"207:\tlearn: 0.0123209\ttotal: 1.97s\tremaining: 2.76s\n", |
|
|
3005 |
"208:\tlearn: 0.0123161\ttotal: 1.98s\tremaining: 2.75s\n", |
|
|
3006 |
"209:\tlearn: 0.0123084\ttotal: 1.99s\tremaining: 2.74s\n", |
|
|
3007 |
"210:\tlearn: 0.0122996\ttotal: 1.99s\tremaining: 2.73s\n", |
|
|
3008 |
"211:\tlearn: 0.0122904\ttotal: 2s\tremaining: 2.72s\n", |
|
|
3009 |
"212:\tlearn: 0.0122820\ttotal: 2.01s\tremaining: 2.71s\n", |
|
|
3010 |
"213:\tlearn: 0.0122738\ttotal: 2.02s\tremaining: 2.7s\n", |
|
|
3011 |
"214:\tlearn: 0.0122651\ttotal: 2.03s\tremaining: 2.69s\n", |
|
|
3012 |
"215:\tlearn: 0.0122557\ttotal: 2.04s\tremaining: 2.68s\n", |
|
|
3013 |
"216:\tlearn: 0.0122481\ttotal: 2.05s\tremaining: 2.67s\n", |
|
|
3014 |
"217:\tlearn: 0.0122392\ttotal: 2.06s\tremaining: 2.66s\n", |
|
|
3015 |
"218:\tlearn: 0.0122262\ttotal: 2.07s\tremaining: 2.65s\n", |
|
|
3016 |
"219:\tlearn: 0.0122164\ttotal: 2.08s\tremaining: 2.64s\n", |
|
|
3017 |
"220:\tlearn: 0.0122135\ttotal: 2.08s\tremaining: 2.63s\n", |
|
|
3018 |
"221:\tlearn: 0.0122059\ttotal: 2.09s\tremaining: 2.62s\n", |
|
|
3019 |
"222:\tlearn: 0.0121936\ttotal: 2.1s\tremaining: 2.61s\n", |
|
|
3020 |
"223:\tlearn: 0.0121886\ttotal: 2.11s\tremaining: 2.6s\n", |
|
|
3021 |
"224:\tlearn: 0.0121780\ttotal: 2.12s\tremaining: 2.59s\n", |
|
|
3022 |
"225:\tlearn: 0.0121693\ttotal: 2.13s\tremaining: 2.58s\n", |
|
|
3023 |
"226:\tlearn: 0.0121622\ttotal: 2.14s\tremaining: 2.57s\n", |
|
|
3024 |
"227:\tlearn: 0.0121561\ttotal: 2.15s\tremaining: 2.56s\n", |
|
|
3025 |
"228:\tlearn: 0.0121384\ttotal: 2.16s\tremaining: 2.55s\n", |
|
|
3026 |
"229:\tlearn: 0.0121291\ttotal: 2.17s\tremaining: 2.54s\n", |
|
|
3027 |
"230:\tlearn: 0.0121174\ttotal: 2.17s\tremaining: 2.53s\n", |
|
|
3028 |
"231:\tlearn: 0.0121077\ttotal: 2.18s\tremaining: 2.52s\n", |
|
|
3029 |
"232:\tlearn: 0.0120947\ttotal: 2.19s\tremaining: 2.51s\n", |
|
|
3030 |
"233:\tlearn: 0.0120900\ttotal: 2.2s\tremaining: 2.5s\n", |
|
|
3031 |
"234:\tlearn: 0.0120816\ttotal: 2.21s\tremaining: 2.5s\n", |
|
|
3032 |
"235:\tlearn: 0.0120758\ttotal: 2.22s\tremaining: 2.49s\n", |
|
|
3033 |
"236:\tlearn: 0.0120655\ttotal: 2.23s\tremaining: 2.48s\n", |
|
|
3034 |
"237:\tlearn: 0.0120541\ttotal: 2.24s\tremaining: 2.47s\n", |
|
|
3035 |
"238:\tlearn: 0.0120443\ttotal: 2.25s\tremaining: 2.46s\n", |
|
|
3036 |
"239:\tlearn: 0.0120366\ttotal: 2.26s\tremaining: 2.45s\n", |
|
|
3037 |
"240:\tlearn: 0.0120320\ttotal: 2.27s\tremaining: 2.44s\n", |
|
|
3038 |
"241:\tlearn: 0.0120217\ttotal: 2.28s\tremaining: 2.43s\n", |
|
|
3039 |
"242:\tlearn: 0.0120190\ttotal: 2.29s\tremaining: 2.42s\n", |
|
|
3040 |
"243:\tlearn: 0.0120070\ttotal: 2.3s\tremaining: 2.41s\n", |
|
|
3041 |
"244:\tlearn: 0.0119958\ttotal: 2.31s\tremaining: 2.4s\n", |
|
|
3042 |
"245:\tlearn: 0.0119852\ttotal: 2.31s\tremaining: 2.39s\n", |
|
|
3043 |
"246:\tlearn: 0.0119729\ttotal: 2.32s\tremaining: 2.38s\n", |
|
|
3044 |
"247:\tlearn: 0.0119674\ttotal: 2.33s\tremaining: 2.37s\n", |
|
|
3045 |
"248:\tlearn: 0.0119607\ttotal: 2.34s\tremaining: 2.36s\n", |
|
|
3046 |
"249:\tlearn: 0.0119537\ttotal: 2.35s\tremaining: 2.35s\n", |
|
|
3047 |
"250:\tlearn: 0.0119482\ttotal: 2.36s\tremaining: 2.34s\n", |
|
|
3048 |
"251:\tlearn: 0.0119362\ttotal: 2.37s\tremaining: 2.33s\n", |
|
|
3049 |
"252:\tlearn: 0.0119249\ttotal: 2.38s\tremaining: 2.32s\n", |
|
|
3050 |
"253:\tlearn: 0.0119179\ttotal: 2.39s\tremaining: 2.31s\n", |
|
|
3051 |
"254:\tlearn: 0.0119098\ttotal: 2.4s\tremaining: 2.3s\n", |
|
|
3052 |
"255:\tlearn: 0.0118992\ttotal: 2.41s\tremaining: 2.29s\n", |
|
|
3053 |
"256:\tlearn: 0.0118884\ttotal: 2.42s\tremaining: 2.28s\n", |
|
|
3054 |
"257:\tlearn: 0.0118818\ttotal: 2.42s\tremaining: 2.27s\n", |
|
|
3055 |
"258:\tlearn: 0.0118727\ttotal: 2.43s\tremaining: 2.26s\n", |
|
|
3056 |
"259:\tlearn: 0.0118614\ttotal: 2.44s\tremaining: 2.25s\n", |
|
|
3057 |
"260:\tlearn: 0.0118577\ttotal: 2.45s\tremaining: 2.25s\n", |
|
|
3058 |
"261:\tlearn: 0.0118469\ttotal: 2.46s\tremaining: 2.23s\n", |
|
|
3059 |
"262:\tlearn: 0.0118392\ttotal: 2.47s\tremaining: 2.23s\n", |
|
|
3060 |
"263:\tlearn: 0.0118278\ttotal: 2.48s\tremaining: 2.22s\n", |
|
|
3061 |
"264:\tlearn: 0.0118204\ttotal: 2.49s\tremaining: 2.21s\n", |
|
|
3062 |
"265:\tlearn: 0.0118146\ttotal: 2.5s\tremaining: 2.2s\n", |
|
|
3063 |
"266:\tlearn: 0.0118034\ttotal: 2.51s\tremaining: 2.19s\n", |
|
|
3064 |
"267:\tlearn: 0.0117963\ttotal: 2.52s\tremaining: 2.18s\n", |
|
|
3065 |
"268:\tlearn: 0.0117895\ttotal: 2.52s\tremaining: 2.17s\n", |
|
|
3066 |
"269:\tlearn: 0.0117755\ttotal: 2.53s\tremaining: 2.16s\n", |
|
|
3067 |
"270:\tlearn: 0.0117672\ttotal: 2.54s\tremaining: 2.15s\n", |
|
|
3068 |
"271:\tlearn: 0.0117531\ttotal: 2.55s\tremaining: 2.14s\n", |
|
|
3069 |
"272:\tlearn: 0.0117468\ttotal: 2.56s\tremaining: 2.13s\n", |
|
|
3070 |
"273:\tlearn: 0.0117403\ttotal: 2.57s\tremaining: 2.12s\n", |
|
|
3071 |
"274:\tlearn: 0.0117344\ttotal: 2.58s\tremaining: 2.11s\n", |
|
|
3072 |
"275:\tlearn: 0.0117277\ttotal: 2.59s\tremaining: 2.1s\n", |
|
|
3073 |
"276:\tlearn: 0.0117162\ttotal: 2.6s\tremaining: 2.09s\n", |
|
|
3074 |
"277:\tlearn: 0.0117028\ttotal: 2.6s\tremaining: 2.08s\n", |
|
|
3075 |
"278:\tlearn: 0.0116903\ttotal: 2.62s\tremaining: 2.07s\n", |
|
|
3076 |
"279:\tlearn: 0.0116828\ttotal: 2.63s\tremaining: 2.06s\n", |
|
|
3077 |
"280:\tlearn: 0.0116731\ttotal: 2.63s\tremaining: 2.05s\n", |
|
|
3078 |
"281:\tlearn: 0.0116637\ttotal: 2.64s\tremaining: 2.04s\n", |
|
|
3079 |
"282:\tlearn: 0.0116567\ttotal: 2.65s\tremaining: 2.03s\n", |
|
|
3080 |
"283:\tlearn: 0.0116506\ttotal: 2.66s\tremaining: 2.02s\n", |
|
|
3081 |
"284:\tlearn: 0.0116466\ttotal: 2.67s\tremaining: 2.02s\n", |
|
|
3082 |
"285:\tlearn: 0.0116382\ttotal: 2.68s\tremaining: 2s\n", |
|
|
3083 |
"286:\tlearn: 0.0116337\ttotal: 2.69s\tremaining: 2s\n", |
|
|
3084 |
"287:\tlearn: 0.0116288\ttotal: 2.7s\tremaining: 1.99s\n", |
|
|
3085 |
"288:\tlearn: 0.0116232\ttotal: 2.71s\tremaining: 1.98s\n", |
|
|
3086 |
"289:\tlearn: 0.0116165\ttotal: 2.72s\tremaining: 1.97s\n", |
|
|
3087 |
"290:\tlearn: 0.0116071\ttotal: 2.73s\tremaining: 1.96s\n", |
|
|
3088 |
"291:\tlearn: 0.0115974\ttotal: 2.73s\tremaining: 1.95s\n", |
|
|
3089 |
"292:\tlearn: 0.0115942\ttotal: 2.75s\tremaining: 1.94s\n", |
|
|
3090 |
"293:\tlearn: 0.0115828\ttotal: 2.75s\tremaining: 1.93s\n", |
|
|
3091 |
"294:\tlearn: 0.0115723\ttotal: 2.76s\tremaining: 1.92s\n", |
|
|
3092 |
"295:\tlearn: 0.0115690\ttotal: 2.77s\tremaining: 1.91s\n", |
|
|
3093 |
"296:\tlearn: 0.0115626\ttotal: 2.78s\tremaining: 1.9s\n", |
|
|
3094 |
"297:\tlearn: 0.0115584\ttotal: 2.79s\tremaining: 1.89s\n", |
|
|
3095 |
"298:\tlearn: 0.0115506\ttotal: 2.8s\tremaining: 1.88s\n", |
|
|
3096 |
"299:\tlearn: 0.0115420\ttotal: 2.81s\tremaining: 1.87s\n", |
|
|
3097 |
"300:\tlearn: 0.0115390\ttotal: 2.82s\tremaining: 1.86s\n", |
|
|
3098 |
"301:\tlearn: 0.0115303\ttotal: 2.83s\tremaining: 1.85s\n", |
|
|
3099 |
"302:\tlearn: 0.0115272\ttotal: 2.84s\tremaining: 1.84s\n", |
|
|
3100 |
"303:\tlearn: 0.0115138\ttotal: 2.85s\tremaining: 1.84s\n", |
|
|
3101 |
"304:\tlearn: 0.0115086\ttotal: 2.86s\tremaining: 1.83s\n", |
|
|
3102 |
"305:\tlearn: 0.0115042\ttotal: 2.87s\tremaining: 1.82s\n", |
|
|
3103 |
"306:\tlearn: 0.0114939\ttotal: 2.88s\tremaining: 1.81s\n", |
|
|
3104 |
"307:\tlearn: 0.0114909\ttotal: 2.88s\tremaining: 1.8s\n", |
|
|
3105 |
"308:\tlearn: 0.0114819\ttotal: 2.89s\tremaining: 1.79s\n", |
|
|
3106 |
"309:\tlearn: 0.0114772\ttotal: 2.9s\tremaining: 1.78s\n", |
|
|
3107 |
"310:\tlearn: 0.0114667\ttotal: 2.91s\tremaining: 1.77s\n", |
|
|
3108 |
"311:\tlearn: 0.0114544\ttotal: 2.92s\tremaining: 1.76s\n", |
|
|
3109 |
"312:\tlearn: 0.0114475\ttotal: 2.93s\tremaining: 1.75s\n", |
|
|
3110 |
"313:\tlearn: 0.0114403\ttotal: 2.94s\tremaining: 1.74s\n", |
|
|
3111 |
"314:\tlearn: 0.0114356\ttotal: 2.95s\tremaining: 1.73s\n", |
|
|
3112 |
"315:\tlearn: 0.0114314\ttotal: 2.96s\tremaining: 1.72s\n", |
|
|
3113 |
"316:\tlearn: 0.0114253\ttotal: 2.97s\tremaining: 1.71s\n", |
|
|
3114 |
"317:\tlearn: 0.0114139\ttotal: 2.98s\tremaining: 1.7s\n", |
|
|
3115 |
"318:\tlearn: 0.0114077\ttotal: 2.99s\tremaining: 1.69s\n", |
|
|
3116 |
"319:\tlearn: 0.0114005\ttotal: 3s\tremaining: 1.69s\n", |
|
|
3117 |
"320:\tlearn: 0.0113929\ttotal: 3s\tremaining: 1.68s\n", |
|
|
3118 |
"321:\tlearn: 0.0113866\ttotal: 3.01s\tremaining: 1.67s\n", |
|
|
3119 |
"322:\tlearn: 0.0113804\ttotal: 3.02s\tremaining: 1.66s\n", |
|
|
3120 |
"323:\tlearn: 0.0113726\ttotal: 3.03s\tremaining: 1.65s\n", |
|
|
3121 |
"324:\tlearn: 0.0113700\ttotal: 3.04s\tremaining: 1.64s\n", |
|
|
3122 |
"325:\tlearn: 0.0113649\ttotal: 3.05s\tremaining: 1.63s\n", |
|
|
3123 |
"326:\tlearn: 0.0113573\ttotal: 3.06s\tremaining: 1.62s\n", |
|
|
3124 |
"327:\tlearn: 0.0113498\ttotal: 3.07s\tremaining: 1.61s\n", |
|
|
3125 |
"328:\tlearn: 0.0113408\ttotal: 3.08s\tremaining: 1.6s\n", |
|
|
3126 |
"329:\tlearn: 0.0113345\ttotal: 3.09s\tremaining: 1.59s\n", |
|
|
3127 |
"330:\tlearn: 0.0113246\ttotal: 3.1s\tremaining: 1.58s\n", |
|
|
3128 |
"331:\tlearn: 0.0113138\ttotal: 3.11s\tremaining: 1.57s\n", |
|
|
3129 |
"332:\tlearn: 0.0113066\ttotal: 3.12s\tremaining: 1.56s\n", |
|
|
3130 |
"333:\tlearn: 0.0112963\ttotal: 3.13s\tremaining: 1.55s\n", |
|
|
3131 |
"334:\tlearn: 0.0112925\ttotal: 3.13s\tremaining: 1.54s\n", |
|
|
3132 |
"335:\tlearn: 0.0112851\ttotal: 3.15s\tremaining: 1.53s\n", |
|
|
3133 |
"336:\tlearn: 0.0112796\ttotal: 3.15s\tremaining: 1.53s\n", |
|
|
3134 |
"337:\tlearn: 0.0112764\ttotal: 3.16s\tremaining: 1.52s\n", |
|
|
3135 |
"338:\tlearn: 0.0112723\ttotal: 3.17s\tremaining: 1.51s\n", |
|
|
3136 |
"339:\tlearn: 0.0112666\ttotal: 3.18s\tremaining: 1.5s\n", |
|
|
3137 |
"340:\tlearn: 0.0112622\ttotal: 3.19s\tremaining: 1.49s\n", |
|
|
3138 |
"341:\tlearn: 0.0112553\ttotal: 3.2s\tremaining: 1.48s\n", |
|
|
3139 |
"342:\tlearn: 0.0112445\ttotal: 3.21s\tremaining: 1.47s\n", |
|
|
3140 |
"343:\tlearn: 0.0112428\ttotal: 3.22s\tremaining: 1.46s\n", |
|
|
3141 |
"344:\tlearn: 0.0112396\ttotal: 3.23s\tremaining: 1.45s\n", |
|
|
3142 |
"345:\tlearn: 0.0112336\ttotal: 3.24s\tremaining: 1.44s\n", |
|
|
3143 |
"346:\tlearn: 0.0112252\ttotal: 3.25s\tremaining: 1.43s\n", |
|
|
3144 |
"347:\tlearn: 0.0112193\ttotal: 3.26s\tremaining: 1.42s\n", |
|
|
3145 |
"348:\tlearn: 0.0112107\ttotal: 3.27s\tremaining: 1.41s\n", |
|
|
3146 |
"349:\tlearn: 0.0112027\ttotal: 3.28s\tremaining: 1.41s\n" |
|
|
3147 |
] |
|
|
3148 |
}, |
|
|
3149 |
{ |
|
|
3150 |
"name": "stdout", |
|
|
3151 |
"output_type": "stream", |
|
|
3152 |
"text": [ |
|
|
3153 |
"350:\tlearn: 0.0111983\ttotal: 3.29s\tremaining: 1.4s\n", |
|
|
3154 |
"351:\tlearn: 0.0111919\ttotal: 3.3s\tremaining: 1.39s\n", |
|
|
3155 |
"352:\tlearn: 0.0111895\ttotal: 3.31s\tremaining: 1.38s\n", |
|
|
3156 |
"353:\tlearn: 0.0111851\ttotal: 3.31s\tremaining: 1.37s\n", |
|
|
3157 |
"354:\tlearn: 0.0111784\ttotal: 3.32s\tremaining: 1.36s\n", |
|
|
3158 |
"355:\tlearn: 0.0111717\ttotal: 3.33s\tremaining: 1.35s\n", |
|
|
3159 |
"356:\tlearn: 0.0111675\ttotal: 3.34s\tremaining: 1.34s\n", |
|
|
3160 |
"357:\tlearn: 0.0111586\ttotal: 3.35s\tremaining: 1.33s\n", |
|
|
3161 |
"358:\tlearn: 0.0111552\ttotal: 3.36s\tremaining: 1.32s\n", |
|
|
3162 |
"359:\tlearn: 0.0111468\ttotal: 3.37s\tremaining: 1.31s\n", |
|
|
3163 |
"360:\tlearn: 0.0111381\ttotal: 3.38s\tremaining: 1.3s\n", |
|
|
3164 |
"361:\tlearn: 0.0111309\ttotal: 3.39s\tremaining: 1.29s\n", |
|
|
3165 |
"362:\tlearn: 0.0111291\ttotal: 3.4s\tremaining: 1.28s\n", |
|
|
3166 |
"363:\tlearn: 0.0111266\ttotal: 3.41s\tremaining: 1.27s\n", |
|
|
3167 |
"364:\tlearn: 0.0111196\ttotal: 3.42s\tremaining: 1.26s\n", |
|
|
3168 |
"365:\tlearn: 0.0111127\ttotal: 3.43s\tremaining: 1.25s\n", |
|
|
3169 |
"366:\tlearn: 0.0111050\ttotal: 3.44s\tremaining: 1.25s\n", |
|
|
3170 |
"367:\tlearn: 0.0110998\ttotal: 3.45s\tremaining: 1.24s\n", |
|
|
3171 |
"368:\tlearn: 0.0110953\ttotal: 3.46s\tremaining: 1.23s\n", |
|
|
3172 |
"369:\tlearn: 0.0110907\ttotal: 3.46s\tremaining: 1.22s\n", |
|
|
3173 |
"370:\tlearn: 0.0110814\ttotal: 3.47s\tremaining: 1.21s\n", |
|
|
3174 |
"371:\tlearn: 0.0110738\ttotal: 3.48s\tremaining: 1.2s\n", |
|
|
3175 |
"372:\tlearn: 0.0110682\ttotal: 3.49s\tremaining: 1.19s\n", |
|
|
3176 |
"373:\tlearn: 0.0110566\ttotal: 3.5s\tremaining: 1.18s\n", |
|
|
3177 |
"374:\tlearn: 0.0110439\ttotal: 3.51s\tremaining: 1.17s\n", |
|
|
3178 |
"375:\tlearn: 0.0110337\ttotal: 3.52s\tremaining: 1.16s\n", |
|
|
3179 |
"376:\tlearn: 0.0110286\ttotal: 3.53s\tremaining: 1.15s\n", |
|
|
3180 |
"377:\tlearn: 0.0110253\ttotal: 3.54s\tremaining: 1.14s\n", |
|
|
3181 |
"378:\tlearn: 0.0110186\ttotal: 3.55s\tremaining: 1.13s\n", |
|
|
3182 |
"379:\tlearn: 0.0110175\ttotal: 3.56s\tremaining: 1.12s\n", |
|
|
3183 |
"380:\tlearn: 0.0110141\ttotal: 3.57s\tremaining: 1.11s\n", |
|
|
3184 |
"381:\tlearn: 0.0110061\ttotal: 3.58s\tremaining: 1.1s\n", |
|
|
3185 |
"382:\tlearn: 0.0110010\ttotal: 3.58s\tremaining: 1.09s\n", |
|
|
3186 |
"383:\tlearn: 0.0109918\ttotal: 3.59s\tremaining: 1.08s\n", |
|
|
3187 |
"384:\tlearn: 0.0109837\ttotal: 3.6s\tremaining: 1.08s\n", |
|
|
3188 |
"385:\tlearn: 0.0109738\ttotal: 3.61s\tremaining: 1.07s\n", |
|
|
3189 |
"386:\tlearn: 0.0109721\ttotal: 3.62s\tremaining: 1.06s\n", |
|
|
3190 |
"387:\tlearn: 0.0109681\ttotal: 3.63s\tremaining: 1.05s\n", |
|
|
3191 |
"388:\tlearn: 0.0109635\ttotal: 3.64s\tremaining: 1.04s\n", |
|
|
3192 |
"389:\tlearn: 0.0109580\ttotal: 3.65s\tremaining: 1.03s\n", |
|
|
3193 |
"390:\tlearn: 0.0109510\ttotal: 3.66s\tremaining: 1.02s\n", |
|
|
3194 |
"391:\tlearn: 0.0109421\ttotal: 3.67s\tremaining: 1.01s\n", |
|
|
3195 |
"392:\tlearn: 0.0109358\ttotal: 3.68s\tremaining: 1s\n", |
|
|
3196 |
"393:\tlearn: 0.0109299\ttotal: 3.69s\tremaining: 992ms\n", |
|
|
3197 |
"394:\tlearn: 0.0109267\ttotal: 3.69s\tremaining: 982ms\n", |
|
|
3198 |
"395:\tlearn: 0.0109226\ttotal: 3.7s\tremaining: 973ms\n", |
|
|
3199 |
"396:\tlearn: 0.0109187\ttotal: 3.71s\tremaining: 964ms\n", |
|
|
3200 |
"397:\tlearn: 0.0109106\ttotal: 3.73s\tremaining: 955ms\n", |
|
|
3201 |
"398:\tlearn: 0.0109029\ttotal: 3.74s\tremaining: 946ms\n", |
|
|
3202 |
"399:\tlearn: 0.0108979\ttotal: 3.75s\tremaining: 936ms\n", |
|
|
3203 |
"400:\tlearn: 0.0108946\ttotal: 3.75s\tremaining: 927ms\n", |
|
|
3204 |
"401:\tlearn: 0.0108883\ttotal: 3.76s\tremaining: 918ms\n", |
|
|
3205 |
"402:\tlearn: 0.0108846\ttotal: 3.77s\tremaining: 908ms\n", |
|
|
3206 |
"403:\tlearn: 0.0108754\ttotal: 3.78s\tremaining: 899ms\n", |
|
|
3207 |
"404:\tlearn: 0.0108667\ttotal: 3.79s\tremaining: 889ms\n", |
|
|
3208 |
"405:\tlearn: 0.0108604\ttotal: 3.8s\tremaining: 880ms\n", |
|
|
3209 |
"406:\tlearn: 0.0108514\ttotal: 3.81s\tremaining: 871ms\n", |
|
|
3210 |
"407:\tlearn: 0.0108443\ttotal: 3.82s\tremaining: 861ms\n", |
|
|
3211 |
"408:\tlearn: 0.0108413\ttotal: 3.83s\tremaining: 852ms\n", |
|
|
3212 |
"409:\tlearn: 0.0108350\ttotal: 3.84s\tremaining: 842ms\n", |
|
|
3213 |
"410:\tlearn: 0.0108288\ttotal: 3.85s\tremaining: 833ms\n", |
|
|
3214 |
"411:\tlearn: 0.0108205\ttotal: 3.85s\tremaining: 823ms\n", |
|
|
3215 |
"412:\tlearn: 0.0108095\ttotal: 3.86s\tremaining: 814ms\n", |
|
|
3216 |
"413:\tlearn: 0.0108045\ttotal: 3.87s\tremaining: 805ms\n", |
|
|
3217 |
"414:\tlearn: 0.0108013\ttotal: 3.88s\tremaining: 795ms\n", |
|
|
3218 |
"415:\tlearn: 0.0107993\ttotal: 3.89s\tremaining: 786ms\n", |
|
|
3219 |
"416:\tlearn: 0.0107959\ttotal: 3.9s\tremaining: 777ms\n", |
|
|
3220 |
"417:\tlearn: 0.0107893\ttotal: 3.91s\tremaining: 767ms\n", |
|
|
3221 |
"418:\tlearn: 0.0107880\ttotal: 3.92s\tremaining: 758ms\n", |
|
|
3222 |
"419:\tlearn: 0.0107851\ttotal: 3.93s\tremaining: 748ms\n", |
|
|
3223 |
"420:\tlearn: 0.0107739\ttotal: 3.94s\tremaining: 739ms\n", |
|
|
3224 |
"421:\tlearn: 0.0107627\ttotal: 3.95s\tremaining: 730ms\n", |
|
|
3225 |
"422:\tlearn: 0.0107565\ttotal: 3.96s\tremaining: 720ms\n", |
|
|
3226 |
"423:\tlearn: 0.0107485\ttotal: 3.97s\tremaining: 711ms\n", |
|
|
3227 |
"424:\tlearn: 0.0107402\ttotal: 3.98s\tremaining: 702ms\n", |
|
|
3228 |
"425:\tlearn: 0.0107376\ttotal: 3.98s\tremaining: 692ms\n", |
|
|
3229 |
"426:\tlearn: 0.0107318\ttotal: 3.99s\tremaining: 683ms\n", |
|
|
3230 |
"427:\tlearn: 0.0107296\ttotal: 4s\tremaining: 673ms\n", |
|
|
3231 |
"428:\tlearn: 0.0107206\ttotal: 4.01s\tremaining: 664ms\n", |
|
|
3232 |
"429:\tlearn: 0.0107143\ttotal: 4.02s\tremaining: 655ms\n", |
|
|
3233 |
"430:\tlearn: 0.0107059\ttotal: 4.03s\tremaining: 645ms\n", |
|
|
3234 |
"431:\tlearn: 0.0107019\ttotal: 4.04s\tremaining: 636ms\n", |
|
|
3235 |
"432:\tlearn: 0.0106964\ttotal: 4.05s\tremaining: 627ms\n", |
|
|
3236 |
"433:\tlearn: 0.0106857\ttotal: 4.06s\tremaining: 617ms\n", |
|
|
3237 |
"434:\tlearn: 0.0106817\ttotal: 4.07s\tremaining: 608ms\n", |
|
|
3238 |
"435:\tlearn: 0.0106781\ttotal: 4.08s\tremaining: 599ms\n", |
|
|
3239 |
"436:\tlearn: 0.0106680\ttotal: 4.09s\tremaining: 589ms\n", |
|
|
3240 |
"437:\tlearn: 0.0106662\ttotal: 4.09s\tremaining: 580ms\n", |
|
|
3241 |
"438:\tlearn: 0.0106552\ttotal: 4.1s\tremaining: 570ms\n", |
|
|
3242 |
"439:\tlearn: 0.0106520\ttotal: 4.11s\tremaining: 561ms\n", |
|
|
3243 |
"440:\tlearn: 0.0106470\ttotal: 4.12s\tremaining: 551ms\n", |
|
|
3244 |
"441:\tlearn: 0.0106385\ttotal: 4.13s\tremaining: 542ms\n", |
|
|
3245 |
"442:\tlearn: 0.0106361\ttotal: 4.14s\tremaining: 533ms\n", |
|
|
3246 |
"443:\tlearn: 0.0106268\ttotal: 4.15s\tremaining: 523ms\n", |
|
|
3247 |
"444:\tlearn: 0.0106193\ttotal: 4.16s\tremaining: 514ms\n", |
|
|
3248 |
"445:\tlearn: 0.0106181\ttotal: 4.17s\tremaining: 505ms\n", |
|
|
3249 |
"446:\tlearn: 0.0106146\ttotal: 4.18s\tremaining: 495ms\n", |
|
|
3250 |
"447:\tlearn: 0.0106090\ttotal: 4.19s\tremaining: 486ms\n", |
|
|
3251 |
"448:\tlearn: 0.0106059\ttotal: 4.2s\tremaining: 477ms\n", |
|
|
3252 |
"449:\tlearn: 0.0106021\ttotal: 4.21s\tremaining: 467ms\n", |
|
|
3253 |
"450:\tlearn: 0.0105967\ttotal: 4.21s\tremaining: 458ms\n", |
|
|
3254 |
"451:\tlearn: 0.0105905\ttotal: 4.22s\tremaining: 449ms\n", |
|
|
3255 |
"452:\tlearn: 0.0105857\ttotal: 4.23s\tremaining: 439ms\n", |
|
|
3256 |
"453:\tlearn: 0.0105801\ttotal: 4.24s\tremaining: 430ms\n", |
|
|
3257 |
"454:\tlearn: 0.0105771\ttotal: 4.25s\tremaining: 420ms\n", |
|
|
3258 |
"455:\tlearn: 0.0105722\ttotal: 4.26s\tremaining: 411ms\n", |
|
|
3259 |
"456:\tlearn: 0.0105674\ttotal: 4.27s\tremaining: 402ms\n", |
|
|
3260 |
"457:\tlearn: 0.0105669\ttotal: 4.28s\tremaining: 392ms\n", |
|
|
3261 |
"458:\tlearn: 0.0105579\ttotal: 4.29s\tremaining: 383ms\n", |
|
|
3262 |
"459:\tlearn: 0.0105501\ttotal: 4.3s\tremaining: 374ms\n", |
|
|
3263 |
"460:\tlearn: 0.0105423\ttotal: 4.31s\tremaining: 364ms\n", |
|
|
3264 |
"461:\tlearn: 0.0105394\ttotal: 4.32s\tremaining: 355ms\n", |
|
|
3265 |
"462:\tlearn: 0.0105319\ttotal: 4.33s\tremaining: 346ms\n", |
|
|
3266 |
"463:\tlearn: 0.0105220\ttotal: 4.33s\tremaining: 336ms\n", |
|
|
3267 |
"464:\tlearn: 0.0105198\ttotal: 4.34s\tremaining: 327ms\n", |
|
|
3268 |
"465:\tlearn: 0.0105149\ttotal: 4.35s\tremaining: 318ms\n", |
|
|
3269 |
"466:\tlearn: 0.0105090\ttotal: 4.36s\tremaining: 308ms\n", |
|
|
3270 |
"467:\tlearn: 0.0105049\ttotal: 4.37s\tremaining: 299ms\n", |
|
|
3271 |
"468:\tlearn: 0.0105026\ttotal: 4.38s\tremaining: 290ms\n", |
|
|
3272 |
"469:\tlearn: 0.0104989\ttotal: 4.39s\tremaining: 280ms\n", |
|
|
3273 |
"470:\tlearn: 0.0104975\ttotal: 4.4s\tremaining: 271ms\n", |
|
|
3274 |
"471:\tlearn: 0.0104883\ttotal: 4.41s\tremaining: 262ms\n", |
|
|
3275 |
"472:\tlearn: 0.0104823\ttotal: 4.42s\tremaining: 252ms\n", |
|
|
3276 |
"473:\tlearn: 0.0104704\ttotal: 4.43s\tremaining: 243ms\n", |
|
|
3277 |
"474:\tlearn: 0.0104675\ttotal: 4.44s\tremaining: 233ms\n", |
|
|
3278 |
"475:\tlearn: 0.0104592\ttotal: 4.45s\tremaining: 224ms\n", |
|
|
3279 |
"476:\tlearn: 0.0104510\ttotal: 4.45s\tremaining: 215ms\n", |
|
|
3280 |
"477:\tlearn: 0.0104453\ttotal: 4.46s\tremaining: 205ms\n", |
|
|
3281 |
"478:\tlearn: 0.0104369\ttotal: 4.47s\tremaining: 196ms\n", |
|
|
3282 |
"479:\tlearn: 0.0104321\ttotal: 4.48s\tremaining: 187ms\n", |
|
|
3283 |
"480:\tlearn: 0.0104302\ttotal: 4.49s\tremaining: 177ms\n", |
|
|
3284 |
"481:\tlearn: 0.0104263\ttotal: 4.5s\tremaining: 168ms\n", |
|
|
3285 |
"482:\tlearn: 0.0104221\ttotal: 4.51s\tremaining: 159ms\n", |
|
|
3286 |
"483:\tlearn: 0.0104117\ttotal: 4.52s\tremaining: 149ms\n", |
|
|
3287 |
"484:\tlearn: 0.0104063\ttotal: 4.53s\tremaining: 140ms\n", |
|
|
3288 |
"485:\tlearn: 0.0104012\ttotal: 4.54s\tremaining: 131ms\n", |
|
|
3289 |
"486:\tlearn: 0.0103961\ttotal: 4.54s\tremaining: 121ms\n", |
|
|
3290 |
"487:\tlearn: 0.0103887\ttotal: 4.55s\tremaining: 112ms\n", |
|
|
3291 |
"488:\tlearn: 0.0103808\ttotal: 4.56s\tremaining: 103ms\n", |
|
|
3292 |
"489:\tlearn: 0.0103732\ttotal: 4.57s\tremaining: 93.3ms\n", |
|
|
3293 |
"490:\tlearn: 0.0103687\ttotal: 4.58s\tremaining: 84ms\n", |
|
|
3294 |
"491:\tlearn: 0.0103655\ttotal: 4.59s\tremaining: 74.7ms\n", |
|
|
3295 |
"492:\tlearn: 0.0103565\ttotal: 4.6s\tremaining: 65.3ms\n", |
|
|
3296 |
"493:\tlearn: 0.0103532\ttotal: 4.61s\tremaining: 56ms\n", |
|
|
3297 |
"494:\tlearn: 0.0103472\ttotal: 4.62s\tremaining: 46.7ms\n", |
|
|
3298 |
"495:\tlearn: 0.0103409\ttotal: 4.63s\tremaining: 37.3ms\n", |
|
|
3299 |
"496:\tlearn: 0.0103375\ttotal: 4.64s\tremaining: 28ms\n", |
|
|
3300 |
"497:\tlearn: 0.0103352\ttotal: 4.65s\tremaining: 18.7ms\n", |
|
|
3301 |
"498:\tlearn: 0.0103330\ttotal: 4.66s\tremaining: 9.33ms\n", |
|
|
3302 |
"499:\tlearn: 0.0103305\ttotal: 4.67s\tremaining: 0us\n" |
|
|
3303 |
] |
|
|
3304 |
}, |
|
|
3305 |
{ |
|
|
3306 |
"name": "stderr", |
|
|
3307 |
"output_type": "stream", |
|
|
3308 |
"text": [ |
|
|
3309 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
3310 |
] |
|
|
3311 |
}, |
|
|
3312 |
{ |
|
|
3313 |
"name": "stdout", |
|
|
3314 |
"output_type": "stream", |
|
|
3315 |
"text": [ |
|
|
3316 |
"0:\tlearn: 0.6124470\ttotal: 11.2ms\tremaining: 5.58s\n", |
|
|
3317 |
"1:\tlearn: 0.5409320\ttotal: 21.1ms\tremaining: 5.26s\n", |
|
|
3318 |
"2:\tlearn: 0.4787689\ttotal: 30.8ms\tremaining: 5.09s\n", |
|
|
3319 |
"3:\tlearn: 0.4274331\ttotal: 43ms\tremaining: 5.34s\n", |
|
|
3320 |
"4:\tlearn: 0.3791450\ttotal: 54.6ms\tremaining: 5.41s\n", |
|
|
3321 |
"5:\tlearn: 0.3359890\ttotal: 64.7ms\tremaining: 5.33s\n", |
|
|
3322 |
"6:\tlearn: 0.3008023\ttotal: 75.1ms\tremaining: 5.29s\n", |
|
|
3323 |
"7:\tlearn: 0.2689132\ttotal: 84.7ms\tremaining: 5.21s\n", |
|
|
3324 |
"8:\tlearn: 0.2440483\ttotal: 94.1ms\tremaining: 5.13s\n", |
|
|
3325 |
"9:\tlearn: 0.2205727\ttotal: 104ms\tremaining: 5.08s\n", |
|
|
3326 |
"10:\tlearn: 0.2000718\ttotal: 114ms\tremaining: 5.05s\n", |
|
|
3327 |
"11:\tlearn: 0.1831024\ttotal: 124ms\tremaining: 5.02s\n", |
|
|
3328 |
"12:\tlearn: 0.1677551\ttotal: 134ms\tremaining: 5s\n", |
|
|
3329 |
"13:\tlearn: 0.1544559\ttotal: 143ms\tremaining: 4.98s\n", |
|
|
3330 |
"14:\tlearn: 0.1434839\ttotal: 153ms\tremaining: 4.95s\n", |
|
|
3331 |
"15:\tlearn: 0.1331783\ttotal: 163ms\tremaining: 4.93s\n", |
|
|
3332 |
"16:\tlearn: 0.1241078\ttotal: 173ms\tremaining: 4.92s\n", |
|
|
3333 |
"17:\tlearn: 0.1162277\ttotal: 184ms\tremaining: 4.92s\n", |
|
|
3334 |
"18:\tlearn: 0.1083743\ttotal: 194ms\tremaining: 4.92s\n", |
|
|
3335 |
"19:\tlearn: 0.1018804\ttotal: 205ms\tremaining: 4.91s\n", |
|
|
3336 |
"20:\tlearn: 0.0961041\ttotal: 215ms\tremaining: 4.91s\n", |
|
|
3337 |
"21:\tlearn: 0.0903131\ttotal: 225ms\tremaining: 4.9s\n", |
|
|
3338 |
"22:\tlearn: 0.0853630\ttotal: 236ms\tremaining: 4.89s\n", |
|
|
3339 |
"23:\tlearn: 0.0816944\ttotal: 246ms\tremaining: 4.88s\n", |
|
|
3340 |
"24:\tlearn: 0.0786299\ttotal: 256ms\tremaining: 4.86s\n", |
|
|
3341 |
"25:\tlearn: 0.0750125\ttotal: 266ms\tremaining: 4.86s\n", |
|
|
3342 |
"26:\tlearn: 0.0715263\ttotal: 277ms\tremaining: 4.84s\n", |
|
|
3343 |
"27:\tlearn: 0.0691749\ttotal: 287ms\tremaining: 4.83s\n", |
|
|
3344 |
"28:\tlearn: 0.0669008\ttotal: 297ms\tremaining: 4.82s\n", |
|
|
3345 |
"29:\tlearn: 0.0642661\ttotal: 307ms\tremaining: 4.82s\n", |
|
|
3346 |
"30:\tlearn: 0.0621628\ttotal: 317ms\tremaining: 4.8s\n", |
|
|
3347 |
"31:\tlearn: 0.0602073\ttotal: 327ms\tremaining: 4.78s\n", |
|
|
3348 |
"32:\tlearn: 0.0587735\ttotal: 336ms\tremaining: 4.76s\n", |
|
|
3349 |
"33:\tlearn: 0.0572566\ttotal: 345ms\tremaining: 4.73s\n", |
|
|
3350 |
"34:\tlearn: 0.0556762\ttotal: 355ms\tremaining: 4.71s\n", |
|
|
3351 |
"35:\tlearn: 0.0545396\ttotal: 364ms\tremaining: 4.69s\n", |
|
|
3352 |
"36:\tlearn: 0.0534925\ttotal: 373ms\tremaining: 4.67s\n", |
|
|
3353 |
"37:\tlearn: 0.0523898\ttotal: 382ms\tremaining: 4.65s\n", |
|
|
3354 |
"38:\tlearn: 0.0514455\ttotal: 391ms\tremaining: 4.63s\n", |
|
|
3355 |
"39:\tlearn: 0.0505087\ttotal: 401ms\tremaining: 4.61s\n", |
|
|
3356 |
"40:\tlearn: 0.0499210\ttotal: 410ms\tremaining: 4.59s\n", |
|
|
3357 |
"41:\tlearn: 0.0493440\ttotal: 419ms\tremaining: 4.57s\n", |
|
|
3358 |
"42:\tlearn: 0.0487420\ttotal: 428ms\tremaining: 4.55s\n", |
|
|
3359 |
"43:\tlearn: 0.0481522\ttotal: 438ms\tremaining: 4.53s\n", |
|
|
3360 |
"44:\tlearn: 0.0475542\ttotal: 447ms\tremaining: 4.52s\n", |
|
|
3361 |
"45:\tlearn: 0.0471192\ttotal: 456ms\tremaining: 4.5s\n", |
|
|
3362 |
"46:\tlearn: 0.0465406\ttotal: 465ms\tremaining: 4.48s\n", |
|
|
3363 |
"47:\tlearn: 0.0461791\ttotal: 474ms\tremaining: 4.46s\n", |
|
|
3364 |
"48:\tlearn: 0.0458038\ttotal: 483ms\tremaining: 4.45s\n", |
|
|
3365 |
"49:\tlearn: 0.0455700\ttotal: 493ms\tremaining: 4.43s\n", |
|
|
3366 |
"50:\tlearn: 0.0452843\ttotal: 502ms\tremaining: 4.42s\n", |
|
|
3367 |
"51:\tlearn: 0.0449534\ttotal: 511ms\tremaining: 4.4s\n", |
|
|
3368 |
"52:\tlearn: 0.0445940\ttotal: 520ms\tremaining: 4.38s\n", |
|
|
3369 |
"53:\tlearn: 0.0443115\ttotal: 529ms\tremaining: 4.37s\n", |
|
|
3370 |
"54:\tlearn: 0.0440973\ttotal: 538ms\tremaining: 4.35s\n", |
|
|
3371 |
"55:\tlearn: 0.0439592\ttotal: 547ms\tremaining: 4.33s\n", |
|
|
3372 |
"56:\tlearn: 0.0436474\ttotal: 556ms\tremaining: 4.32s\n", |
|
|
3373 |
"57:\tlearn: 0.0434021\ttotal: 565ms\tremaining: 4.31s\n", |
|
|
3374 |
"58:\tlearn: 0.0432420\ttotal: 574ms\tremaining: 4.29s\n", |
|
|
3375 |
"59:\tlearn: 0.0429771\ttotal: 583ms\tremaining: 4.27s\n", |
|
|
3376 |
"60:\tlearn: 0.0426943\ttotal: 592ms\tremaining: 4.26s\n", |
|
|
3377 |
"61:\tlearn: 0.0424285\ttotal: 601ms\tremaining: 4.25s\n", |
|
|
3378 |
"62:\tlearn: 0.0423014\ttotal: 610ms\tremaining: 4.23s\n", |
|
|
3379 |
"63:\tlearn: 0.0421068\ttotal: 620ms\tremaining: 4.22s\n", |
|
|
3380 |
"64:\tlearn: 0.0420130\ttotal: 629ms\tremaining: 4.21s\n", |
|
|
3381 |
"65:\tlearn: 0.0418781\ttotal: 638ms\tremaining: 4.19s\n", |
|
|
3382 |
"66:\tlearn: 0.0417256\ttotal: 647ms\tremaining: 4.18s\n", |
|
|
3383 |
"67:\tlearn: 0.0415734\ttotal: 656ms\tremaining: 4.17s\n", |
|
|
3384 |
"68:\tlearn: 0.0414203\ttotal: 665ms\tremaining: 4.15s\n", |
|
|
3385 |
"69:\tlearn: 0.0413203\ttotal: 674ms\tremaining: 4.14s\n", |
|
|
3386 |
"70:\tlearn: 0.0411777\ttotal: 683ms\tremaining: 4.13s\n", |
|
|
3387 |
"71:\tlearn: 0.0410874\ttotal: 692ms\tremaining: 4.11s\n", |
|
|
3388 |
"72:\tlearn: 0.0409781\ttotal: 701ms\tremaining: 4.1s\n", |
|
|
3389 |
"73:\tlearn: 0.0408775\ttotal: 710ms\tremaining: 4.09s\n", |
|
|
3390 |
"74:\tlearn: 0.0407764\ttotal: 719ms\tremaining: 4.08s\n", |
|
|
3391 |
"75:\tlearn: 0.0407187\ttotal: 728ms\tremaining: 4.06s\n", |
|
|
3392 |
"76:\tlearn: 0.0406562\ttotal: 737ms\tremaining: 4.05s\n", |
|
|
3393 |
"77:\tlearn: 0.0405933\ttotal: 747ms\tremaining: 4.04s\n", |
|
|
3394 |
"78:\tlearn: 0.0405358\ttotal: 756ms\tremaining: 4.03s\n", |
|
|
3395 |
"79:\tlearn: 0.0405043\ttotal: 765ms\tremaining: 4.01s\n", |
|
|
3396 |
"80:\tlearn: 0.0404119\ttotal: 774ms\tremaining: 4s\n", |
|
|
3397 |
"81:\tlearn: 0.0403277\ttotal: 783ms\tremaining: 3.99s\n", |
|
|
3398 |
"82:\tlearn: 0.0402645\ttotal: 792ms\tremaining: 3.98s\n", |
|
|
3399 |
"83:\tlearn: 0.0402296\ttotal: 801ms\tremaining: 3.97s\n", |
|
|
3400 |
"84:\tlearn: 0.0402056\ttotal: 811ms\tremaining: 3.96s\n", |
|
|
3401 |
"85:\tlearn: 0.0401758\ttotal: 820ms\tremaining: 3.95s\n", |
|
|
3402 |
"86:\tlearn: 0.0401580\ttotal: 829ms\tremaining: 3.93s\n", |
|
|
3403 |
"87:\tlearn: 0.0401032\ttotal: 838ms\tremaining: 3.92s\n", |
|
|
3404 |
"88:\tlearn: 0.0400647\ttotal: 847ms\tremaining: 3.91s\n", |
|
|
3405 |
"89:\tlearn: 0.0400404\ttotal: 856ms\tremaining: 3.9s\n", |
|
|
3406 |
"90:\tlearn: 0.0399832\ttotal: 866ms\tremaining: 3.89s\n", |
|
|
3407 |
"91:\tlearn: 0.0399465\ttotal: 875ms\tremaining: 3.88s\n", |
|
|
3408 |
"92:\tlearn: 0.0399285\ttotal: 884ms\tremaining: 3.87s\n", |
|
|
3409 |
"93:\tlearn: 0.0398984\ttotal: 893ms\tremaining: 3.86s\n", |
|
|
3410 |
"94:\tlearn: 0.0398768\ttotal: 902ms\tremaining: 3.85s\n", |
|
|
3411 |
"95:\tlearn: 0.0398252\ttotal: 911ms\tremaining: 3.83s\n", |
|
|
3412 |
"96:\tlearn: 0.0398156\ttotal: 920ms\tremaining: 3.82s\n", |
|
|
3413 |
"97:\tlearn: 0.0397592\ttotal: 929ms\tremaining: 3.81s\n", |
|
|
3414 |
"98:\tlearn: 0.0397442\ttotal: 938ms\tremaining: 3.8s\n", |
|
|
3415 |
"99:\tlearn: 0.0396990\ttotal: 947ms\tremaining: 3.79s\n", |
|
|
3416 |
"100:\tlearn: 0.0396556\ttotal: 957ms\tremaining: 3.78s\n", |
|
|
3417 |
"101:\tlearn: 0.0396000\ttotal: 966ms\tremaining: 3.77s\n", |
|
|
3418 |
"102:\tlearn: 0.0395412\ttotal: 975ms\tremaining: 3.76s\n", |
|
|
3419 |
"103:\tlearn: 0.0395161\ttotal: 984ms\tremaining: 3.75s\n", |
|
|
3420 |
"104:\tlearn: 0.0394866\ttotal: 994ms\tremaining: 3.74s\n", |
|
|
3421 |
"105:\tlearn: 0.0394567\ttotal: 1s\tremaining: 3.73s\n", |
|
|
3422 |
"106:\tlearn: 0.0394476\ttotal: 1.01s\tremaining: 3.71s\n", |
|
|
3423 |
"107:\tlearn: 0.0394389\ttotal: 1.02s\tremaining: 3.7s\n", |
|
|
3424 |
"108:\tlearn: 0.0394167\ttotal: 1.03s\tremaining: 3.69s\n", |
|
|
3425 |
"109:\tlearn: 0.0394056\ttotal: 1.04s\tremaining: 3.69s\n", |
|
|
3426 |
"110:\tlearn: 0.0393663\ttotal: 1.05s\tremaining: 3.68s\n", |
|
|
3427 |
"111:\tlearn: 0.0393332\ttotal: 1.06s\tremaining: 3.67s\n", |
|
|
3428 |
"112:\tlearn: 0.0393023\ttotal: 1.07s\tremaining: 3.66s\n", |
|
|
3429 |
"113:\tlearn: 0.0392749\ttotal: 1.08s\tremaining: 3.65s\n", |
|
|
3430 |
"114:\tlearn: 0.0392636\ttotal: 1.09s\tremaining: 3.64s\n", |
|
|
3431 |
"115:\tlearn: 0.0392436\ttotal: 1.1s\tremaining: 3.63s\n", |
|
|
3432 |
"116:\tlearn: 0.0392045\ttotal: 1.1s\tremaining: 3.62s\n", |
|
|
3433 |
"117:\tlearn: 0.0391855\ttotal: 1.11s\tremaining: 3.61s\n", |
|
|
3434 |
"118:\tlearn: 0.0391684\ttotal: 1.12s\tremaining: 3.6s\n", |
|
|
3435 |
"119:\tlearn: 0.0391561\ttotal: 1.13s\tremaining: 3.59s\n", |
|
|
3436 |
"120:\tlearn: 0.0391322\ttotal: 1.14s\tremaining: 3.58s\n", |
|
|
3437 |
"121:\tlearn: 0.0391132\ttotal: 1.15s\tremaining: 3.57s\n", |
|
|
3438 |
"122:\tlearn: 0.0390874\ttotal: 1.16s\tremaining: 3.56s\n", |
|
|
3439 |
"123:\tlearn: 0.0390757\ttotal: 1.17s\tremaining: 3.55s\n", |
|
|
3440 |
"124:\tlearn: 0.0390552\ttotal: 1.18s\tremaining: 3.54s\n", |
|
|
3441 |
"125:\tlearn: 0.0390360\ttotal: 1.19s\tremaining: 3.53s\n", |
|
|
3442 |
"126:\tlearn: 0.0390095\ttotal: 1.2s\tremaining: 3.52s\n", |
|
|
3443 |
"127:\tlearn: 0.0389921\ttotal: 1.21s\tremaining: 3.51s\n", |
|
|
3444 |
"128:\tlearn: 0.0389831\ttotal: 1.22s\tremaining: 3.5s\n", |
|
|
3445 |
"129:\tlearn: 0.0389763\ttotal: 1.23s\tremaining: 3.49s\n", |
|
|
3446 |
"130:\tlearn: 0.0389539\ttotal: 1.23s\tremaining: 3.48s\n", |
|
|
3447 |
"131:\tlearn: 0.0389476\ttotal: 1.24s\tremaining: 3.46s\n", |
|
|
3448 |
"132:\tlearn: 0.0389306\ttotal: 1.25s\tremaining: 3.46s\n", |
|
|
3449 |
"133:\tlearn: 0.0389176\ttotal: 1.26s\tremaining: 3.45s\n", |
|
|
3450 |
"134:\tlearn: 0.0389048\ttotal: 1.27s\tremaining: 3.44s\n", |
|
|
3451 |
"135:\tlearn: 0.0388888\ttotal: 1.28s\tremaining: 3.43s\n", |
|
|
3452 |
"136:\tlearn: 0.0388821\ttotal: 1.29s\tremaining: 3.42s\n", |
|
|
3453 |
"137:\tlearn: 0.0388720\ttotal: 1.3s\tremaining: 3.41s\n", |
|
|
3454 |
"138:\tlearn: 0.0388495\ttotal: 1.31s\tremaining: 3.4s\n", |
|
|
3455 |
"139:\tlearn: 0.0388427\ttotal: 1.32s\tremaining: 3.39s\n", |
|
|
3456 |
"140:\tlearn: 0.0388377\ttotal: 1.33s\tremaining: 3.38s\n", |
|
|
3457 |
"141:\tlearn: 0.0388292\ttotal: 1.33s\tremaining: 3.37s\n", |
|
|
3458 |
"142:\tlearn: 0.0388212\ttotal: 1.34s\tremaining: 3.36s\n", |
|
|
3459 |
"143:\tlearn: 0.0388111\ttotal: 1.35s\tremaining: 3.35s\n", |
|
|
3460 |
"144:\tlearn: 0.0387921\ttotal: 1.36s\tremaining: 3.34s\n", |
|
|
3461 |
"145:\tlearn: 0.0387879\ttotal: 1.37s\tremaining: 3.33s\n", |
|
|
3462 |
"146:\tlearn: 0.0387816\ttotal: 1.38s\tremaining: 3.31s\n", |
|
|
3463 |
"147:\tlearn: 0.0387697\ttotal: 1.39s\tremaining: 3.31s\n", |
|
|
3464 |
"148:\tlearn: 0.0387629\ttotal: 1.4s\tremaining: 3.29s\n", |
|
|
3465 |
"149:\tlearn: 0.0387419\ttotal: 1.41s\tremaining: 3.28s\n", |
|
|
3466 |
"150:\tlearn: 0.0387365\ttotal: 1.42s\tremaining: 3.27s\n", |
|
|
3467 |
"151:\tlearn: 0.0387254\ttotal: 1.43s\tremaining: 3.26s\n", |
|
|
3468 |
"152:\tlearn: 0.0386914\ttotal: 1.44s\tremaining: 3.25s\n", |
|
|
3469 |
"153:\tlearn: 0.0386657\ttotal: 1.44s\tremaining: 3.25s\n", |
|
|
3470 |
"154:\tlearn: 0.0386607\ttotal: 1.45s\tremaining: 3.23s\n", |
|
|
3471 |
"155:\tlearn: 0.0386519\ttotal: 1.46s\tremaining: 3.22s\n", |
|
|
3472 |
"156:\tlearn: 0.0386465\ttotal: 1.47s\tremaining: 3.21s\n", |
|
|
3473 |
"157:\tlearn: 0.0386408\ttotal: 1.48s\tremaining: 3.21s\n", |
|
|
3474 |
"158:\tlearn: 0.0386342\ttotal: 1.49s\tremaining: 3.19s\n", |
|
|
3475 |
"159:\tlearn: 0.0386258\ttotal: 1.5s\tremaining: 3.18s\n", |
|
|
3476 |
"160:\tlearn: 0.0386109\ttotal: 1.51s\tremaining: 3.18s\n", |
|
|
3477 |
"161:\tlearn: 0.0385916\ttotal: 1.52s\tremaining: 3.17s\n", |
|
|
3478 |
"162:\tlearn: 0.0385830\ttotal: 1.53s\tremaining: 3.16s\n", |
|
|
3479 |
"163:\tlearn: 0.0385777\ttotal: 1.54s\tremaining: 3.15s\n", |
|
|
3480 |
"164:\tlearn: 0.0385696\ttotal: 1.55s\tremaining: 3.14s\n", |
|
|
3481 |
"165:\tlearn: 0.0385651\ttotal: 1.55s\tremaining: 3.13s\n", |
|
|
3482 |
"166:\tlearn: 0.0385493\ttotal: 1.56s\tremaining: 3.12s\n", |
|
|
3483 |
"167:\tlearn: 0.0385458\ttotal: 1.57s\tremaining: 3.11s\n", |
|
|
3484 |
"168:\tlearn: 0.0385364\ttotal: 1.58s\tremaining: 3.1s\n", |
|
|
3485 |
"169:\tlearn: 0.0385262\ttotal: 1.59s\tremaining: 3.09s\n", |
|
|
3486 |
"170:\tlearn: 0.0385192\ttotal: 1.6s\tremaining: 3.08s\n", |
|
|
3487 |
"171:\tlearn: 0.0385148\ttotal: 1.61s\tremaining: 3.07s\n", |
|
|
3488 |
"172:\tlearn: 0.0385105\ttotal: 1.62s\tremaining: 3.06s\n", |
|
|
3489 |
"173:\tlearn: 0.0384961\ttotal: 1.63s\tremaining: 3.05s\n" |
|
|
3490 |
] |
|
|
3491 |
}, |
|
|
3492 |
{ |
|
|
3493 |
"name": "stdout", |
|
|
3494 |
"output_type": "stream", |
|
|
3495 |
"text": [ |
|
|
3496 |
"174:\tlearn: 0.0384839\ttotal: 1.64s\tremaining: 3.04s\n", |
|
|
3497 |
"175:\tlearn: 0.0384779\ttotal: 1.65s\tremaining: 3.03s\n", |
|
|
3498 |
"176:\tlearn: 0.0384706\ttotal: 1.66s\tremaining: 3.02s\n", |
|
|
3499 |
"177:\tlearn: 0.0384609\ttotal: 1.66s\tremaining: 3.01s\n", |
|
|
3500 |
"178:\tlearn: 0.0384527\ttotal: 1.67s\tremaining: 3s\n", |
|
|
3501 |
"179:\tlearn: 0.0384463\ttotal: 1.68s\tremaining: 2.99s\n", |
|
|
3502 |
"180:\tlearn: 0.0384357\ttotal: 1.69s\tremaining: 2.98s\n", |
|
|
3503 |
"181:\tlearn: 0.0384183\ttotal: 1.7s\tremaining: 2.97s\n", |
|
|
3504 |
"182:\tlearn: 0.0384071\ttotal: 1.71s\tremaining: 2.96s\n", |
|
|
3505 |
"183:\tlearn: 0.0383967\ttotal: 1.72s\tremaining: 2.95s\n", |
|
|
3506 |
"184:\tlearn: 0.0383902\ttotal: 1.73s\tremaining: 2.94s\n", |
|
|
3507 |
"185:\tlearn: 0.0383864\ttotal: 1.74s\tremaining: 2.93s\n", |
|
|
3508 |
"186:\tlearn: 0.0383730\ttotal: 1.75s\tremaining: 2.92s\n", |
|
|
3509 |
"187:\tlearn: 0.0383637\ttotal: 1.75s\tremaining: 2.91s\n", |
|
|
3510 |
"188:\tlearn: 0.0383512\ttotal: 1.76s\tremaining: 2.9s\n", |
|
|
3511 |
"189:\tlearn: 0.0383401\ttotal: 1.77s\tremaining: 2.89s\n", |
|
|
3512 |
"190:\tlearn: 0.0383351\ttotal: 1.78s\tremaining: 2.88s\n", |
|
|
3513 |
"191:\tlearn: 0.0383294\ttotal: 1.79s\tremaining: 2.88s\n", |
|
|
3514 |
"192:\tlearn: 0.0383187\ttotal: 1.8s\tremaining: 2.87s\n", |
|
|
3515 |
"193:\tlearn: 0.0383096\ttotal: 1.81s\tremaining: 2.86s\n", |
|
|
3516 |
"194:\tlearn: 0.0383051\ttotal: 1.82s\tremaining: 2.85s\n", |
|
|
3517 |
"195:\tlearn: 0.0383003\ttotal: 1.83s\tremaining: 2.84s\n", |
|
|
3518 |
"196:\tlearn: 0.0382935\ttotal: 1.84s\tremaining: 2.83s\n", |
|
|
3519 |
"197:\tlearn: 0.0382817\ttotal: 1.85s\tremaining: 2.82s\n", |
|
|
3520 |
"198:\tlearn: 0.0382736\ttotal: 1.86s\tremaining: 2.81s\n", |
|
|
3521 |
"199:\tlearn: 0.0382689\ttotal: 1.87s\tremaining: 2.8s\n", |
|
|
3522 |
"200:\tlearn: 0.0382657\ttotal: 1.88s\tremaining: 2.79s\n", |
|
|
3523 |
"201:\tlearn: 0.0382560\ttotal: 1.89s\tremaining: 2.78s\n", |
|
|
3524 |
"202:\tlearn: 0.0382498\ttotal: 1.89s\tremaining: 2.77s\n", |
|
|
3525 |
"203:\tlearn: 0.0382436\ttotal: 1.9s\tremaining: 2.76s\n", |
|
|
3526 |
"204:\tlearn: 0.0382373\ttotal: 1.91s\tremaining: 2.75s\n", |
|
|
3527 |
"205:\tlearn: 0.0382309\ttotal: 1.92s\tremaining: 2.74s\n", |
|
|
3528 |
"206:\tlearn: 0.0382259\ttotal: 1.93s\tremaining: 2.73s\n", |
|
|
3529 |
"207:\tlearn: 0.0382180\ttotal: 1.94s\tremaining: 2.73s\n", |
|
|
3530 |
"208:\tlearn: 0.0382109\ttotal: 1.95s\tremaining: 2.72s\n", |
|
|
3531 |
"209:\tlearn: 0.0382047\ttotal: 1.96s\tremaining: 2.71s\n", |
|
|
3532 |
"210:\tlearn: 0.0381980\ttotal: 1.97s\tremaining: 2.7s\n", |
|
|
3533 |
"211:\tlearn: 0.0381898\ttotal: 1.98s\tremaining: 2.69s\n", |
|
|
3534 |
"212:\tlearn: 0.0381812\ttotal: 1.99s\tremaining: 2.68s\n", |
|
|
3535 |
"213:\tlearn: 0.0381716\ttotal: 2s\tremaining: 2.67s\n", |
|
|
3536 |
"214:\tlearn: 0.0381642\ttotal: 2.01s\tremaining: 2.66s\n", |
|
|
3537 |
"215:\tlearn: 0.0381534\ttotal: 2.02s\tremaining: 2.65s\n", |
|
|
3538 |
"216:\tlearn: 0.0381457\ttotal: 2.03s\tremaining: 2.64s\n", |
|
|
3539 |
"217:\tlearn: 0.0381389\ttotal: 2.04s\tremaining: 2.63s\n", |
|
|
3540 |
"218:\tlearn: 0.0381348\ttotal: 2.05s\tremaining: 2.63s\n", |
|
|
3541 |
"219:\tlearn: 0.0381286\ttotal: 2.06s\tremaining: 2.62s\n", |
|
|
3542 |
"220:\tlearn: 0.0381234\ttotal: 2.06s\tremaining: 2.61s\n", |
|
|
3543 |
"221:\tlearn: 0.0381110\ttotal: 2.07s\tremaining: 2.6s\n", |
|
|
3544 |
"222:\tlearn: 0.0381019\ttotal: 2.08s\tremaining: 2.59s\n", |
|
|
3545 |
"223:\tlearn: 0.0380953\ttotal: 2.09s\tremaining: 2.58s\n", |
|
|
3546 |
"224:\tlearn: 0.0380913\ttotal: 2.1s\tremaining: 2.57s\n", |
|
|
3547 |
"225:\tlearn: 0.0380812\ttotal: 2.11s\tremaining: 2.56s\n", |
|
|
3548 |
"226:\tlearn: 0.0380675\ttotal: 2.12s\tremaining: 2.55s\n", |
|
|
3549 |
"227:\tlearn: 0.0380593\ttotal: 2.13s\tremaining: 2.54s\n", |
|
|
3550 |
"228:\tlearn: 0.0380507\ttotal: 2.14s\tremaining: 2.53s\n", |
|
|
3551 |
"229:\tlearn: 0.0380466\ttotal: 2.15s\tremaining: 2.52s\n", |
|
|
3552 |
"230:\tlearn: 0.0380383\ttotal: 2.16s\tremaining: 2.52s\n", |
|
|
3553 |
"231:\tlearn: 0.0380297\ttotal: 2.17s\tremaining: 2.5s\n", |
|
|
3554 |
"232:\tlearn: 0.0380217\ttotal: 2.18s\tremaining: 2.5s\n", |
|
|
3555 |
"233:\tlearn: 0.0380159\ttotal: 2.19s\tremaining: 2.49s\n", |
|
|
3556 |
"234:\tlearn: 0.0380110\ttotal: 2.2s\tremaining: 2.48s\n", |
|
|
3557 |
"235:\tlearn: 0.0380041\ttotal: 2.21s\tremaining: 2.47s\n", |
|
|
3558 |
"236:\tlearn: 0.0379973\ttotal: 2.21s\tremaining: 2.46s\n", |
|
|
3559 |
"237:\tlearn: 0.0379908\ttotal: 2.22s\tremaining: 2.45s\n", |
|
|
3560 |
"238:\tlearn: 0.0379857\ttotal: 2.23s\tremaining: 2.44s\n", |
|
|
3561 |
"239:\tlearn: 0.0379771\ttotal: 2.24s\tremaining: 2.43s\n", |
|
|
3562 |
"240:\tlearn: 0.0379671\ttotal: 2.25s\tremaining: 2.42s\n", |
|
|
3563 |
"241:\tlearn: 0.0379588\ttotal: 2.26s\tremaining: 2.41s\n", |
|
|
3564 |
"242:\tlearn: 0.0379526\ttotal: 2.27s\tremaining: 2.4s\n", |
|
|
3565 |
"243:\tlearn: 0.0379463\ttotal: 2.28s\tremaining: 2.39s\n", |
|
|
3566 |
"244:\tlearn: 0.0379417\ttotal: 2.29s\tremaining: 2.38s\n", |
|
|
3567 |
"245:\tlearn: 0.0379380\ttotal: 2.3s\tremaining: 2.37s\n", |
|
|
3568 |
"246:\tlearn: 0.0379282\ttotal: 2.31s\tremaining: 2.36s\n", |
|
|
3569 |
"247:\tlearn: 0.0379249\ttotal: 2.31s\tremaining: 2.35s\n", |
|
|
3570 |
"248:\tlearn: 0.0379127\ttotal: 2.32s\tremaining: 2.34s\n", |
|
|
3571 |
"249:\tlearn: 0.0379069\ttotal: 2.33s\tremaining: 2.33s\n", |
|
|
3572 |
"250:\tlearn: 0.0379001\ttotal: 2.34s\tremaining: 2.32s\n", |
|
|
3573 |
"251:\tlearn: 0.0378953\ttotal: 2.35s\tremaining: 2.31s\n", |
|
|
3574 |
"252:\tlearn: 0.0378763\ttotal: 2.36s\tremaining: 2.3s\n", |
|
|
3575 |
"253:\tlearn: 0.0378648\ttotal: 2.37s\tremaining: 2.29s\n", |
|
|
3576 |
"254:\tlearn: 0.0378591\ttotal: 2.38s\tremaining: 2.28s\n", |
|
|
3577 |
"255:\tlearn: 0.0378524\ttotal: 2.39s\tremaining: 2.27s\n", |
|
|
3578 |
"256:\tlearn: 0.0378456\ttotal: 2.4s\tremaining: 2.27s\n", |
|
|
3579 |
"257:\tlearn: 0.0378407\ttotal: 2.4s\tremaining: 2.26s\n", |
|
|
3580 |
"258:\tlearn: 0.0378328\ttotal: 2.41s\tremaining: 2.25s\n", |
|
|
3581 |
"259:\tlearn: 0.0378289\ttotal: 2.42s\tremaining: 2.24s\n", |
|
|
3582 |
"260:\tlearn: 0.0378247\ttotal: 2.43s\tremaining: 2.23s\n", |
|
|
3583 |
"261:\tlearn: 0.0378161\ttotal: 2.44s\tremaining: 2.22s\n", |
|
|
3584 |
"262:\tlearn: 0.0378094\ttotal: 2.45s\tremaining: 2.21s\n", |
|
|
3585 |
"263:\tlearn: 0.0378020\ttotal: 2.46s\tremaining: 2.2s\n", |
|
|
3586 |
"264:\tlearn: 0.0377969\ttotal: 2.47s\tremaining: 2.19s\n", |
|
|
3587 |
"265:\tlearn: 0.0377927\ttotal: 2.48s\tremaining: 2.18s\n", |
|
|
3588 |
"266:\tlearn: 0.0377871\ttotal: 2.49s\tremaining: 2.17s\n", |
|
|
3589 |
"267:\tlearn: 0.0377787\ttotal: 2.5s\tremaining: 2.16s\n", |
|
|
3590 |
"268:\tlearn: 0.0377750\ttotal: 2.5s\tremaining: 2.15s\n", |
|
|
3591 |
"269:\tlearn: 0.0377695\ttotal: 2.51s\tremaining: 2.14s\n", |
|
|
3592 |
"270:\tlearn: 0.0377627\ttotal: 2.52s\tremaining: 2.13s\n", |
|
|
3593 |
"271:\tlearn: 0.0377591\ttotal: 2.53s\tremaining: 2.12s\n", |
|
|
3594 |
"272:\tlearn: 0.0377522\ttotal: 2.54s\tremaining: 2.11s\n", |
|
|
3595 |
"273:\tlearn: 0.0377442\ttotal: 2.55s\tremaining: 2.1s\n", |
|
|
3596 |
"274:\tlearn: 0.0377383\ttotal: 2.56s\tremaining: 2.1s\n", |
|
|
3597 |
"275:\tlearn: 0.0377293\ttotal: 2.57s\tremaining: 2.09s\n", |
|
|
3598 |
"276:\tlearn: 0.0377225\ttotal: 2.58s\tremaining: 2.08s\n", |
|
|
3599 |
"277:\tlearn: 0.0377190\ttotal: 2.59s\tremaining: 2.07s\n", |
|
|
3600 |
"278:\tlearn: 0.0377122\ttotal: 2.6s\tremaining: 2.06s\n", |
|
|
3601 |
"279:\tlearn: 0.0377089\ttotal: 2.61s\tremaining: 2.05s\n", |
|
|
3602 |
"280:\tlearn: 0.0377035\ttotal: 2.62s\tremaining: 2.04s\n", |
|
|
3603 |
"281:\tlearn: 0.0376981\ttotal: 2.63s\tremaining: 2.03s\n", |
|
|
3604 |
"282:\tlearn: 0.0376939\ttotal: 2.64s\tremaining: 2.02s\n", |
|
|
3605 |
"283:\tlearn: 0.0376833\ttotal: 2.65s\tremaining: 2.01s\n", |
|
|
3606 |
"284:\tlearn: 0.0376800\ttotal: 2.66s\tremaining: 2.01s\n", |
|
|
3607 |
"285:\tlearn: 0.0376750\ttotal: 2.67s\tremaining: 2s\n", |
|
|
3608 |
"286:\tlearn: 0.0376725\ttotal: 2.68s\tremaining: 1.99s\n", |
|
|
3609 |
"287:\tlearn: 0.0376625\ttotal: 2.69s\tremaining: 1.98s\n", |
|
|
3610 |
"288:\tlearn: 0.0376534\ttotal: 2.7s\tremaining: 1.97s\n", |
|
|
3611 |
"289:\tlearn: 0.0376494\ttotal: 2.71s\tremaining: 1.96s\n", |
|
|
3612 |
"290:\tlearn: 0.0376442\ttotal: 2.72s\tremaining: 1.95s\n", |
|
|
3613 |
"291:\tlearn: 0.0376378\ttotal: 2.73s\tremaining: 1.94s\n", |
|
|
3614 |
"292:\tlearn: 0.0376320\ttotal: 2.73s\tremaining: 1.93s\n", |
|
|
3615 |
"293:\tlearn: 0.0376258\ttotal: 2.74s\tremaining: 1.92s\n", |
|
|
3616 |
"294:\tlearn: 0.0376219\ttotal: 2.75s\tremaining: 1.91s\n", |
|
|
3617 |
"295:\tlearn: 0.0376157\ttotal: 2.76s\tremaining: 1.9s\n", |
|
|
3618 |
"296:\tlearn: 0.0376093\ttotal: 2.77s\tremaining: 1.9s\n", |
|
|
3619 |
"297:\tlearn: 0.0376066\ttotal: 2.78s\tremaining: 1.89s\n", |
|
|
3620 |
"298:\tlearn: 0.0376005\ttotal: 2.79s\tremaining: 1.88s\n", |
|
|
3621 |
"299:\tlearn: 0.0375963\ttotal: 2.8s\tremaining: 1.87s\n", |
|
|
3622 |
"300:\tlearn: 0.0375919\ttotal: 2.81s\tremaining: 1.86s\n", |
|
|
3623 |
"301:\tlearn: 0.0375885\ttotal: 2.82s\tremaining: 1.85s\n", |
|
|
3624 |
"302:\tlearn: 0.0375826\ttotal: 2.83s\tremaining: 1.84s\n", |
|
|
3625 |
"303:\tlearn: 0.0375780\ttotal: 2.84s\tremaining: 1.83s\n", |
|
|
3626 |
"304:\tlearn: 0.0375726\ttotal: 2.85s\tremaining: 1.82s\n", |
|
|
3627 |
"305:\tlearn: 0.0375653\ttotal: 2.85s\tremaining: 1.81s\n", |
|
|
3628 |
"306:\tlearn: 0.0375616\ttotal: 2.86s\tremaining: 1.8s\n", |
|
|
3629 |
"307:\tlearn: 0.0375560\ttotal: 2.87s\tremaining: 1.79s\n", |
|
|
3630 |
"308:\tlearn: 0.0375500\ttotal: 2.88s\tremaining: 1.78s\n", |
|
|
3631 |
"309:\tlearn: 0.0375413\ttotal: 2.89s\tremaining: 1.77s\n", |
|
|
3632 |
"310:\tlearn: 0.0375350\ttotal: 2.9s\tremaining: 1.76s\n", |
|
|
3633 |
"311:\tlearn: 0.0375315\ttotal: 2.91s\tremaining: 1.75s\n", |
|
|
3634 |
"312:\tlearn: 0.0375236\ttotal: 2.92s\tremaining: 1.74s\n", |
|
|
3635 |
"313:\tlearn: 0.0375191\ttotal: 2.93s\tremaining: 1.73s\n", |
|
|
3636 |
"314:\tlearn: 0.0375130\ttotal: 2.94s\tremaining: 1.73s\n", |
|
|
3637 |
"315:\tlearn: 0.0375046\ttotal: 2.95s\tremaining: 1.72s\n", |
|
|
3638 |
"316:\tlearn: 0.0374960\ttotal: 2.96s\tremaining: 1.71s\n", |
|
|
3639 |
"317:\tlearn: 0.0374890\ttotal: 2.96s\tremaining: 1.7s\n", |
|
|
3640 |
"318:\tlearn: 0.0374843\ttotal: 2.97s\tremaining: 1.69s\n", |
|
|
3641 |
"319:\tlearn: 0.0374768\ttotal: 2.98s\tremaining: 1.68s\n", |
|
|
3642 |
"320:\tlearn: 0.0374684\ttotal: 2.99s\tremaining: 1.67s\n", |
|
|
3643 |
"321:\tlearn: 0.0374623\ttotal: 3s\tremaining: 1.66s\n", |
|
|
3644 |
"322:\tlearn: 0.0374580\ttotal: 3.01s\tremaining: 1.65s\n", |
|
|
3645 |
"323:\tlearn: 0.0374520\ttotal: 3.02s\tremaining: 1.64s\n", |
|
|
3646 |
"324:\tlearn: 0.0374474\ttotal: 3.03s\tremaining: 1.63s\n", |
|
|
3647 |
"325:\tlearn: 0.0374436\ttotal: 3.04s\tremaining: 1.62s\n", |
|
|
3648 |
"326:\tlearn: 0.0374398\ttotal: 3.05s\tremaining: 1.61s\n", |
|
|
3649 |
"327:\tlearn: 0.0374363\ttotal: 3.06s\tremaining: 1.6s\n", |
|
|
3650 |
"328:\tlearn: 0.0374307\ttotal: 3.07s\tremaining: 1.59s\n", |
|
|
3651 |
"329:\tlearn: 0.0374228\ttotal: 3.08s\tremaining: 1.58s\n", |
|
|
3652 |
"330:\tlearn: 0.0374154\ttotal: 3.08s\tremaining: 1.57s\n", |
|
|
3653 |
"331:\tlearn: 0.0374089\ttotal: 3.09s\tremaining: 1.56s\n", |
|
|
3654 |
"332:\tlearn: 0.0374052\ttotal: 3.1s\tremaining: 1.56s\n", |
|
|
3655 |
"333:\tlearn: 0.0373998\ttotal: 3.11s\tremaining: 1.55s\n", |
|
|
3656 |
"334:\tlearn: 0.0373947\ttotal: 3.12s\tremaining: 1.54s\n", |
|
|
3657 |
"335:\tlearn: 0.0373902\ttotal: 3.13s\tremaining: 1.53s\n", |
|
|
3658 |
"336:\tlearn: 0.0373843\ttotal: 3.14s\tremaining: 1.52s\n", |
|
|
3659 |
"337:\tlearn: 0.0373791\ttotal: 3.15s\tremaining: 1.51s\n", |
|
|
3660 |
"338:\tlearn: 0.0373747\ttotal: 3.16s\tremaining: 1.5s\n", |
|
|
3661 |
"339:\tlearn: 0.0373693\ttotal: 3.17s\tremaining: 1.49s\n", |
|
|
3662 |
"340:\tlearn: 0.0373585\ttotal: 3.18s\tremaining: 1.48s\n", |
|
|
3663 |
"341:\tlearn: 0.0373566\ttotal: 3.19s\tremaining: 1.47s\n", |
|
|
3664 |
"342:\tlearn: 0.0373536\ttotal: 3.19s\tremaining: 1.46s\n", |
|
|
3665 |
"343:\tlearn: 0.0373499\ttotal: 3.2s\tremaining: 1.45s\n", |
|
|
3666 |
"344:\tlearn: 0.0373470\ttotal: 3.21s\tremaining: 1.44s\n", |
|
|
3667 |
"345:\tlearn: 0.0373409\ttotal: 3.22s\tremaining: 1.43s\n", |
|
|
3668 |
"346:\tlearn: 0.0373386\ttotal: 3.23s\tremaining: 1.42s\n", |
|
|
3669 |
"347:\tlearn: 0.0373335\ttotal: 3.24s\tremaining: 1.42s\n", |
|
|
3670 |
"348:\tlearn: 0.0373284\ttotal: 3.25s\tremaining: 1.41s\n", |
|
|
3671 |
"349:\tlearn: 0.0373224\ttotal: 3.26s\tremaining: 1.4s\n" |
|
|
3672 |
] |
|
|
3673 |
}, |
|
|
3674 |
{ |
|
|
3675 |
"name": "stdout", |
|
|
3676 |
"output_type": "stream", |
|
|
3677 |
"text": [ |
|
|
3678 |
"350:\tlearn: 0.0373154\ttotal: 3.27s\tremaining: 1.39s\n", |
|
|
3679 |
"351:\tlearn: 0.0373102\ttotal: 3.28s\tremaining: 1.38s\n", |
|
|
3680 |
"352:\tlearn: 0.0373039\ttotal: 3.29s\tremaining: 1.37s\n", |
|
|
3681 |
"353:\tlearn: 0.0372967\ttotal: 3.29s\tremaining: 1.36s\n", |
|
|
3682 |
"354:\tlearn: 0.0372925\ttotal: 3.3s\tremaining: 1.35s\n", |
|
|
3683 |
"355:\tlearn: 0.0372871\ttotal: 3.31s\tremaining: 1.34s\n", |
|
|
3684 |
"356:\tlearn: 0.0372825\ttotal: 3.32s\tremaining: 1.33s\n", |
|
|
3685 |
"357:\tlearn: 0.0372786\ttotal: 3.33s\tremaining: 1.32s\n", |
|
|
3686 |
"358:\tlearn: 0.0372741\ttotal: 3.34s\tremaining: 1.31s\n", |
|
|
3687 |
"359:\tlearn: 0.0372712\ttotal: 3.35s\tremaining: 1.3s\n", |
|
|
3688 |
"360:\tlearn: 0.0372686\ttotal: 3.36s\tremaining: 1.29s\n", |
|
|
3689 |
"361:\tlearn: 0.0372629\ttotal: 3.37s\tremaining: 1.28s\n", |
|
|
3690 |
"362:\tlearn: 0.0372587\ttotal: 3.38s\tremaining: 1.27s\n", |
|
|
3691 |
"363:\tlearn: 0.0372557\ttotal: 3.39s\tremaining: 1.26s\n", |
|
|
3692 |
"364:\tlearn: 0.0372501\ttotal: 3.4s\tremaining: 1.25s\n", |
|
|
3693 |
"365:\tlearn: 0.0372429\ttotal: 3.4s\tremaining: 1.25s\n", |
|
|
3694 |
"366:\tlearn: 0.0372319\ttotal: 3.41s\tremaining: 1.24s\n", |
|
|
3695 |
"367:\tlearn: 0.0372281\ttotal: 3.42s\tremaining: 1.23s\n", |
|
|
3696 |
"368:\tlearn: 0.0372236\ttotal: 3.43s\tremaining: 1.22s\n", |
|
|
3697 |
"369:\tlearn: 0.0372211\ttotal: 3.44s\tremaining: 1.21s\n", |
|
|
3698 |
"370:\tlearn: 0.0372172\ttotal: 3.45s\tremaining: 1.2s\n", |
|
|
3699 |
"371:\tlearn: 0.0372108\ttotal: 3.46s\tremaining: 1.19s\n", |
|
|
3700 |
"372:\tlearn: 0.0372043\ttotal: 3.47s\tremaining: 1.18s\n", |
|
|
3701 |
"373:\tlearn: 0.0371987\ttotal: 3.48s\tremaining: 1.17s\n", |
|
|
3702 |
"374:\tlearn: 0.0371948\ttotal: 3.49s\tremaining: 1.16s\n", |
|
|
3703 |
"375:\tlearn: 0.0371875\ttotal: 3.5s\tremaining: 1.15s\n", |
|
|
3704 |
"376:\tlearn: 0.0371846\ttotal: 3.51s\tremaining: 1.14s\n", |
|
|
3705 |
"377:\tlearn: 0.0371818\ttotal: 3.52s\tremaining: 1.13s\n", |
|
|
3706 |
"378:\tlearn: 0.0371787\ttotal: 3.52s\tremaining: 1.13s\n", |
|
|
3707 |
"379:\tlearn: 0.0371723\ttotal: 3.53s\tremaining: 1.12s\n", |
|
|
3708 |
"380:\tlearn: 0.0371659\ttotal: 3.54s\tremaining: 1.11s\n", |
|
|
3709 |
"381:\tlearn: 0.0371605\ttotal: 3.55s\tremaining: 1.1s\n", |
|
|
3710 |
"382:\tlearn: 0.0371560\ttotal: 3.56s\tremaining: 1.09s\n", |
|
|
3711 |
"383:\tlearn: 0.0371482\ttotal: 3.57s\tremaining: 1.08s\n", |
|
|
3712 |
"384:\tlearn: 0.0371445\ttotal: 3.58s\tremaining: 1.07s\n", |
|
|
3713 |
"385:\tlearn: 0.0371408\ttotal: 3.59s\tremaining: 1.06s\n", |
|
|
3714 |
"386:\tlearn: 0.0371372\ttotal: 3.6s\tremaining: 1.05s\n", |
|
|
3715 |
"387:\tlearn: 0.0371321\ttotal: 3.61s\tremaining: 1.04s\n", |
|
|
3716 |
"388:\tlearn: 0.0371280\ttotal: 3.62s\tremaining: 1.03s\n", |
|
|
3717 |
"389:\tlearn: 0.0371255\ttotal: 3.63s\tremaining: 1.02s\n", |
|
|
3718 |
"390:\tlearn: 0.0371220\ttotal: 3.63s\tremaining: 1.01s\n", |
|
|
3719 |
"391:\tlearn: 0.0371167\ttotal: 3.64s\tremaining: 1s\n", |
|
|
3720 |
"392:\tlearn: 0.0371135\ttotal: 3.65s\tremaining: 995ms\n", |
|
|
3721 |
"393:\tlearn: 0.0371076\ttotal: 3.66s\tremaining: 986ms\n", |
|
|
3722 |
"394:\tlearn: 0.0371034\ttotal: 3.67s\tremaining: 976ms\n", |
|
|
3723 |
"395:\tlearn: 0.0370965\ttotal: 3.68s\tremaining: 967ms\n", |
|
|
3724 |
"396:\tlearn: 0.0370926\ttotal: 3.69s\tremaining: 958ms\n", |
|
|
3725 |
"397:\tlearn: 0.0370861\ttotal: 3.7s\tremaining: 949ms\n", |
|
|
3726 |
"398:\tlearn: 0.0370784\ttotal: 3.71s\tremaining: 939ms\n", |
|
|
3727 |
"399:\tlearn: 0.0370710\ttotal: 3.72s\tremaining: 930ms\n", |
|
|
3728 |
"400:\tlearn: 0.0370668\ttotal: 3.73s\tremaining: 921ms\n", |
|
|
3729 |
"401:\tlearn: 0.0370633\ttotal: 3.74s\tremaining: 911ms\n", |
|
|
3730 |
"402:\tlearn: 0.0370594\ttotal: 3.75s\tremaining: 902ms\n", |
|
|
3731 |
"403:\tlearn: 0.0370555\ttotal: 3.76s\tremaining: 893ms\n", |
|
|
3732 |
"404:\tlearn: 0.0370521\ttotal: 3.77s\tremaining: 883ms\n", |
|
|
3733 |
"405:\tlearn: 0.0370494\ttotal: 3.77s\tremaining: 874ms\n", |
|
|
3734 |
"406:\tlearn: 0.0370425\ttotal: 3.78s\tremaining: 865ms\n", |
|
|
3735 |
"407:\tlearn: 0.0370391\ttotal: 3.79s\tremaining: 856ms\n", |
|
|
3736 |
"408:\tlearn: 0.0370339\ttotal: 3.8s\tremaining: 846ms\n", |
|
|
3737 |
"409:\tlearn: 0.0370300\ttotal: 3.81s\tremaining: 837ms\n", |
|
|
3738 |
"410:\tlearn: 0.0370229\ttotal: 3.82s\tremaining: 828ms\n", |
|
|
3739 |
"411:\tlearn: 0.0370194\ttotal: 3.83s\tremaining: 818ms\n", |
|
|
3740 |
"412:\tlearn: 0.0370169\ttotal: 3.84s\tremaining: 809ms\n", |
|
|
3741 |
"413:\tlearn: 0.0370133\ttotal: 3.85s\tremaining: 800ms\n", |
|
|
3742 |
"414:\tlearn: 0.0370073\ttotal: 3.86s\tremaining: 791ms\n", |
|
|
3743 |
"415:\tlearn: 0.0370045\ttotal: 3.87s\tremaining: 781ms\n", |
|
|
3744 |
"416:\tlearn: 0.0369993\ttotal: 3.88s\tremaining: 772ms\n", |
|
|
3745 |
"417:\tlearn: 0.0369941\ttotal: 3.89s\tremaining: 763ms\n", |
|
|
3746 |
"418:\tlearn: 0.0369894\ttotal: 3.9s\tremaining: 753ms\n", |
|
|
3747 |
"419:\tlearn: 0.0369817\ttotal: 3.91s\tremaining: 744ms\n", |
|
|
3748 |
"420:\tlearn: 0.0369790\ttotal: 3.92s\tremaining: 735ms\n", |
|
|
3749 |
"421:\tlearn: 0.0369708\ttotal: 3.92s\tremaining: 726ms\n", |
|
|
3750 |
"422:\tlearn: 0.0369643\ttotal: 3.93s\tremaining: 716ms\n", |
|
|
3751 |
"423:\tlearn: 0.0369609\ttotal: 3.94s\tremaining: 707ms\n", |
|
|
3752 |
"424:\tlearn: 0.0369573\ttotal: 3.95s\tremaining: 697ms\n", |
|
|
3753 |
"425:\tlearn: 0.0369540\ttotal: 3.96s\tremaining: 688ms\n", |
|
|
3754 |
"426:\tlearn: 0.0369493\ttotal: 3.97s\tremaining: 679ms\n", |
|
|
3755 |
"427:\tlearn: 0.0369452\ttotal: 3.98s\tremaining: 670ms\n", |
|
|
3756 |
"428:\tlearn: 0.0369421\ttotal: 3.99s\tremaining: 660ms\n", |
|
|
3757 |
"429:\tlearn: 0.0369332\ttotal: 4s\tremaining: 651ms\n", |
|
|
3758 |
"430:\tlearn: 0.0369291\ttotal: 4.01s\tremaining: 642ms\n", |
|
|
3759 |
"431:\tlearn: 0.0369233\ttotal: 4.02s\tremaining: 632ms\n", |
|
|
3760 |
"432:\tlearn: 0.0369215\ttotal: 4.03s\tremaining: 623ms\n", |
|
|
3761 |
"433:\tlearn: 0.0369186\ttotal: 4.04s\tremaining: 614ms\n", |
|
|
3762 |
"434:\tlearn: 0.0369137\ttotal: 4.04s\tremaining: 605ms\n", |
|
|
3763 |
"435:\tlearn: 0.0369103\ttotal: 4.05s\tremaining: 595ms\n", |
|
|
3764 |
"436:\tlearn: 0.0369027\ttotal: 4.06s\tremaining: 586ms\n", |
|
|
3765 |
"437:\tlearn: 0.0368979\ttotal: 4.07s\tremaining: 577ms\n", |
|
|
3766 |
"438:\tlearn: 0.0368953\ttotal: 4.08s\tremaining: 567ms\n", |
|
|
3767 |
"439:\tlearn: 0.0368916\ttotal: 4.09s\tremaining: 558ms\n", |
|
|
3768 |
"440:\tlearn: 0.0368880\ttotal: 4.1s\tremaining: 549ms\n", |
|
|
3769 |
"441:\tlearn: 0.0368817\ttotal: 4.11s\tremaining: 539ms\n", |
|
|
3770 |
"442:\tlearn: 0.0368781\ttotal: 4.12s\tremaining: 530ms\n", |
|
|
3771 |
"443:\tlearn: 0.0368693\ttotal: 4.13s\tremaining: 521ms\n", |
|
|
3772 |
"444:\tlearn: 0.0368632\ttotal: 4.14s\tremaining: 512ms\n", |
|
|
3773 |
"445:\tlearn: 0.0368588\ttotal: 4.15s\tremaining: 502ms\n", |
|
|
3774 |
"446:\tlearn: 0.0368556\ttotal: 4.16s\tremaining: 493ms\n", |
|
|
3775 |
"447:\tlearn: 0.0368524\ttotal: 4.17s\tremaining: 484ms\n", |
|
|
3776 |
"448:\tlearn: 0.0368498\ttotal: 4.17s\tremaining: 474ms\n", |
|
|
3777 |
"449:\tlearn: 0.0368466\ttotal: 4.18s\tremaining: 465ms\n", |
|
|
3778 |
"450:\tlearn: 0.0368425\ttotal: 4.19s\tremaining: 456ms\n", |
|
|
3779 |
"451:\tlearn: 0.0368350\ttotal: 4.2s\tremaining: 446ms\n", |
|
|
3780 |
"452:\tlearn: 0.0368319\ttotal: 4.21s\tremaining: 437ms\n", |
|
|
3781 |
"453:\tlearn: 0.0368287\ttotal: 4.22s\tremaining: 428ms\n", |
|
|
3782 |
"454:\tlearn: 0.0368258\ttotal: 4.23s\tremaining: 418ms\n", |
|
|
3783 |
"455:\tlearn: 0.0368229\ttotal: 4.24s\tremaining: 409ms\n", |
|
|
3784 |
"456:\tlearn: 0.0368174\ttotal: 4.25s\tremaining: 400ms\n", |
|
|
3785 |
"457:\tlearn: 0.0368149\ttotal: 4.26s\tremaining: 390ms\n", |
|
|
3786 |
"458:\tlearn: 0.0368104\ttotal: 4.27s\tremaining: 381ms\n", |
|
|
3787 |
"459:\tlearn: 0.0368072\ttotal: 4.28s\tremaining: 372ms\n", |
|
|
3788 |
"460:\tlearn: 0.0368025\ttotal: 4.29s\tremaining: 363ms\n", |
|
|
3789 |
"461:\tlearn: 0.0367969\ttotal: 4.29s\tremaining: 353ms\n", |
|
|
3790 |
"462:\tlearn: 0.0367911\ttotal: 4.3s\tremaining: 344ms\n", |
|
|
3791 |
"463:\tlearn: 0.0367852\ttotal: 4.31s\tremaining: 335ms\n", |
|
|
3792 |
"464:\tlearn: 0.0367805\ttotal: 4.32s\tremaining: 325ms\n", |
|
|
3793 |
"465:\tlearn: 0.0367781\ttotal: 4.33s\tremaining: 316ms\n", |
|
|
3794 |
"466:\tlearn: 0.0367695\ttotal: 4.34s\tremaining: 307ms\n", |
|
|
3795 |
"467:\tlearn: 0.0367660\ttotal: 4.35s\tremaining: 297ms\n", |
|
|
3796 |
"468:\tlearn: 0.0367603\ttotal: 4.36s\tremaining: 288ms\n", |
|
|
3797 |
"469:\tlearn: 0.0367577\ttotal: 4.37s\tremaining: 279ms\n", |
|
|
3798 |
"470:\tlearn: 0.0367555\ttotal: 4.38s\tremaining: 270ms\n", |
|
|
3799 |
"471:\tlearn: 0.0367509\ttotal: 4.39s\tremaining: 260ms\n", |
|
|
3800 |
"472:\tlearn: 0.0367474\ttotal: 4.4s\tremaining: 251ms\n", |
|
|
3801 |
"473:\tlearn: 0.0367441\ttotal: 4.41s\tremaining: 242ms\n", |
|
|
3802 |
"474:\tlearn: 0.0367409\ttotal: 4.41s\tremaining: 232ms\n", |
|
|
3803 |
"475:\tlearn: 0.0367359\ttotal: 4.42s\tremaining: 223ms\n", |
|
|
3804 |
"476:\tlearn: 0.0367311\ttotal: 4.43s\tremaining: 214ms\n", |
|
|
3805 |
"477:\tlearn: 0.0367248\ttotal: 4.44s\tremaining: 204ms\n", |
|
|
3806 |
"478:\tlearn: 0.0367199\ttotal: 4.45s\tremaining: 195ms\n", |
|
|
3807 |
"479:\tlearn: 0.0367143\ttotal: 4.46s\tremaining: 186ms\n", |
|
|
3808 |
"480:\tlearn: 0.0367067\ttotal: 4.47s\tremaining: 177ms\n", |
|
|
3809 |
"481:\tlearn: 0.0367022\ttotal: 4.48s\tremaining: 167ms\n", |
|
|
3810 |
"482:\tlearn: 0.0366976\ttotal: 4.49s\tremaining: 158ms\n", |
|
|
3811 |
"483:\tlearn: 0.0366913\ttotal: 4.5s\tremaining: 149ms\n", |
|
|
3812 |
"484:\tlearn: 0.0366856\ttotal: 4.51s\tremaining: 139ms\n", |
|
|
3813 |
"485:\tlearn: 0.0366823\ttotal: 4.52s\tremaining: 130ms\n", |
|
|
3814 |
"486:\tlearn: 0.0366767\ttotal: 4.53s\tremaining: 121ms\n", |
|
|
3815 |
"487:\tlearn: 0.0366738\ttotal: 4.54s\tremaining: 112ms\n", |
|
|
3816 |
"488:\tlearn: 0.0366704\ttotal: 4.55s\tremaining: 102ms\n", |
|
|
3817 |
"489:\tlearn: 0.0366651\ttotal: 4.55s\tremaining: 93ms\n", |
|
|
3818 |
"490:\tlearn: 0.0366614\ttotal: 4.56s\tremaining: 83.7ms\n", |
|
|
3819 |
"491:\tlearn: 0.0366578\ttotal: 4.57s\tremaining: 74.4ms\n", |
|
|
3820 |
"492:\tlearn: 0.0366509\ttotal: 4.58s\tremaining: 65.1ms\n", |
|
|
3821 |
"493:\tlearn: 0.0366466\ttotal: 4.59s\tremaining: 55.8ms\n", |
|
|
3822 |
"494:\tlearn: 0.0366437\ttotal: 4.6s\tremaining: 46.5ms\n", |
|
|
3823 |
"495:\tlearn: 0.0366401\ttotal: 4.61s\tremaining: 37.2ms\n", |
|
|
3824 |
"496:\tlearn: 0.0366357\ttotal: 4.62s\tremaining: 27.9ms\n", |
|
|
3825 |
"497:\tlearn: 0.0366326\ttotal: 4.63s\tremaining: 18.6ms\n", |
|
|
3826 |
"498:\tlearn: 0.0366258\ttotal: 4.64s\tremaining: 9.3ms\n", |
|
|
3827 |
"499:\tlearn: 0.0366237\ttotal: 4.65s\tremaining: 0us\n" |
|
|
3828 |
] |
|
|
3829 |
}, |
|
|
3830 |
{ |
|
|
3831 |
"name": "stderr", |
|
|
3832 |
"output_type": "stream", |
|
|
3833 |
"text": [ |
|
|
3834 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
3835 |
] |
|
|
3836 |
}, |
|
|
3837 |
{ |
|
|
3838 |
"name": "stdout", |
|
|
3839 |
"output_type": "stream", |
|
|
3840 |
"text": [ |
|
|
3841 |
"0:\tlearn: 0.5974800\ttotal: 10.8ms\tremaining: 5.38s\n", |
|
|
3842 |
"1:\tlearn: 0.5163507\ttotal: 20.4ms\tremaining: 5.07s\n", |
|
|
3843 |
"2:\tlearn: 0.4474815\ttotal: 29.7ms\tremaining: 4.92s\n", |
|
|
3844 |
"3:\tlearn: 0.3925685\ttotal: 38.8ms\tremaining: 4.81s\n", |
|
|
3845 |
"4:\tlearn: 0.3338620\ttotal: 48.3ms\tremaining: 4.78s\n", |
|
|
3846 |
"5:\tlearn: 0.2860227\ttotal: 57.9ms\tremaining: 4.77s\n", |
|
|
3847 |
"6:\tlearn: 0.2460400\ttotal: 68ms\tremaining: 4.79s\n", |
|
|
3848 |
"7:\tlearn: 0.2119136\ttotal: 77.9ms\tremaining: 4.79s\n", |
|
|
3849 |
"8:\tlearn: 0.1857879\ttotal: 88.2ms\tremaining: 4.81s\n", |
|
|
3850 |
"9:\tlearn: 0.1621412\ttotal: 98ms\tremaining: 4.8s\n", |
|
|
3851 |
"10:\tlearn: 0.1423682\ttotal: 109ms\tremaining: 4.83s\n", |
|
|
3852 |
"11:\tlearn: 0.1266204\ttotal: 119ms\tremaining: 4.85s\n", |
|
|
3853 |
"12:\tlearn: 0.1132541\ttotal: 130ms\tremaining: 4.86s\n", |
|
|
3854 |
"13:\tlearn: 0.1021069\ttotal: 140ms\tremaining: 4.85s\n", |
|
|
3855 |
"14:\tlearn: 0.0919933\ttotal: 150ms\tremaining: 4.84s\n", |
|
|
3856 |
"15:\tlearn: 0.0836572\ttotal: 160ms\tremaining: 4.83s\n", |
|
|
3857 |
"16:\tlearn: 0.0770137\ttotal: 170ms\tremaining: 4.82s\n", |
|
|
3858 |
"17:\tlearn: 0.0707336\ttotal: 180ms\tremaining: 4.81s\n", |
|
|
3859 |
"18:\tlearn: 0.0657254\ttotal: 190ms\tremaining: 4.8s\n", |
|
|
3860 |
"19:\tlearn: 0.0610038\ttotal: 200ms\tremaining: 4.79s\n", |
|
|
3861 |
"20:\tlearn: 0.0574522\ttotal: 209ms\tremaining: 4.78s\n", |
|
|
3862 |
"21:\tlearn: 0.0540153\ttotal: 220ms\tremaining: 4.78s\n", |
|
|
3863 |
"22:\tlearn: 0.0511266\ttotal: 230ms\tremaining: 4.76s\n", |
|
|
3864 |
"23:\tlearn: 0.0485717\ttotal: 240ms\tremaining: 4.75s\n", |
|
|
3865 |
"24:\tlearn: 0.0462456\ttotal: 249ms\tremaining: 4.74s\n", |
|
|
3866 |
"25:\tlearn: 0.0441020\ttotal: 259ms\tremaining: 4.73s\n", |
|
|
3867 |
"26:\tlearn: 0.0422492\ttotal: 270ms\tremaining: 4.72s\n", |
|
|
3868 |
"27:\tlearn: 0.0407204\ttotal: 280ms\tremaining: 4.72s\n", |
|
|
3869 |
"28:\tlearn: 0.0395300\ttotal: 290ms\tremaining: 4.71s\n", |
|
|
3870 |
"29:\tlearn: 0.0383094\ttotal: 300ms\tremaining: 4.7s\n", |
|
|
3871 |
"30:\tlearn: 0.0371703\ttotal: 310ms\tremaining: 4.68s\n", |
|
|
3872 |
"31:\tlearn: 0.0361294\ttotal: 319ms\tremaining: 4.67s\n", |
|
|
3873 |
"32:\tlearn: 0.0350966\ttotal: 329ms\tremaining: 4.65s\n", |
|
|
3874 |
"33:\tlearn: 0.0344499\ttotal: 338ms\tremaining: 4.64s\n", |
|
|
3875 |
"34:\tlearn: 0.0337783\ttotal: 348ms\tremaining: 4.62s\n", |
|
|
3876 |
"35:\tlearn: 0.0329642\ttotal: 357ms\tremaining: 4.6s\n", |
|
|
3877 |
"36:\tlearn: 0.0324353\ttotal: 366ms\tremaining: 4.58s\n", |
|
|
3878 |
"37:\tlearn: 0.0319472\ttotal: 376ms\tremaining: 4.57s\n", |
|
|
3879 |
"38:\tlearn: 0.0313374\ttotal: 385ms\tremaining: 4.55s\n", |
|
|
3880 |
"39:\tlearn: 0.0309034\ttotal: 394ms\tremaining: 4.53s\n", |
|
|
3881 |
"40:\tlearn: 0.0305878\ttotal: 403ms\tremaining: 4.51s\n", |
|
|
3882 |
"41:\tlearn: 0.0302528\ttotal: 412ms\tremaining: 4.5s\n", |
|
|
3883 |
"42:\tlearn: 0.0298330\ttotal: 422ms\tremaining: 4.49s\n", |
|
|
3884 |
"43:\tlearn: 0.0294658\ttotal: 432ms\tremaining: 4.47s\n", |
|
|
3885 |
"44:\tlearn: 0.0291337\ttotal: 441ms\tremaining: 4.46s\n", |
|
|
3886 |
"45:\tlearn: 0.0288643\ttotal: 450ms\tremaining: 4.44s\n", |
|
|
3887 |
"46:\tlearn: 0.0285415\ttotal: 459ms\tremaining: 4.43s\n", |
|
|
3888 |
"47:\tlearn: 0.0283581\ttotal: 469ms\tremaining: 4.42s\n", |
|
|
3889 |
"48:\tlearn: 0.0281095\ttotal: 478ms\tremaining: 4.4s\n", |
|
|
3890 |
"49:\tlearn: 0.0279293\ttotal: 487ms\tremaining: 4.38s\n", |
|
|
3891 |
"50:\tlearn: 0.0277587\ttotal: 496ms\tremaining: 4.37s\n", |
|
|
3892 |
"51:\tlearn: 0.0276599\ttotal: 505ms\tremaining: 4.35s\n", |
|
|
3893 |
"52:\tlearn: 0.0275192\ttotal: 514ms\tremaining: 4.34s\n", |
|
|
3894 |
"53:\tlearn: 0.0274262\ttotal: 523ms\tremaining: 4.32s\n", |
|
|
3895 |
"54:\tlearn: 0.0272999\ttotal: 532ms\tremaining: 4.31s\n", |
|
|
3896 |
"55:\tlearn: 0.0271778\ttotal: 542ms\tremaining: 4.29s\n", |
|
|
3897 |
"56:\tlearn: 0.0270896\ttotal: 550ms\tremaining: 4.28s\n", |
|
|
3898 |
"57:\tlearn: 0.0269820\ttotal: 560ms\tremaining: 4.26s\n", |
|
|
3899 |
"58:\tlearn: 0.0268585\ttotal: 569ms\tremaining: 4.25s\n", |
|
|
3900 |
"59:\tlearn: 0.0267830\ttotal: 578ms\tremaining: 4.24s\n", |
|
|
3901 |
"60:\tlearn: 0.0266794\ttotal: 588ms\tremaining: 4.23s\n", |
|
|
3902 |
"61:\tlearn: 0.0265944\ttotal: 597ms\tremaining: 4.22s\n", |
|
|
3903 |
"62:\tlearn: 0.0264788\ttotal: 606ms\tremaining: 4.2s\n", |
|
|
3904 |
"63:\tlearn: 0.0263604\ttotal: 616ms\tremaining: 4.19s\n", |
|
|
3905 |
"64:\tlearn: 0.0262561\ttotal: 625ms\tremaining: 4.18s\n", |
|
|
3906 |
"65:\tlearn: 0.0261965\ttotal: 634ms\tremaining: 4.17s\n", |
|
|
3907 |
"66:\tlearn: 0.0261433\ttotal: 643ms\tremaining: 4.15s\n", |
|
|
3908 |
"67:\tlearn: 0.0260952\ttotal: 652ms\tremaining: 4.14s\n", |
|
|
3909 |
"68:\tlearn: 0.0260093\ttotal: 661ms\tremaining: 4.13s\n", |
|
|
3910 |
"69:\tlearn: 0.0259352\ttotal: 670ms\tremaining: 4.12s\n", |
|
|
3911 |
"70:\tlearn: 0.0259021\ttotal: 679ms\tremaining: 4.1s\n", |
|
|
3912 |
"71:\tlearn: 0.0258360\ttotal: 688ms\tremaining: 4.09s\n", |
|
|
3913 |
"72:\tlearn: 0.0257938\ttotal: 698ms\tremaining: 4.08s\n", |
|
|
3914 |
"73:\tlearn: 0.0257647\ttotal: 707ms\tremaining: 4.07s\n", |
|
|
3915 |
"74:\tlearn: 0.0257114\ttotal: 717ms\tremaining: 4.06s\n", |
|
|
3916 |
"75:\tlearn: 0.0256452\ttotal: 726ms\tremaining: 4.05s\n", |
|
|
3917 |
"76:\tlearn: 0.0255892\ttotal: 735ms\tremaining: 4.04s\n", |
|
|
3918 |
"77:\tlearn: 0.0255637\ttotal: 745ms\tremaining: 4.03s\n", |
|
|
3919 |
"78:\tlearn: 0.0255391\ttotal: 754ms\tremaining: 4.02s\n", |
|
|
3920 |
"79:\tlearn: 0.0254904\ttotal: 763ms\tremaining: 4s\n", |
|
|
3921 |
"80:\tlearn: 0.0254255\ttotal: 772ms\tremaining: 3.99s\n", |
|
|
3922 |
"81:\tlearn: 0.0253685\ttotal: 781ms\tremaining: 3.98s\n", |
|
|
3923 |
"82:\tlearn: 0.0253295\ttotal: 790ms\tremaining: 3.97s\n", |
|
|
3924 |
"83:\tlearn: 0.0252775\ttotal: 800ms\tremaining: 3.96s\n", |
|
|
3925 |
"84:\tlearn: 0.0252620\ttotal: 809ms\tremaining: 3.95s\n", |
|
|
3926 |
"85:\tlearn: 0.0252272\ttotal: 819ms\tremaining: 3.94s\n", |
|
|
3927 |
"86:\tlearn: 0.0251858\ttotal: 828ms\tremaining: 3.93s\n", |
|
|
3928 |
"87:\tlearn: 0.0251634\ttotal: 837ms\tremaining: 3.92s\n", |
|
|
3929 |
"88:\tlearn: 0.0251316\ttotal: 846ms\tremaining: 3.91s\n", |
|
|
3930 |
"89:\tlearn: 0.0251023\ttotal: 856ms\tremaining: 3.9s\n", |
|
|
3931 |
"90:\tlearn: 0.0250684\ttotal: 865ms\tremaining: 3.89s\n", |
|
|
3932 |
"91:\tlearn: 0.0250321\ttotal: 874ms\tremaining: 3.88s\n", |
|
|
3933 |
"92:\tlearn: 0.0250203\ttotal: 883ms\tremaining: 3.86s\n", |
|
|
3934 |
"93:\tlearn: 0.0250036\ttotal: 892ms\tremaining: 3.85s\n", |
|
|
3935 |
"94:\tlearn: 0.0249950\ttotal: 901ms\tremaining: 3.84s\n", |
|
|
3936 |
"95:\tlearn: 0.0249825\ttotal: 910ms\tremaining: 3.83s\n", |
|
|
3937 |
"96:\tlearn: 0.0249503\ttotal: 920ms\tremaining: 3.82s\n", |
|
|
3938 |
"97:\tlearn: 0.0249390\ttotal: 929ms\tremaining: 3.81s\n", |
|
|
3939 |
"98:\tlearn: 0.0249222\ttotal: 938ms\tremaining: 3.8s\n", |
|
|
3940 |
"99:\tlearn: 0.0249114\ttotal: 947ms\tremaining: 3.79s\n", |
|
|
3941 |
"100:\tlearn: 0.0248864\ttotal: 957ms\tremaining: 3.78s\n", |
|
|
3942 |
"101:\tlearn: 0.0248765\ttotal: 966ms\tremaining: 3.77s\n", |
|
|
3943 |
"102:\tlearn: 0.0248675\ttotal: 976ms\tremaining: 3.76s\n", |
|
|
3944 |
"103:\tlearn: 0.0248518\ttotal: 984ms\tremaining: 3.75s\n", |
|
|
3945 |
"104:\tlearn: 0.0248429\ttotal: 993ms\tremaining: 3.74s\n", |
|
|
3946 |
"105:\tlearn: 0.0248368\ttotal: 1s\tremaining: 3.73s\n", |
|
|
3947 |
"106:\tlearn: 0.0248211\ttotal: 1.01s\tremaining: 3.72s\n", |
|
|
3948 |
"107:\tlearn: 0.0248093\ttotal: 1.02s\tremaining: 3.71s\n", |
|
|
3949 |
"108:\tlearn: 0.0247979\ttotal: 1.03s\tremaining: 3.7s\n", |
|
|
3950 |
"109:\tlearn: 0.0247835\ttotal: 1.04s\tremaining: 3.69s\n", |
|
|
3951 |
"110:\tlearn: 0.0247736\ttotal: 1.05s\tremaining: 3.67s\n", |
|
|
3952 |
"111:\tlearn: 0.0247488\ttotal: 1.06s\tremaining: 3.67s\n", |
|
|
3953 |
"112:\tlearn: 0.0247361\ttotal: 1.07s\tremaining: 3.66s\n", |
|
|
3954 |
"113:\tlearn: 0.0247152\ttotal: 1.08s\tremaining: 3.65s\n", |
|
|
3955 |
"114:\tlearn: 0.0246844\ttotal: 1.09s\tremaining: 3.64s\n", |
|
|
3956 |
"115:\tlearn: 0.0246478\ttotal: 1.09s\tremaining: 3.63s\n", |
|
|
3957 |
"116:\tlearn: 0.0246280\ttotal: 1.1s\tremaining: 3.62s\n", |
|
|
3958 |
"117:\tlearn: 0.0246110\ttotal: 1.11s\tremaining: 3.6s\n", |
|
|
3959 |
"118:\tlearn: 0.0245984\ttotal: 1.12s\tremaining: 3.59s\n", |
|
|
3960 |
"119:\tlearn: 0.0245876\ttotal: 1.13s\tremaining: 3.59s\n", |
|
|
3961 |
"120:\tlearn: 0.0245799\ttotal: 1.14s\tremaining: 3.58s\n", |
|
|
3962 |
"121:\tlearn: 0.0245608\ttotal: 1.15s\tremaining: 3.56s\n", |
|
|
3963 |
"122:\tlearn: 0.0245517\ttotal: 1.16s\tremaining: 3.56s\n", |
|
|
3964 |
"123:\tlearn: 0.0245424\ttotal: 1.17s\tremaining: 3.54s\n", |
|
|
3965 |
"124:\tlearn: 0.0245261\ttotal: 1.18s\tremaining: 3.54s\n", |
|
|
3966 |
"125:\tlearn: 0.0245184\ttotal: 1.19s\tremaining: 3.52s\n", |
|
|
3967 |
"126:\tlearn: 0.0245081\ttotal: 1.2s\tremaining: 3.51s\n", |
|
|
3968 |
"127:\tlearn: 0.0245003\ttotal: 1.21s\tremaining: 3.5s\n", |
|
|
3969 |
"128:\tlearn: 0.0244846\ttotal: 1.21s\tremaining: 3.49s\n", |
|
|
3970 |
"129:\tlearn: 0.0244754\ttotal: 1.22s\tremaining: 3.48s\n", |
|
|
3971 |
"130:\tlearn: 0.0244582\ttotal: 1.23s\tremaining: 3.47s\n", |
|
|
3972 |
"131:\tlearn: 0.0244531\ttotal: 1.24s\tremaining: 3.46s\n", |
|
|
3973 |
"132:\tlearn: 0.0244462\ttotal: 1.25s\tremaining: 3.45s\n", |
|
|
3974 |
"133:\tlearn: 0.0244345\ttotal: 1.26s\tremaining: 3.44s\n", |
|
|
3975 |
"134:\tlearn: 0.0244283\ttotal: 1.27s\tremaining: 3.43s\n", |
|
|
3976 |
"135:\tlearn: 0.0244247\ttotal: 1.28s\tremaining: 3.42s\n", |
|
|
3977 |
"136:\tlearn: 0.0244195\ttotal: 1.29s\tremaining: 3.42s\n", |
|
|
3978 |
"137:\tlearn: 0.0244128\ttotal: 1.3s\tremaining: 3.4s\n", |
|
|
3979 |
"138:\tlearn: 0.0244012\ttotal: 1.31s\tremaining: 3.4s\n", |
|
|
3980 |
"139:\tlearn: 0.0243839\ttotal: 1.32s\tremaining: 3.38s\n", |
|
|
3981 |
"140:\tlearn: 0.0243778\ttotal: 1.32s\tremaining: 3.38s\n", |
|
|
3982 |
"141:\tlearn: 0.0243663\ttotal: 1.33s\tremaining: 3.37s\n", |
|
|
3983 |
"142:\tlearn: 0.0243602\ttotal: 1.34s\tremaining: 3.35s\n", |
|
|
3984 |
"143:\tlearn: 0.0243526\ttotal: 1.35s\tremaining: 3.35s\n", |
|
|
3985 |
"144:\tlearn: 0.0243385\ttotal: 1.36s\tremaining: 3.33s\n", |
|
|
3986 |
"145:\tlearn: 0.0243245\ttotal: 1.37s\tremaining: 3.32s\n", |
|
|
3987 |
"146:\tlearn: 0.0243157\ttotal: 1.38s\tremaining: 3.31s\n", |
|
|
3988 |
"147:\tlearn: 0.0243084\ttotal: 1.39s\tremaining: 3.3s\n", |
|
|
3989 |
"148:\tlearn: 0.0243037\ttotal: 1.4s\tremaining: 3.29s\n", |
|
|
3990 |
"149:\tlearn: 0.0242965\ttotal: 1.41s\tremaining: 3.28s\n", |
|
|
3991 |
"150:\tlearn: 0.0242925\ttotal: 1.42s\tremaining: 3.27s\n", |
|
|
3992 |
"151:\tlearn: 0.0242845\ttotal: 1.43s\tremaining: 3.26s\n", |
|
|
3993 |
"152:\tlearn: 0.0242700\ttotal: 1.43s\tremaining: 3.25s\n", |
|
|
3994 |
"153:\tlearn: 0.0242631\ttotal: 1.44s\tremaining: 3.24s\n", |
|
|
3995 |
"154:\tlearn: 0.0242509\ttotal: 1.45s\tremaining: 3.23s\n", |
|
|
3996 |
"155:\tlearn: 0.0242436\ttotal: 1.46s\tremaining: 3.22s\n", |
|
|
3997 |
"156:\tlearn: 0.0242299\ttotal: 1.47s\tremaining: 3.21s\n", |
|
|
3998 |
"157:\tlearn: 0.0242181\ttotal: 1.48s\tremaining: 3.2s\n", |
|
|
3999 |
"158:\tlearn: 0.0242094\ttotal: 1.49s\tremaining: 3.19s\n", |
|
|
4000 |
"159:\tlearn: 0.0242001\ttotal: 1.5s\tremaining: 3.18s\n", |
|
|
4001 |
"160:\tlearn: 0.0241941\ttotal: 1.51s\tremaining: 3.17s\n", |
|
|
4002 |
"161:\tlearn: 0.0241851\ttotal: 1.51s\tremaining: 3.16s\n", |
|
|
4003 |
"162:\tlearn: 0.0241732\ttotal: 1.52s\tremaining: 3.15s\n", |
|
|
4004 |
"163:\tlearn: 0.0241721\ttotal: 1.53s\tremaining: 3.14s\n", |
|
|
4005 |
"164:\tlearn: 0.0241677\ttotal: 1.54s\tremaining: 3.13s\n", |
|
|
4006 |
"165:\tlearn: 0.0241570\ttotal: 1.55s\tremaining: 3.12s\n", |
|
|
4007 |
"166:\tlearn: 0.0241537\ttotal: 1.56s\tremaining: 3.11s\n", |
|
|
4008 |
"167:\tlearn: 0.0241457\ttotal: 1.57s\tremaining: 3.1s\n", |
|
|
4009 |
"168:\tlearn: 0.0241409\ttotal: 1.58s\tremaining: 3.09s\n", |
|
|
4010 |
"169:\tlearn: 0.0241323\ttotal: 1.59s\tremaining: 3.08s\n", |
|
|
4011 |
"170:\tlearn: 0.0241306\ttotal: 1.6s\tremaining: 3.07s\n", |
|
|
4012 |
"171:\tlearn: 0.0241271\ttotal: 1.61s\tremaining: 3.07s\n", |
|
|
4013 |
"172:\tlearn: 0.0241239\ttotal: 1.62s\tremaining: 3.06s\n", |
|
|
4014 |
"173:\tlearn: 0.0241159\ttotal: 1.63s\tremaining: 3.05s\n" |
|
|
4015 |
] |
|
|
4016 |
}, |
|
|
4017 |
{ |
|
|
4018 |
"name": "stdout", |
|
|
4019 |
"output_type": "stream", |
|
|
4020 |
"text": [ |
|
|
4021 |
"174:\tlearn: 0.0241104\ttotal: 1.64s\tremaining: 3.04s\n", |
|
|
4022 |
"175:\tlearn: 0.0241050\ttotal: 1.64s\tremaining: 3.03s\n", |
|
|
4023 |
"176:\tlearn: 0.0240999\ttotal: 1.65s\tremaining: 3.02s\n", |
|
|
4024 |
"177:\tlearn: 0.0240941\ttotal: 1.66s\tremaining: 3.01s\n", |
|
|
4025 |
"178:\tlearn: 0.0240892\ttotal: 1.67s\tremaining: 3s\n", |
|
|
4026 |
"179:\tlearn: 0.0240848\ttotal: 1.68s\tremaining: 2.99s\n", |
|
|
4027 |
"180:\tlearn: 0.0240792\ttotal: 1.69s\tremaining: 2.98s\n", |
|
|
4028 |
"181:\tlearn: 0.0240744\ttotal: 1.7s\tremaining: 2.97s\n", |
|
|
4029 |
"182:\tlearn: 0.0240697\ttotal: 1.71s\tremaining: 2.96s\n", |
|
|
4030 |
"183:\tlearn: 0.0240653\ttotal: 1.72s\tremaining: 2.95s\n", |
|
|
4031 |
"184:\tlearn: 0.0240612\ttotal: 1.73s\tremaining: 2.94s\n", |
|
|
4032 |
"185:\tlearn: 0.0240565\ttotal: 1.74s\tremaining: 2.93s\n", |
|
|
4033 |
"186:\tlearn: 0.0240516\ttotal: 1.75s\tremaining: 2.92s\n", |
|
|
4034 |
"187:\tlearn: 0.0240482\ttotal: 1.75s\tremaining: 2.91s\n", |
|
|
4035 |
"188:\tlearn: 0.0240414\ttotal: 1.76s\tremaining: 2.9s\n", |
|
|
4036 |
"189:\tlearn: 0.0240394\ttotal: 1.77s\tremaining: 2.89s\n", |
|
|
4037 |
"190:\tlearn: 0.0240364\ttotal: 1.78s\tremaining: 2.88s\n", |
|
|
4038 |
"191:\tlearn: 0.0240318\ttotal: 1.79s\tremaining: 2.88s\n", |
|
|
4039 |
"192:\tlearn: 0.0240274\ttotal: 1.8s\tremaining: 2.87s\n", |
|
|
4040 |
"193:\tlearn: 0.0240229\ttotal: 1.81s\tremaining: 2.86s\n", |
|
|
4041 |
"194:\tlearn: 0.0240152\ttotal: 1.82s\tremaining: 2.85s\n", |
|
|
4042 |
"195:\tlearn: 0.0240074\ttotal: 1.83s\tremaining: 2.84s\n", |
|
|
4043 |
"196:\tlearn: 0.0240034\ttotal: 1.84s\tremaining: 2.83s\n", |
|
|
4044 |
"197:\tlearn: 0.0239962\ttotal: 1.85s\tremaining: 2.82s\n", |
|
|
4045 |
"198:\tlearn: 0.0239905\ttotal: 1.86s\tremaining: 2.81s\n", |
|
|
4046 |
"199:\tlearn: 0.0239848\ttotal: 1.87s\tremaining: 2.8s\n", |
|
|
4047 |
"200:\tlearn: 0.0239800\ttotal: 1.88s\tremaining: 2.79s\n", |
|
|
4048 |
"201:\tlearn: 0.0239706\ttotal: 1.89s\tremaining: 2.78s\n", |
|
|
4049 |
"202:\tlearn: 0.0239664\ttotal: 1.89s\tremaining: 2.77s\n", |
|
|
4050 |
"203:\tlearn: 0.0239603\ttotal: 1.9s\tremaining: 2.76s\n", |
|
|
4051 |
"204:\tlearn: 0.0239572\ttotal: 1.91s\tremaining: 2.75s\n", |
|
|
4052 |
"205:\tlearn: 0.0239547\ttotal: 1.92s\tremaining: 2.74s\n", |
|
|
4053 |
"206:\tlearn: 0.0239498\ttotal: 1.93s\tremaining: 2.73s\n", |
|
|
4054 |
"207:\tlearn: 0.0239437\ttotal: 1.94s\tremaining: 2.72s\n", |
|
|
4055 |
"208:\tlearn: 0.0239384\ttotal: 1.95s\tremaining: 2.71s\n", |
|
|
4056 |
"209:\tlearn: 0.0239326\ttotal: 1.96s\tremaining: 2.7s\n", |
|
|
4057 |
"210:\tlearn: 0.0239229\ttotal: 1.97s\tremaining: 2.69s\n", |
|
|
4058 |
"211:\tlearn: 0.0239176\ttotal: 1.98s\tremaining: 2.69s\n", |
|
|
4059 |
"212:\tlearn: 0.0239131\ttotal: 1.99s\tremaining: 2.67s\n", |
|
|
4060 |
"213:\tlearn: 0.0239062\ttotal: 1.99s\tremaining: 2.67s\n", |
|
|
4061 |
"214:\tlearn: 0.0239030\ttotal: 2s\tremaining: 2.66s\n", |
|
|
4062 |
"215:\tlearn: 0.0238988\ttotal: 2.01s\tremaining: 2.65s\n", |
|
|
4063 |
"216:\tlearn: 0.0238958\ttotal: 2.02s\tremaining: 2.64s\n", |
|
|
4064 |
"217:\tlearn: 0.0238935\ttotal: 2.03s\tremaining: 2.63s\n", |
|
|
4065 |
"218:\tlearn: 0.0238897\ttotal: 2.04s\tremaining: 2.62s\n", |
|
|
4066 |
"219:\tlearn: 0.0238838\ttotal: 2.05s\tremaining: 2.61s\n", |
|
|
4067 |
"220:\tlearn: 0.0238784\ttotal: 2.06s\tremaining: 2.6s\n", |
|
|
4068 |
"221:\tlearn: 0.0238705\ttotal: 2.07s\tremaining: 2.59s\n", |
|
|
4069 |
"222:\tlearn: 0.0238651\ttotal: 2.08s\tremaining: 2.58s\n", |
|
|
4070 |
"223:\tlearn: 0.0238627\ttotal: 2.09s\tremaining: 2.57s\n", |
|
|
4071 |
"224:\tlearn: 0.0238569\ttotal: 2.1s\tremaining: 2.56s\n", |
|
|
4072 |
"225:\tlearn: 0.0238515\ttotal: 2.11s\tremaining: 2.55s\n", |
|
|
4073 |
"226:\tlearn: 0.0238471\ttotal: 2.12s\tremaining: 2.54s\n", |
|
|
4074 |
"227:\tlearn: 0.0238436\ttotal: 2.13s\tremaining: 2.54s\n", |
|
|
4075 |
"228:\tlearn: 0.0238395\ttotal: 2.13s\tremaining: 2.52s\n", |
|
|
4076 |
"229:\tlearn: 0.0238354\ttotal: 2.14s\tremaining: 2.52s\n", |
|
|
4077 |
"230:\tlearn: 0.0238294\ttotal: 2.15s\tremaining: 2.51s\n", |
|
|
4078 |
"231:\tlearn: 0.0238260\ttotal: 2.16s\tremaining: 2.5s\n", |
|
|
4079 |
"232:\tlearn: 0.0238213\ttotal: 2.17s\tremaining: 2.49s\n", |
|
|
4080 |
"233:\tlearn: 0.0238167\ttotal: 2.18s\tremaining: 2.48s\n", |
|
|
4081 |
"234:\tlearn: 0.0238109\ttotal: 2.19s\tremaining: 2.47s\n", |
|
|
4082 |
"235:\tlearn: 0.0238056\ttotal: 2.2s\tremaining: 2.46s\n", |
|
|
4083 |
"236:\tlearn: 0.0238021\ttotal: 2.21s\tremaining: 2.45s\n", |
|
|
4084 |
"237:\tlearn: 0.0237966\ttotal: 2.22s\tremaining: 2.44s\n", |
|
|
4085 |
"238:\tlearn: 0.0237937\ttotal: 2.23s\tremaining: 2.43s\n", |
|
|
4086 |
"239:\tlearn: 0.0237821\ttotal: 2.24s\tremaining: 2.42s\n", |
|
|
4087 |
"240:\tlearn: 0.0237753\ttotal: 2.25s\tremaining: 2.41s\n", |
|
|
4088 |
"241:\tlearn: 0.0237718\ttotal: 2.25s\tremaining: 2.4s\n", |
|
|
4089 |
"242:\tlearn: 0.0237685\ttotal: 2.27s\tremaining: 2.4s\n", |
|
|
4090 |
"243:\tlearn: 0.0237659\ttotal: 2.27s\tremaining: 2.39s\n", |
|
|
4091 |
"244:\tlearn: 0.0237597\ttotal: 2.28s\tremaining: 2.38s\n", |
|
|
4092 |
"245:\tlearn: 0.0237542\ttotal: 2.29s\tremaining: 2.37s\n", |
|
|
4093 |
"246:\tlearn: 0.0237490\ttotal: 2.3s\tremaining: 2.36s\n", |
|
|
4094 |
"247:\tlearn: 0.0237441\ttotal: 2.31s\tremaining: 2.35s\n", |
|
|
4095 |
"248:\tlearn: 0.0237408\ttotal: 2.32s\tremaining: 2.34s\n", |
|
|
4096 |
"249:\tlearn: 0.0237359\ttotal: 2.33s\tremaining: 2.33s\n", |
|
|
4097 |
"250:\tlearn: 0.0237325\ttotal: 2.34s\tremaining: 2.32s\n", |
|
|
4098 |
"251:\tlearn: 0.0237270\ttotal: 2.35s\tremaining: 2.31s\n", |
|
|
4099 |
"252:\tlearn: 0.0237238\ttotal: 2.36s\tremaining: 2.3s\n", |
|
|
4100 |
"253:\tlearn: 0.0237204\ttotal: 2.37s\tremaining: 2.29s\n", |
|
|
4101 |
"254:\tlearn: 0.0237145\ttotal: 2.38s\tremaining: 2.28s\n", |
|
|
4102 |
"255:\tlearn: 0.0237125\ttotal: 2.38s\tremaining: 2.27s\n", |
|
|
4103 |
"256:\tlearn: 0.0237100\ttotal: 2.39s\tremaining: 2.26s\n", |
|
|
4104 |
"257:\tlearn: 0.0237061\ttotal: 2.4s\tremaining: 2.25s\n", |
|
|
4105 |
"258:\tlearn: 0.0237018\ttotal: 2.41s\tremaining: 2.24s\n", |
|
|
4106 |
"259:\tlearn: 0.0236957\ttotal: 2.42s\tremaining: 2.23s\n", |
|
|
4107 |
"260:\tlearn: 0.0236922\ttotal: 2.43s\tremaining: 2.23s\n", |
|
|
4108 |
"261:\tlearn: 0.0236884\ttotal: 2.44s\tremaining: 2.21s\n", |
|
|
4109 |
"262:\tlearn: 0.0236833\ttotal: 2.45s\tremaining: 2.21s\n", |
|
|
4110 |
"263:\tlearn: 0.0236799\ttotal: 2.46s\tremaining: 2.2s\n", |
|
|
4111 |
"264:\tlearn: 0.0236740\ttotal: 2.47s\tremaining: 2.19s\n", |
|
|
4112 |
"265:\tlearn: 0.0236721\ttotal: 2.48s\tremaining: 2.18s\n", |
|
|
4113 |
"266:\tlearn: 0.0236677\ttotal: 2.48s\tremaining: 2.17s\n", |
|
|
4114 |
"267:\tlearn: 0.0236641\ttotal: 2.49s\tremaining: 2.16s\n", |
|
|
4115 |
"268:\tlearn: 0.0236568\ttotal: 2.5s\tremaining: 2.15s\n", |
|
|
4116 |
"269:\tlearn: 0.0236537\ttotal: 2.51s\tremaining: 2.14s\n", |
|
|
4117 |
"270:\tlearn: 0.0236502\ttotal: 2.52s\tremaining: 2.13s\n", |
|
|
4118 |
"271:\tlearn: 0.0236463\ttotal: 2.53s\tremaining: 2.12s\n", |
|
|
4119 |
"272:\tlearn: 0.0236425\ttotal: 2.54s\tremaining: 2.11s\n", |
|
|
4120 |
"273:\tlearn: 0.0236390\ttotal: 2.55s\tremaining: 2.1s\n", |
|
|
4121 |
"274:\tlearn: 0.0236363\ttotal: 2.56s\tremaining: 2.09s\n", |
|
|
4122 |
"275:\tlearn: 0.0236326\ttotal: 2.57s\tremaining: 2.08s\n", |
|
|
4123 |
"276:\tlearn: 0.0236284\ttotal: 2.58s\tremaining: 2.08s\n", |
|
|
4124 |
"277:\tlearn: 0.0236237\ttotal: 2.59s\tremaining: 2.06s\n", |
|
|
4125 |
"278:\tlearn: 0.0236187\ttotal: 2.6s\tremaining: 2.06s\n", |
|
|
4126 |
"279:\tlearn: 0.0236143\ttotal: 2.6s\tremaining: 2.05s\n", |
|
|
4127 |
"280:\tlearn: 0.0236124\ttotal: 2.61s\tremaining: 2.04s\n", |
|
|
4128 |
"281:\tlearn: 0.0236085\ttotal: 2.62s\tremaining: 2.03s\n", |
|
|
4129 |
"282:\tlearn: 0.0236011\ttotal: 2.63s\tremaining: 2.02s\n", |
|
|
4130 |
"283:\tlearn: 0.0235964\ttotal: 2.64s\tremaining: 2.01s\n", |
|
|
4131 |
"284:\tlearn: 0.0235944\ttotal: 2.65s\tremaining: 2s\n", |
|
|
4132 |
"285:\tlearn: 0.0235920\ttotal: 2.66s\tremaining: 1.99s\n", |
|
|
4133 |
"286:\tlearn: 0.0235853\ttotal: 2.67s\tremaining: 1.98s\n", |
|
|
4134 |
"287:\tlearn: 0.0235819\ttotal: 2.68s\tremaining: 1.97s\n", |
|
|
4135 |
"288:\tlearn: 0.0235771\ttotal: 2.69s\tremaining: 1.96s\n", |
|
|
4136 |
"289:\tlearn: 0.0235738\ttotal: 2.7s\tremaining: 1.95s\n", |
|
|
4137 |
"290:\tlearn: 0.0235648\ttotal: 2.71s\tremaining: 1.94s\n", |
|
|
4138 |
"291:\tlearn: 0.0235609\ttotal: 2.72s\tremaining: 1.93s\n", |
|
|
4139 |
"292:\tlearn: 0.0235567\ttotal: 2.73s\tremaining: 1.93s\n", |
|
|
4140 |
"293:\tlearn: 0.0235515\ttotal: 2.73s\tremaining: 1.92s\n", |
|
|
4141 |
"294:\tlearn: 0.0235447\ttotal: 2.74s\tremaining: 1.91s\n", |
|
|
4142 |
"295:\tlearn: 0.0235387\ttotal: 2.75s\tremaining: 1.9s\n", |
|
|
4143 |
"296:\tlearn: 0.0235346\ttotal: 2.76s\tremaining: 1.89s\n", |
|
|
4144 |
"297:\tlearn: 0.0235311\ttotal: 2.77s\tremaining: 1.88s\n", |
|
|
4145 |
"298:\tlearn: 0.0235271\ttotal: 2.78s\tremaining: 1.87s\n", |
|
|
4146 |
"299:\tlearn: 0.0235236\ttotal: 2.79s\tremaining: 1.86s\n", |
|
|
4147 |
"300:\tlearn: 0.0235204\ttotal: 2.8s\tremaining: 1.85s\n", |
|
|
4148 |
"301:\tlearn: 0.0235139\ttotal: 2.81s\tremaining: 1.84s\n", |
|
|
4149 |
"302:\tlearn: 0.0235104\ttotal: 2.82s\tremaining: 1.83s\n", |
|
|
4150 |
"303:\tlearn: 0.0235073\ttotal: 2.83s\tremaining: 1.82s\n", |
|
|
4151 |
"304:\tlearn: 0.0235024\ttotal: 2.84s\tremaining: 1.81s\n", |
|
|
4152 |
"305:\tlearn: 0.0234967\ttotal: 2.85s\tremaining: 1.8s\n", |
|
|
4153 |
"306:\tlearn: 0.0234917\ttotal: 2.85s\tremaining: 1.79s\n", |
|
|
4154 |
"307:\tlearn: 0.0234881\ttotal: 2.86s\tremaining: 1.78s\n", |
|
|
4155 |
"308:\tlearn: 0.0234847\ttotal: 2.87s\tremaining: 1.78s\n", |
|
|
4156 |
"309:\tlearn: 0.0234810\ttotal: 2.88s\tremaining: 1.77s\n", |
|
|
4157 |
"310:\tlearn: 0.0234766\ttotal: 2.89s\tremaining: 1.76s\n", |
|
|
4158 |
"311:\tlearn: 0.0234736\ttotal: 2.9s\tremaining: 1.75s\n", |
|
|
4159 |
"312:\tlearn: 0.0234675\ttotal: 2.91s\tremaining: 1.74s\n", |
|
|
4160 |
"313:\tlearn: 0.0234640\ttotal: 2.92s\tremaining: 1.73s\n", |
|
|
4161 |
"314:\tlearn: 0.0234620\ttotal: 2.93s\tremaining: 1.72s\n", |
|
|
4162 |
"315:\tlearn: 0.0234595\ttotal: 2.94s\tremaining: 1.71s\n", |
|
|
4163 |
"316:\tlearn: 0.0234552\ttotal: 2.95s\tremaining: 1.7s\n", |
|
|
4164 |
"317:\tlearn: 0.0234524\ttotal: 2.96s\tremaining: 1.69s\n", |
|
|
4165 |
"318:\tlearn: 0.0234498\ttotal: 2.96s\tremaining: 1.68s\n", |
|
|
4166 |
"319:\tlearn: 0.0234459\ttotal: 2.98s\tremaining: 1.67s\n", |
|
|
4167 |
"320:\tlearn: 0.0234427\ttotal: 2.98s\tremaining: 1.66s\n", |
|
|
4168 |
"321:\tlearn: 0.0234400\ttotal: 2.99s\tremaining: 1.65s\n", |
|
|
4169 |
"322:\tlearn: 0.0234372\ttotal: 3s\tremaining: 1.65s\n", |
|
|
4170 |
"323:\tlearn: 0.0234355\ttotal: 3.01s\tremaining: 1.64s\n", |
|
|
4171 |
"324:\tlearn: 0.0234321\ttotal: 3.02s\tremaining: 1.63s\n", |
|
|
4172 |
"325:\tlearn: 0.0234288\ttotal: 3.03s\tremaining: 1.62s\n", |
|
|
4173 |
"326:\tlearn: 0.0234241\ttotal: 3.04s\tremaining: 1.61s\n", |
|
|
4174 |
"327:\tlearn: 0.0234196\ttotal: 3.05s\tremaining: 1.6s\n", |
|
|
4175 |
"328:\tlearn: 0.0234115\ttotal: 3.06s\tremaining: 1.59s\n", |
|
|
4176 |
"329:\tlearn: 0.0234083\ttotal: 3.07s\tremaining: 1.58s\n", |
|
|
4177 |
"330:\tlearn: 0.0234051\ttotal: 3.08s\tremaining: 1.57s\n", |
|
|
4178 |
"331:\tlearn: 0.0234008\ttotal: 3.08s\tremaining: 1.56s\n", |
|
|
4179 |
"332:\tlearn: 0.0233974\ttotal: 3.09s\tremaining: 1.55s\n", |
|
|
4180 |
"333:\tlearn: 0.0233951\ttotal: 3.1s\tremaining: 1.54s\n", |
|
|
4181 |
"334:\tlearn: 0.0233894\ttotal: 3.11s\tremaining: 1.53s\n", |
|
|
4182 |
"335:\tlearn: 0.0233855\ttotal: 3.12s\tremaining: 1.52s\n", |
|
|
4183 |
"336:\tlearn: 0.0233807\ttotal: 3.13s\tremaining: 1.51s\n", |
|
|
4184 |
"337:\tlearn: 0.0233768\ttotal: 3.14s\tremaining: 1.5s\n", |
|
|
4185 |
"338:\tlearn: 0.0233727\ttotal: 3.15s\tremaining: 1.5s\n", |
|
|
4186 |
"339:\tlearn: 0.0233678\ttotal: 3.16s\tremaining: 1.49s\n", |
|
|
4187 |
"340:\tlearn: 0.0233631\ttotal: 3.17s\tremaining: 1.48s\n", |
|
|
4188 |
"341:\tlearn: 0.0233579\ttotal: 3.18s\tremaining: 1.47s\n", |
|
|
4189 |
"342:\tlearn: 0.0233561\ttotal: 3.19s\tremaining: 1.46s\n", |
|
|
4190 |
"343:\tlearn: 0.0233524\ttotal: 3.19s\tremaining: 1.45s\n", |
|
|
4191 |
"344:\tlearn: 0.0233504\ttotal: 3.2s\tremaining: 1.44s\n", |
|
|
4192 |
"345:\tlearn: 0.0233479\ttotal: 3.21s\tremaining: 1.43s\n", |
|
|
4193 |
"346:\tlearn: 0.0233444\ttotal: 3.22s\tremaining: 1.42s\n", |
|
|
4194 |
"347:\tlearn: 0.0233390\ttotal: 3.23s\tremaining: 1.41s\n", |
|
|
4195 |
"348:\tlearn: 0.0233351\ttotal: 3.24s\tremaining: 1.4s\n", |
|
|
4196 |
"349:\tlearn: 0.0233299\ttotal: 3.25s\tremaining: 1.39s\n" |
|
|
4197 |
] |
|
|
4198 |
}, |
|
|
4199 |
{ |
|
|
4200 |
"name": "stdout", |
|
|
4201 |
"output_type": "stream", |
|
|
4202 |
"text": [ |
|
|
4203 |
"350:\tlearn: 0.0233266\ttotal: 3.26s\tremaining: 1.38s\n", |
|
|
4204 |
"351:\tlearn: 0.0233216\ttotal: 3.27s\tremaining: 1.37s\n", |
|
|
4205 |
"352:\tlearn: 0.0233152\ttotal: 3.28s\tremaining: 1.36s\n", |
|
|
4206 |
"353:\tlearn: 0.0233112\ttotal: 3.29s\tremaining: 1.35s\n", |
|
|
4207 |
"354:\tlearn: 0.0233071\ttotal: 3.29s\tremaining: 1.34s\n", |
|
|
4208 |
"355:\tlearn: 0.0233035\ttotal: 3.3s\tremaining: 1.34s\n", |
|
|
4209 |
"356:\tlearn: 0.0232985\ttotal: 3.31s\tremaining: 1.33s\n", |
|
|
4210 |
"357:\tlearn: 0.0232939\ttotal: 3.32s\tremaining: 1.32s\n", |
|
|
4211 |
"358:\tlearn: 0.0232903\ttotal: 3.33s\tremaining: 1.31s\n", |
|
|
4212 |
"359:\tlearn: 0.0232836\ttotal: 3.34s\tremaining: 1.3s\n", |
|
|
4213 |
"360:\tlearn: 0.0232809\ttotal: 3.35s\tremaining: 1.29s\n", |
|
|
4214 |
"361:\tlearn: 0.0232783\ttotal: 3.36s\tremaining: 1.28s\n", |
|
|
4215 |
"362:\tlearn: 0.0232739\ttotal: 3.37s\tremaining: 1.27s\n", |
|
|
4216 |
"363:\tlearn: 0.0232700\ttotal: 3.38s\tremaining: 1.26s\n", |
|
|
4217 |
"364:\tlearn: 0.0232674\ttotal: 3.39s\tremaining: 1.25s\n", |
|
|
4218 |
"365:\tlearn: 0.0232640\ttotal: 3.4s\tremaining: 1.24s\n", |
|
|
4219 |
"366:\tlearn: 0.0232590\ttotal: 3.4s\tremaining: 1.23s\n", |
|
|
4220 |
"367:\tlearn: 0.0232547\ttotal: 3.41s\tremaining: 1.22s\n", |
|
|
4221 |
"368:\tlearn: 0.0232500\ttotal: 3.42s\tremaining: 1.22s\n", |
|
|
4222 |
"369:\tlearn: 0.0232468\ttotal: 3.43s\tremaining: 1.21s\n", |
|
|
4223 |
"370:\tlearn: 0.0232444\ttotal: 3.44s\tremaining: 1.2s\n", |
|
|
4224 |
"371:\tlearn: 0.0232414\ttotal: 3.45s\tremaining: 1.19s\n", |
|
|
4225 |
"372:\tlearn: 0.0232367\ttotal: 3.46s\tremaining: 1.18s\n", |
|
|
4226 |
"373:\tlearn: 0.0232309\ttotal: 3.47s\tremaining: 1.17s\n", |
|
|
4227 |
"374:\tlearn: 0.0232279\ttotal: 3.48s\tremaining: 1.16s\n", |
|
|
4228 |
"375:\tlearn: 0.0232241\ttotal: 3.49s\tremaining: 1.15s\n", |
|
|
4229 |
"376:\tlearn: 0.0232214\ttotal: 3.5s\tremaining: 1.14s\n", |
|
|
4230 |
"377:\tlearn: 0.0232184\ttotal: 3.51s\tremaining: 1.13s\n", |
|
|
4231 |
"378:\tlearn: 0.0232135\ttotal: 3.52s\tremaining: 1.12s\n", |
|
|
4232 |
"379:\tlearn: 0.0232100\ttotal: 3.52s\tremaining: 1.11s\n", |
|
|
4233 |
"380:\tlearn: 0.0232055\ttotal: 3.53s\tremaining: 1.1s\n", |
|
|
4234 |
"381:\tlearn: 0.0232004\ttotal: 3.54s\tremaining: 1.09s\n", |
|
|
4235 |
"382:\tlearn: 0.0231967\ttotal: 3.55s\tremaining: 1.08s\n", |
|
|
4236 |
"383:\tlearn: 0.0231933\ttotal: 3.56s\tremaining: 1.08s\n", |
|
|
4237 |
"384:\tlearn: 0.0231896\ttotal: 3.57s\tremaining: 1.07s\n", |
|
|
4238 |
"385:\tlearn: 0.0231853\ttotal: 3.58s\tremaining: 1.06s\n", |
|
|
4239 |
"386:\tlearn: 0.0231828\ttotal: 3.59s\tremaining: 1.05s\n", |
|
|
4240 |
"387:\tlearn: 0.0231801\ttotal: 3.6s\tremaining: 1.04s\n", |
|
|
4241 |
"388:\tlearn: 0.0231761\ttotal: 3.61s\tremaining: 1.03s\n", |
|
|
4242 |
"389:\tlearn: 0.0231723\ttotal: 3.62s\tremaining: 1.02s\n", |
|
|
4243 |
"390:\tlearn: 0.0231675\ttotal: 3.63s\tremaining: 1.01s\n", |
|
|
4244 |
"391:\tlearn: 0.0231644\ttotal: 3.63s\tremaining: 1s\n", |
|
|
4245 |
"392:\tlearn: 0.0231614\ttotal: 3.65s\tremaining: 993ms\n", |
|
|
4246 |
"393:\tlearn: 0.0231598\ttotal: 3.65s\tremaining: 983ms\n", |
|
|
4247 |
"394:\tlearn: 0.0231550\ttotal: 3.66s\tremaining: 974ms\n", |
|
|
4248 |
"395:\tlearn: 0.0231511\ttotal: 3.67s\tremaining: 965ms\n", |
|
|
4249 |
"396:\tlearn: 0.0231462\ttotal: 3.68s\tremaining: 955ms\n", |
|
|
4250 |
"397:\tlearn: 0.0231414\ttotal: 3.69s\tremaining: 946ms\n", |
|
|
4251 |
"398:\tlearn: 0.0231381\ttotal: 3.7s\tremaining: 937ms\n", |
|
|
4252 |
"399:\tlearn: 0.0231348\ttotal: 3.71s\tremaining: 928ms\n", |
|
|
4253 |
"400:\tlearn: 0.0231312\ttotal: 3.72s\tremaining: 918ms\n", |
|
|
4254 |
"401:\tlearn: 0.0231267\ttotal: 3.73s\tremaining: 909ms\n", |
|
|
4255 |
"402:\tlearn: 0.0231240\ttotal: 3.74s\tremaining: 900ms\n", |
|
|
4256 |
"403:\tlearn: 0.0231170\ttotal: 3.75s\tremaining: 891ms\n", |
|
|
4257 |
"404:\tlearn: 0.0231134\ttotal: 3.76s\tremaining: 881ms\n", |
|
|
4258 |
"405:\tlearn: 0.0231067\ttotal: 3.77s\tremaining: 872ms\n", |
|
|
4259 |
"406:\tlearn: 0.0231039\ttotal: 3.77s\tremaining: 863ms\n", |
|
|
4260 |
"407:\tlearn: 0.0230979\ttotal: 3.79s\tremaining: 854ms\n", |
|
|
4261 |
"408:\tlearn: 0.0230939\ttotal: 3.79s\tremaining: 844ms\n", |
|
|
4262 |
"409:\tlearn: 0.0230905\ttotal: 3.8s\tremaining: 835ms\n", |
|
|
4263 |
"410:\tlearn: 0.0230848\ttotal: 3.81s\tremaining: 826ms\n", |
|
|
4264 |
"411:\tlearn: 0.0230819\ttotal: 3.82s\tremaining: 817ms\n", |
|
|
4265 |
"412:\tlearn: 0.0230768\ttotal: 3.83s\tremaining: 807ms\n", |
|
|
4266 |
"413:\tlearn: 0.0230746\ttotal: 3.84s\tremaining: 798ms\n", |
|
|
4267 |
"414:\tlearn: 0.0230713\ttotal: 3.85s\tremaining: 789ms\n", |
|
|
4268 |
"415:\tlearn: 0.0230687\ttotal: 3.86s\tremaining: 779ms\n", |
|
|
4269 |
"416:\tlearn: 0.0230618\ttotal: 3.87s\tremaining: 770ms\n", |
|
|
4270 |
"417:\tlearn: 0.0230578\ttotal: 3.88s\tremaining: 761ms\n", |
|
|
4271 |
"418:\tlearn: 0.0230544\ttotal: 3.89s\tremaining: 752ms\n", |
|
|
4272 |
"419:\tlearn: 0.0230493\ttotal: 3.9s\tremaining: 742ms\n", |
|
|
4273 |
"420:\tlearn: 0.0230445\ttotal: 3.91s\tremaining: 733ms\n", |
|
|
4274 |
"421:\tlearn: 0.0230418\ttotal: 3.92s\tremaining: 724ms\n", |
|
|
4275 |
"422:\tlearn: 0.0230390\ttotal: 3.92s\tremaining: 715ms\n", |
|
|
4276 |
"423:\tlearn: 0.0230353\ttotal: 3.93s\tremaining: 705ms\n", |
|
|
4277 |
"424:\tlearn: 0.0230331\ttotal: 3.94s\tremaining: 696ms\n", |
|
|
4278 |
"425:\tlearn: 0.0230312\ttotal: 3.95s\tremaining: 687ms\n", |
|
|
4279 |
"426:\tlearn: 0.0230266\ttotal: 3.96s\tremaining: 677ms\n", |
|
|
4280 |
"427:\tlearn: 0.0230239\ttotal: 3.97s\tremaining: 668ms\n", |
|
|
4281 |
"428:\tlearn: 0.0230213\ttotal: 3.98s\tremaining: 659ms\n", |
|
|
4282 |
"429:\tlearn: 0.0230196\ttotal: 3.99s\tremaining: 650ms\n", |
|
|
4283 |
"430:\tlearn: 0.0230140\ttotal: 4s\tremaining: 640ms\n", |
|
|
4284 |
"431:\tlearn: 0.0230103\ttotal: 4.01s\tremaining: 631ms\n", |
|
|
4285 |
"432:\tlearn: 0.0230056\ttotal: 4.02s\tremaining: 622ms\n", |
|
|
4286 |
"433:\tlearn: 0.0230028\ttotal: 4.03s\tremaining: 612ms\n", |
|
|
4287 |
"434:\tlearn: 0.0230002\ttotal: 4.04s\tremaining: 603ms\n", |
|
|
4288 |
"435:\tlearn: 0.0229951\ttotal: 4.05s\tremaining: 594ms\n", |
|
|
4289 |
"436:\tlearn: 0.0229944\ttotal: 4.05s\tremaining: 585ms\n", |
|
|
4290 |
"437:\tlearn: 0.0229912\ttotal: 4.06s\tremaining: 575ms\n", |
|
|
4291 |
"438:\tlearn: 0.0229884\ttotal: 4.07s\tremaining: 566ms\n", |
|
|
4292 |
"439:\tlearn: 0.0229862\ttotal: 4.08s\tremaining: 557ms\n", |
|
|
4293 |
"440:\tlearn: 0.0229825\ttotal: 4.09s\tremaining: 548ms\n", |
|
|
4294 |
"441:\tlearn: 0.0229755\ttotal: 4.1s\tremaining: 538ms\n", |
|
|
4295 |
"442:\tlearn: 0.0229727\ttotal: 4.11s\tremaining: 529ms\n", |
|
|
4296 |
"443:\tlearn: 0.0229701\ttotal: 4.12s\tremaining: 520ms\n", |
|
|
4297 |
"444:\tlearn: 0.0229658\ttotal: 4.13s\tremaining: 510ms\n", |
|
|
4298 |
"445:\tlearn: 0.0229640\ttotal: 4.14s\tremaining: 501ms\n", |
|
|
4299 |
"446:\tlearn: 0.0229593\ttotal: 4.15s\tremaining: 492ms\n", |
|
|
4300 |
"447:\tlearn: 0.0229565\ttotal: 4.16s\tremaining: 483ms\n", |
|
|
4301 |
"448:\tlearn: 0.0229538\ttotal: 4.17s\tremaining: 473ms\n", |
|
|
4302 |
"449:\tlearn: 0.0229483\ttotal: 4.18s\tremaining: 464ms\n", |
|
|
4303 |
"450:\tlearn: 0.0229455\ttotal: 4.18s\tremaining: 455ms\n", |
|
|
4304 |
"451:\tlearn: 0.0229427\ttotal: 4.19s\tremaining: 445ms\n", |
|
|
4305 |
"452:\tlearn: 0.0229373\ttotal: 4.2s\tremaining: 436ms\n", |
|
|
4306 |
"453:\tlearn: 0.0229332\ttotal: 4.21s\tremaining: 427ms\n", |
|
|
4307 |
"454:\tlearn: 0.0229319\ttotal: 4.22s\tremaining: 418ms\n", |
|
|
4308 |
"455:\tlearn: 0.0229302\ttotal: 4.23s\tremaining: 408ms\n", |
|
|
4309 |
"456:\tlearn: 0.0229272\ttotal: 4.24s\tremaining: 399ms\n", |
|
|
4310 |
"457:\tlearn: 0.0229241\ttotal: 4.25s\tremaining: 390ms\n", |
|
|
4311 |
"458:\tlearn: 0.0229217\ttotal: 4.26s\tremaining: 381ms\n", |
|
|
4312 |
"459:\tlearn: 0.0229193\ttotal: 4.27s\tremaining: 371ms\n", |
|
|
4313 |
"460:\tlearn: 0.0229163\ttotal: 4.28s\tremaining: 362ms\n", |
|
|
4314 |
"461:\tlearn: 0.0229135\ttotal: 4.29s\tremaining: 353ms\n", |
|
|
4315 |
"462:\tlearn: 0.0229103\ttotal: 4.3s\tremaining: 343ms\n", |
|
|
4316 |
"463:\tlearn: 0.0229034\ttotal: 4.3s\tremaining: 334ms\n", |
|
|
4317 |
"464:\tlearn: 0.0229001\ttotal: 4.31s\tremaining: 325ms\n", |
|
|
4318 |
"465:\tlearn: 0.0228976\ttotal: 4.32s\tremaining: 315ms\n", |
|
|
4319 |
"466:\tlearn: 0.0228902\ttotal: 4.33s\tremaining: 306ms\n", |
|
|
4320 |
"467:\tlearn: 0.0228884\ttotal: 4.34s\tremaining: 297ms\n", |
|
|
4321 |
"468:\tlearn: 0.0228852\ttotal: 4.35s\tremaining: 288ms\n", |
|
|
4322 |
"469:\tlearn: 0.0228824\ttotal: 4.36s\tremaining: 278ms\n", |
|
|
4323 |
"470:\tlearn: 0.0228788\ttotal: 4.37s\tremaining: 269ms\n", |
|
|
4324 |
"471:\tlearn: 0.0228723\ttotal: 4.38s\tremaining: 260ms\n", |
|
|
4325 |
"472:\tlearn: 0.0228686\ttotal: 4.39s\tremaining: 250ms\n", |
|
|
4326 |
"473:\tlearn: 0.0228638\ttotal: 4.4s\tremaining: 241ms\n", |
|
|
4327 |
"474:\tlearn: 0.0228619\ttotal: 4.41s\tremaining: 232ms\n", |
|
|
4328 |
"475:\tlearn: 0.0228576\ttotal: 4.42s\tremaining: 223ms\n", |
|
|
4329 |
"476:\tlearn: 0.0228550\ttotal: 4.42s\tremaining: 213ms\n", |
|
|
4330 |
"477:\tlearn: 0.0228507\ttotal: 4.43s\tremaining: 204ms\n", |
|
|
4331 |
"478:\tlearn: 0.0228481\ttotal: 4.44s\tremaining: 195ms\n", |
|
|
4332 |
"479:\tlearn: 0.0228442\ttotal: 4.45s\tremaining: 186ms\n", |
|
|
4333 |
"480:\tlearn: 0.0228420\ttotal: 4.46s\tremaining: 176ms\n", |
|
|
4334 |
"481:\tlearn: 0.0228400\ttotal: 4.47s\tremaining: 167ms\n", |
|
|
4335 |
"482:\tlearn: 0.0228374\ttotal: 4.48s\tremaining: 158ms\n", |
|
|
4336 |
"483:\tlearn: 0.0228359\ttotal: 4.49s\tremaining: 148ms\n", |
|
|
4337 |
"484:\tlearn: 0.0228319\ttotal: 4.5s\tremaining: 139ms\n", |
|
|
4338 |
"485:\tlearn: 0.0228273\ttotal: 4.51s\tremaining: 130ms\n", |
|
|
4339 |
"486:\tlearn: 0.0228246\ttotal: 4.52s\tremaining: 121ms\n", |
|
|
4340 |
"487:\tlearn: 0.0228200\ttotal: 4.53s\tremaining: 111ms\n", |
|
|
4341 |
"488:\tlearn: 0.0228172\ttotal: 4.54s\tremaining: 102ms\n", |
|
|
4342 |
"489:\tlearn: 0.0228160\ttotal: 4.54s\tremaining: 92.8ms\n", |
|
|
4343 |
"490:\tlearn: 0.0228115\ttotal: 4.55s\tremaining: 83.5ms\n", |
|
|
4344 |
"491:\tlearn: 0.0228064\ttotal: 4.56s\tremaining: 74.2ms\n", |
|
|
4345 |
"492:\tlearn: 0.0228032\ttotal: 4.57s\tremaining: 64.9ms\n", |
|
|
4346 |
"493:\tlearn: 0.0228016\ttotal: 4.58s\tremaining: 55.7ms\n", |
|
|
4347 |
"494:\tlearn: 0.0227979\ttotal: 4.59s\tremaining: 46.4ms\n", |
|
|
4348 |
"495:\tlearn: 0.0227933\ttotal: 4.6s\tremaining: 37.1ms\n", |
|
|
4349 |
"496:\tlearn: 0.0227898\ttotal: 4.61s\tremaining: 27.8ms\n", |
|
|
4350 |
"497:\tlearn: 0.0227867\ttotal: 4.62s\tremaining: 18.6ms\n", |
|
|
4351 |
"498:\tlearn: 0.0227847\ttotal: 4.63s\tremaining: 9.28ms\n", |
|
|
4352 |
"499:\tlearn: 0.0227827\ttotal: 4.64s\tremaining: 0us\n" |
|
|
4353 |
] |
|
|
4354 |
}, |
|
|
4355 |
{ |
|
|
4356 |
"name": "stderr", |
|
|
4357 |
"output_type": "stream", |
|
|
4358 |
"text": [ |
|
|
4359 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
4360 |
] |
|
|
4361 |
}, |
|
|
4362 |
{ |
|
|
4363 |
"name": "stdout", |
|
|
4364 |
"output_type": "stream", |
|
|
4365 |
"text": [ |
|
|
4366 |
"0:\tlearn: 0.6197599\ttotal: 11.4ms\tremaining: 5.69s\n", |
|
|
4367 |
"1:\tlearn: 0.5539440\ttotal: 21.2ms\tremaining: 5.29s\n", |
|
|
4368 |
"2:\tlearn: 0.4974472\ttotal: 31.5ms\tremaining: 5.21s\n", |
|
|
4369 |
"3:\tlearn: 0.4421587\ttotal: 41.7ms\tremaining: 5.17s\n", |
|
|
4370 |
"4:\tlearn: 0.4004615\ttotal: 51.6ms\tremaining: 5.11s\n", |
|
|
4371 |
"5:\tlearn: 0.3558608\ttotal: 61.7ms\tremaining: 5.08s\n", |
|
|
4372 |
"6:\tlearn: 0.3247709\ttotal: 71.8ms\tremaining: 5.05s\n", |
|
|
4373 |
"7:\tlearn: 0.2907828\ttotal: 81.9ms\tremaining: 5.04s\n", |
|
|
4374 |
"8:\tlearn: 0.2654862\ttotal: 91.8ms\tremaining: 5.01s\n", |
|
|
4375 |
"9:\tlearn: 0.2403010\ttotal: 101ms\tremaining: 4.96s\n", |
|
|
4376 |
"10:\tlearn: 0.2196778\ttotal: 111ms\tremaining: 4.94s\n", |
|
|
4377 |
"11:\tlearn: 0.2017721\ttotal: 121ms\tremaining: 4.91s\n", |
|
|
4378 |
"12:\tlearn: 0.1855790\ttotal: 130ms\tremaining: 4.88s\n", |
|
|
4379 |
"13:\tlearn: 0.1716541\ttotal: 140ms\tremaining: 4.86s\n", |
|
|
4380 |
"14:\tlearn: 0.1589952\ttotal: 150ms\tremaining: 4.86s\n", |
|
|
4381 |
"15:\tlearn: 0.1482553\ttotal: 160ms\tremaining: 4.84s\n", |
|
|
4382 |
"16:\tlearn: 0.1389602\ttotal: 170ms\tremaining: 4.84s\n", |
|
|
4383 |
"17:\tlearn: 0.1308176\ttotal: 180ms\tremaining: 4.81s\n", |
|
|
4384 |
"18:\tlearn: 0.1237818\ttotal: 189ms\tremaining: 4.79s\n", |
|
|
4385 |
"19:\tlearn: 0.1177107\ttotal: 199ms\tremaining: 4.77s\n", |
|
|
4386 |
"20:\tlearn: 0.1122809\ttotal: 208ms\tremaining: 4.75s\n", |
|
|
4387 |
"21:\tlearn: 0.1075039\ttotal: 218ms\tremaining: 4.74s\n", |
|
|
4388 |
"22:\tlearn: 0.1033580\ttotal: 228ms\tremaining: 4.72s\n", |
|
|
4389 |
"23:\tlearn: 0.0995873\ttotal: 237ms\tremaining: 4.71s\n", |
|
|
4390 |
"24:\tlearn: 0.0962599\ttotal: 247ms\tremaining: 4.69s\n", |
|
|
4391 |
"25:\tlearn: 0.0932975\ttotal: 257ms\tremaining: 4.68s\n", |
|
|
4392 |
"26:\tlearn: 0.0907166\ttotal: 266ms\tremaining: 4.67s\n", |
|
|
4393 |
"27:\tlearn: 0.0883673\ttotal: 276ms\tremaining: 4.65s\n", |
|
|
4394 |
"28:\tlearn: 0.0860622\ttotal: 286ms\tremaining: 4.64s\n", |
|
|
4395 |
"29:\tlearn: 0.0840710\ttotal: 295ms\tremaining: 4.63s\n", |
|
|
4396 |
"30:\tlearn: 0.0824202\ttotal: 305ms\tremaining: 4.61s\n", |
|
|
4397 |
"31:\tlearn: 0.0808386\ttotal: 314ms\tremaining: 4.59s\n", |
|
|
4398 |
"32:\tlearn: 0.0794781\ttotal: 323ms\tremaining: 4.57s\n", |
|
|
4399 |
"33:\tlearn: 0.0782010\ttotal: 332ms\tremaining: 4.55s\n", |
|
|
4400 |
"34:\tlearn: 0.0770150\ttotal: 341ms\tremaining: 4.53s\n", |
|
|
4401 |
"35:\tlearn: 0.0759726\ttotal: 351ms\tremaining: 4.52s\n", |
|
|
4402 |
"36:\tlearn: 0.0749967\ttotal: 360ms\tremaining: 4.5s\n", |
|
|
4403 |
"37:\tlearn: 0.0741594\ttotal: 369ms\tremaining: 4.48s\n", |
|
|
4404 |
"38:\tlearn: 0.0734366\ttotal: 378ms\tremaining: 4.46s\n", |
|
|
4405 |
"39:\tlearn: 0.0727324\ttotal: 387ms\tremaining: 4.45s\n", |
|
|
4406 |
"40:\tlearn: 0.0721077\ttotal: 396ms\tremaining: 4.44s\n", |
|
|
4407 |
"41:\tlearn: 0.0714836\ttotal: 405ms\tremaining: 4.42s\n", |
|
|
4408 |
"42:\tlearn: 0.0709001\ttotal: 414ms\tremaining: 4.4s\n", |
|
|
4409 |
"43:\tlearn: 0.0703774\ttotal: 424ms\tremaining: 4.39s\n", |
|
|
4410 |
"44:\tlearn: 0.0698388\ttotal: 433ms\tremaining: 4.38s\n", |
|
|
4411 |
"45:\tlearn: 0.0693637\ttotal: 442ms\tremaining: 4.36s\n", |
|
|
4412 |
"46:\tlearn: 0.0688870\ttotal: 451ms\tremaining: 4.35s\n", |
|
|
4413 |
"47:\tlearn: 0.0684398\ttotal: 461ms\tremaining: 4.34s\n", |
|
|
4414 |
"48:\tlearn: 0.0681008\ttotal: 470ms\tremaining: 4.32s\n", |
|
|
4415 |
"49:\tlearn: 0.0676953\ttotal: 479ms\tremaining: 4.31s\n", |
|
|
4416 |
"50:\tlearn: 0.0674425\ttotal: 488ms\tremaining: 4.3s\n", |
|
|
4417 |
"51:\tlearn: 0.0671933\ttotal: 497ms\tremaining: 4.28s\n", |
|
|
4418 |
"52:\tlearn: 0.0668820\ttotal: 507ms\tremaining: 4.27s\n", |
|
|
4419 |
"53:\tlearn: 0.0665753\ttotal: 516ms\tremaining: 4.26s\n", |
|
|
4420 |
"54:\tlearn: 0.0662959\ttotal: 525ms\tremaining: 4.25s\n", |
|
|
4421 |
"55:\tlearn: 0.0660764\ttotal: 534ms\tremaining: 4.23s\n", |
|
|
4422 |
"56:\tlearn: 0.0659022\ttotal: 543ms\tremaining: 4.22s\n", |
|
|
4423 |
"57:\tlearn: 0.0657007\ttotal: 552ms\tremaining: 4.21s\n", |
|
|
4424 |
"58:\tlearn: 0.0655000\ttotal: 562ms\tremaining: 4.2s\n", |
|
|
4425 |
"59:\tlearn: 0.0652517\ttotal: 571ms\tremaining: 4.19s\n", |
|
|
4426 |
"60:\tlearn: 0.0651270\ttotal: 580ms\tremaining: 4.17s\n", |
|
|
4427 |
"61:\tlearn: 0.0649750\ttotal: 589ms\tremaining: 4.16s\n", |
|
|
4428 |
"62:\tlearn: 0.0648428\ttotal: 598ms\tremaining: 4.15s\n", |
|
|
4429 |
"63:\tlearn: 0.0646872\ttotal: 608ms\tremaining: 4.14s\n", |
|
|
4430 |
"64:\tlearn: 0.0645627\ttotal: 617ms\tremaining: 4.13s\n", |
|
|
4431 |
"65:\tlearn: 0.0644313\ttotal: 626ms\tremaining: 4.12s\n", |
|
|
4432 |
"66:\tlearn: 0.0643242\ttotal: 636ms\tremaining: 4.11s\n", |
|
|
4433 |
"67:\tlearn: 0.0642087\ttotal: 645ms\tremaining: 4.1s\n", |
|
|
4434 |
"68:\tlearn: 0.0641038\ttotal: 655ms\tremaining: 4.09s\n", |
|
|
4435 |
"69:\tlearn: 0.0640007\ttotal: 664ms\tremaining: 4.08s\n", |
|
|
4436 |
"70:\tlearn: 0.0638589\ttotal: 673ms\tremaining: 4.07s\n", |
|
|
4437 |
"71:\tlearn: 0.0637322\ttotal: 682ms\tremaining: 4.06s\n", |
|
|
4438 |
"72:\tlearn: 0.0636099\ttotal: 692ms\tremaining: 4.04s\n", |
|
|
4439 |
"73:\tlearn: 0.0635147\ttotal: 701ms\tremaining: 4.04s\n", |
|
|
4440 |
"74:\tlearn: 0.0634454\ttotal: 710ms\tremaining: 4.03s\n", |
|
|
4441 |
"75:\tlearn: 0.0633832\ttotal: 719ms\tremaining: 4.01s\n", |
|
|
4442 |
"76:\tlearn: 0.0633424\ttotal: 728ms\tremaining: 4s\n", |
|
|
4443 |
"77:\tlearn: 0.0632714\ttotal: 738ms\tremaining: 3.99s\n", |
|
|
4444 |
"78:\tlearn: 0.0632311\ttotal: 747ms\tremaining: 3.98s\n", |
|
|
4445 |
"79:\tlearn: 0.0631866\ttotal: 755ms\tremaining: 3.97s\n", |
|
|
4446 |
"80:\tlearn: 0.0631225\ttotal: 765ms\tremaining: 3.96s\n", |
|
|
4447 |
"81:\tlearn: 0.0630718\ttotal: 774ms\tremaining: 3.95s\n", |
|
|
4448 |
"82:\tlearn: 0.0630125\ttotal: 783ms\tremaining: 3.94s\n", |
|
|
4449 |
"83:\tlearn: 0.0629523\ttotal: 793ms\tremaining: 3.92s\n", |
|
|
4450 |
"84:\tlearn: 0.0628937\ttotal: 802ms\tremaining: 3.91s\n", |
|
|
4451 |
"85:\tlearn: 0.0628508\ttotal: 811ms\tremaining: 3.9s\n", |
|
|
4452 |
"86:\tlearn: 0.0628201\ttotal: 820ms\tremaining: 3.89s\n", |
|
|
4453 |
"87:\tlearn: 0.0627957\ttotal: 829ms\tremaining: 3.88s\n", |
|
|
4454 |
"88:\tlearn: 0.0627630\ttotal: 838ms\tremaining: 3.87s\n", |
|
|
4455 |
"89:\tlearn: 0.0627322\ttotal: 847ms\tremaining: 3.86s\n", |
|
|
4456 |
"90:\tlearn: 0.0626900\ttotal: 856ms\tremaining: 3.85s\n", |
|
|
4457 |
"91:\tlearn: 0.0626589\ttotal: 865ms\tremaining: 3.84s\n", |
|
|
4458 |
"92:\tlearn: 0.0626264\ttotal: 874ms\tremaining: 3.83s\n", |
|
|
4459 |
"93:\tlearn: 0.0625972\ttotal: 884ms\tremaining: 3.82s\n", |
|
|
4460 |
"94:\tlearn: 0.0625562\ttotal: 893ms\tremaining: 3.81s\n", |
|
|
4461 |
"95:\tlearn: 0.0625301\ttotal: 902ms\tremaining: 3.8s\n", |
|
|
4462 |
"96:\tlearn: 0.0625057\ttotal: 911ms\tremaining: 3.79s\n", |
|
|
4463 |
"97:\tlearn: 0.0624874\ttotal: 920ms\tremaining: 3.77s\n", |
|
|
4464 |
"98:\tlearn: 0.0624521\ttotal: 929ms\tremaining: 3.76s\n", |
|
|
4465 |
"99:\tlearn: 0.0624235\ttotal: 938ms\tremaining: 3.75s\n", |
|
|
4466 |
"100:\tlearn: 0.0623688\ttotal: 948ms\tremaining: 3.74s\n", |
|
|
4467 |
"101:\tlearn: 0.0623498\ttotal: 957ms\tremaining: 3.73s\n", |
|
|
4468 |
"102:\tlearn: 0.0623129\ttotal: 967ms\tremaining: 3.73s\n", |
|
|
4469 |
"103:\tlearn: 0.0622824\ttotal: 976ms\tremaining: 3.72s\n", |
|
|
4470 |
"104:\tlearn: 0.0622528\ttotal: 986ms\tremaining: 3.71s\n", |
|
|
4471 |
"105:\tlearn: 0.0622348\ttotal: 996ms\tremaining: 3.7s\n", |
|
|
4472 |
"106:\tlearn: 0.0622053\ttotal: 1s\tremaining: 3.69s\n", |
|
|
4473 |
"107:\tlearn: 0.0621687\ttotal: 1.01s\tremaining: 3.68s\n", |
|
|
4474 |
"108:\tlearn: 0.0621487\ttotal: 1.02s\tremaining: 3.67s\n", |
|
|
4475 |
"109:\tlearn: 0.0621185\ttotal: 1.03s\tremaining: 3.66s\n", |
|
|
4476 |
"110:\tlearn: 0.0620974\ttotal: 1.04s\tremaining: 3.65s\n", |
|
|
4477 |
"111:\tlearn: 0.0620801\ttotal: 1.05s\tremaining: 3.65s\n", |
|
|
4478 |
"112:\tlearn: 0.0620601\ttotal: 1.06s\tremaining: 3.63s\n", |
|
|
4479 |
"113:\tlearn: 0.0620329\ttotal: 1.07s\tremaining: 3.63s\n", |
|
|
4480 |
"114:\tlearn: 0.0620181\ttotal: 1.08s\tremaining: 3.61s\n", |
|
|
4481 |
"115:\tlearn: 0.0619970\ttotal: 1.09s\tremaining: 3.6s\n", |
|
|
4482 |
"116:\tlearn: 0.0619757\ttotal: 1.1s\tremaining: 3.59s\n", |
|
|
4483 |
"117:\tlearn: 0.0619538\ttotal: 1.11s\tremaining: 3.58s\n", |
|
|
4484 |
"118:\tlearn: 0.0619260\ttotal: 1.12s\tremaining: 3.58s\n", |
|
|
4485 |
"119:\tlearn: 0.0619023\ttotal: 1.13s\tremaining: 3.57s\n", |
|
|
4486 |
"120:\tlearn: 0.0618809\ttotal: 1.14s\tremaining: 3.56s\n", |
|
|
4487 |
"121:\tlearn: 0.0618591\ttotal: 1.15s\tremaining: 3.55s\n", |
|
|
4488 |
"122:\tlearn: 0.0618399\ttotal: 1.15s\tremaining: 3.54s\n", |
|
|
4489 |
"123:\tlearn: 0.0618207\ttotal: 1.16s\tremaining: 3.53s\n", |
|
|
4490 |
"124:\tlearn: 0.0618017\ttotal: 1.17s\tremaining: 3.52s\n", |
|
|
4491 |
"125:\tlearn: 0.0617721\ttotal: 1.18s\tremaining: 3.51s\n", |
|
|
4492 |
"126:\tlearn: 0.0617523\ttotal: 1.19s\tremaining: 3.5s\n", |
|
|
4493 |
"127:\tlearn: 0.0617403\ttotal: 1.2s\tremaining: 3.49s\n", |
|
|
4494 |
"128:\tlearn: 0.0617212\ttotal: 1.21s\tremaining: 3.48s\n", |
|
|
4495 |
"129:\tlearn: 0.0617085\ttotal: 1.22s\tremaining: 3.47s\n", |
|
|
4496 |
"130:\tlearn: 0.0616953\ttotal: 1.23s\tremaining: 3.47s\n", |
|
|
4497 |
"131:\tlearn: 0.0616842\ttotal: 1.24s\tremaining: 3.46s\n", |
|
|
4498 |
"132:\tlearn: 0.0616678\ttotal: 1.25s\tremaining: 3.45s\n", |
|
|
4499 |
"133:\tlearn: 0.0616347\ttotal: 1.26s\tremaining: 3.44s\n", |
|
|
4500 |
"134:\tlearn: 0.0616082\ttotal: 1.27s\tremaining: 3.43s\n", |
|
|
4501 |
"135:\tlearn: 0.0615921\ttotal: 1.28s\tremaining: 3.42s\n", |
|
|
4502 |
"136:\tlearn: 0.0615793\ttotal: 1.29s\tremaining: 3.41s\n", |
|
|
4503 |
"137:\tlearn: 0.0615595\ttotal: 1.29s\tremaining: 3.4s\n", |
|
|
4504 |
"138:\tlearn: 0.0615415\ttotal: 1.3s\tremaining: 3.39s\n", |
|
|
4505 |
"139:\tlearn: 0.0615260\ttotal: 1.31s\tremaining: 3.38s\n", |
|
|
4506 |
"140:\tlearn: 0.0615042\ttotal: 1.32s\tremaining: 3.37s\n", |
|
|
4507 |
"141:\tlearn: 0.0614944\ttotal: 1.33s\tremaining: 3.36s\n", |
|
|
4508 |
"142:\tlearn: 0.0614847\ttotal: 1.34s\tremaining: 3.35s\n", |
|
|
4509 |
"143:\tlearn: 0.0614642\ttotal: 1.35s\tremaining: 3.34s\n", |
|
|
4510 |
"144:\tlearn: 0.0614468\ttotal: 1.36s\tremaining: 3.33s\n", |
|
|
4511 |
"145:\tlearn: 0.0614301\ttotal: 1.37s\tremaining: 3.32s\n", |
|
|
4512 |
"146:\tlearn: 0.0614162\ttotal: 1.38s\tremaining: 3.31s\n", |
|
|
4513 |
"147:\tlearn: 0.0614059\ttotal: 1.39s\tremaining: 3.3s\n", |
|
|
4514 |
"148:\tlearn: 0.0613920\ttotal: 1.4s\tremaining: 3.29s\n", |
|
|
4515 |
"149:\tlearn: 0.0613693\ttotal: 1.41s\tremaining: 3.28s\n", |
|
|
4516 |
"150:\tlearn: 0.0613478\ttotal: 1.41s\tremaining: 3.27s\n", |
|
|
4517 |
"151:\tlearn: 0.0613308\ttotal: 1.42s\tremaining: 3.26s\n", |
|
|
4518 |
"152:\tlearn: 0.0613094\ttotal: 1.43s\tremaining: 3.25s\n", |
|
|
4519 |
"153:\tlearn: 0.0612973\ttotal: 1.44s\tremaining: 3.24s\n", |
|
|
4520 |
"154:\tlearn: 0.0612902\ttotal: 1.45s\tremaining: 3.23s\n", |
|
|
4521 |
"155:\tlearn: 0.0612748\ttotal: 1.46s\tremaining: 3.22s\n", |
|
|
4522 |
"156:\tlearn: 0.0612667\ttotal: 1.47s\tremaining: 3.21s\n", |
|
|
4523 |
"157:\tlearn: 0.0612495\ttotal: 1.48s\tremaining: 3.2s\n", |
|
|
4524 |
"158:\tlearn: 0.0612386\ttotal: 1.49s\tremaining: 3.19s\n", |
|
|
4525 |
"159:\tlearn: 0.0612196\ttotal: 1.5s\tremaining: 3.18s\n", |
|
|
4526 |
"160:\tlearn: 0.0612071\ttotal: 1.51s\tremaining: 3.17s\n", |
|
|
4527 |
"161:\tlearn: 0.0611869\ttotal: 1.51s\tremaining: 3.16s\n", |
|
|
4528 |
"162:\tlearn: 0.0611781\ttotal: 1.52s\tremaining: 3.15s\n", |
|
|
4529 |
"163:\tlearn: 0.0611650\ttotal: 1.53s\tremaining: 3.14s\n", |
|
|
4530 |
"164:\tlearn: 0.0611508\ttotal: 1.54s\tremaining: 3.13s\n", |
|
|
4531 |
"165:\tlearn: 0.0611416\ttotal: 1.55s\tremaining: 3.12s\n", |
|
|
4532 |
"166:\tlearn: 0.0611246\ttotal: 1.56s\tremaining: 3.12s\n", |
|
|
4533 |
"167:\tlearn: 0.0611179\ttotal: 1.57s\tremaining: 3.11s\n", |
|
|
4534 |
"168:\tlearn: 0.0611007\ttotal: 1.58s\tremaining: 3.1s\n", |
|
|
4535 |
"169:\tlearn: 0.0610868\ttotal: 1.59s\tremaining: 3.09s\n", |
|
|
4536 |
"170:\tlearn: 0.0610713\ttotal: 1.6s\tremaining: 3.08s\n", |
|
|
4537 |
"171:\tlearn: 0.0610593\ttotal: 1.61s\tremaining: 3.07s\n", |
|
|
4538 |
"172:\tlearn: 0.0610472\ttotal: 1.62s\tremaining: 3.06s\n", |
|
|
4539 |
"173:\tlearn: 0.0610360\ttotal: 1.63s\tremaining: 3.05s\n", |
|
|
4540 |
"174:\tlearn: 0.0610204\ttotal: 1.64s\tremaining: 3.04s\n" |
|
|
4541 |
] |
|
|
4542 |
}, |
|
|
4543 |
{ |
|
|
4544 |
"name": "stdout", |
|
|
4545 |
"output_type": "stream", |
|
|
4546 |
"text": [ |
|
|
4547 |
"175:\tlearn: 0.0609980\ttotal: 1.65s\tremaining: 3.03s\n", |
|
|
4548 |
"176:\tlearn: 0.0609863\ttotal: 1.66s\tremaining: 3.02s\n", |
|
|
4549 |
"177:\tlearn: 0.0609757\ttotal: 1.66s\tremaining: 3.01s\n", |
|
|
4550 |
"178:\tlearn: 0.0609594\ttotal: 1.67s\tremaining: 3s\n", |
|
|
4551 |
"179:\tlearn: 0.0609472\ttotal: 1.68s\tremaining: 2.99s\n", |
|
|
4552 |
"180:\tlearn: 0.0609355\ttotal: 1.69s\tremaining: 2.98s\n", |
|
|
4553 |
"181:\tlearn: 0.0609242\ttotal: 1.7s\tremaining: 2.97s\n", |
|
|
4554 |
"182:\tlearn: 0.0609147\ttotal: 1.71s\tremaining: 2.96s\n", |
|
|
4555 |
"183:\tlearn: 0.0609061\ttotal: 1.72s\tremaining: 2.95s\n", |
|
|
4556 |
"184:\tlearn: 0.0608873\ttotal: 1.73s\tremaining: 2.94s\n", |
|
|
4557 |
"185:\tlearn: 0.0608789\ttotal: 1.74s\tremaining: 2.93s\n", |
|
|
4558 |
"186:\tlearn: 0.0608684\ttotal: 1.75s\tremaining: 2.92s\n", |
|
|
4559 |
"187:\tlearn: 0.0608566\ttotal: 1.76s\tremaining: 2.92s\n", |
|
|
4560 |
"188:\tlearn: 0.0608426\ttotal: 1.77s\tremaining: 2.91s\n", |
|
|
4561 |
"189:\tlearn: 0.0608273\ttotal: 1.77s\tremaining: 2.9s\n", |
|
|
4562 |
"190:\tlearn: 0.0608137\ttotal: 1.78s\tremaining: 2.89s\n", |
|
|
4563 |
"191:\tlearn: 0.0608056\ttotal: 1.79s\tremaining: 2.88s\n", |
|
|
4564 |
"192:\tlearn: 0.0607971\ttotal: 1.8s\tremaining: 2.87s\n", |
|
|
4565 |
"193:\tlearn: 0.0607899\ttotal: 1.81s\tremaining: 2.86s\n", |
|
|
4566 |
"194:\tlearn: 0.0607716\ttotal: 1.82s\tremaining: 2.85s\n", |
|
|
4567 |
"195:\tlearn: 0.0607659\ttotal: 1.83s\tremaining: 2.84s\n", |
|
|
4568 |
"196:\tlearn: 0.0607493\ttotal: 1.84s\tremaining: 2.83s\n", |
|
|
4569 |
"197:\tlearn: 0.0607415\ttotal: 1.85s\tremaining: 2.82s\n", |
|
|
4570 |
"198:\tlearn: 0.0607340\ttotal: 1.86s\tremaining: 2.81s\n", |
|
|
4571 |
"199:\tlearn: 0.0607244\ttotal: 1.87s\tremaining: 2.8s\n", |
|
|
4572 |
"200:\tlearn: 0.0607070\ttotal: 1.88s\tremaining: 2.79s\n", |
|
|
4573 |
"201:\tlearn: 0.0607030\ttotal: 1.89s\tremaining: 2.78s\n", |
|
|
4574 |
"202:\tlearn: 0.0606960\ttotal: 1.9s\tremaining: 2.77s\n", |
|
|
4575 |
"203:\tlearn: 0.0606768\ttotal: 1.91s\tremaining: 2.76s\n", |
|
|
4576 |
"204:\tlearn: 0.0606718\ttotal: 1.91s\tremaining: 2.75s\n", |
|
|
4577 |
"205:\tlearn: 0.0606646\ttotal: 1.92s\tremaining: 2.75s\n", |
|
|
4578 |
"206:\tlearn: 0.0606492\ttotal: 1.93s\tremaining: 2.74s\n", |
|
|
4579 |
"207:\tlearn: 0.0606424\ttotal: 1.94s\tremaining: 2.73s\n", |
|
|
4580 |
"208:\tlearn: 0.0606318\ttotal: 1.95s\tremaining: 2.72s\n", |
|
|
4581 |
"209:\tlearn: 0.0606147\ttotal: 1.96s\tremaining: 2.71s\n", |
|
|
4582 |
"210:\tlearn: 0.0605959\ttotal: 1.97s\tremaining: 2.7s\n", |
|
|
4583 |
"211:\tlearn: 0.0605884\ttotal: 1.98s\tremaining: 2.69s\n", |
|
|
4584 |
"212:\tlearn: 0.0605775\ttotal: 1.99s\tremaining: 2.68s\n", |
|
|
4585 |
"213:\tlearn: 0.0605666\ttotal: 2s\tremaining: 2.67s\n", |
|
|
4586 |
"214:\tlearn: 0.0605566\ttotal: 2.01s\tremaining: 2.66s\n", |
|
|
4587 |
"215:\tlearn: 0.0605487\ttotal: 2.02s\tremaining: 2.65s\n", |
|
|
4588 |
"216:\tlearn: 0.0605309\ttotal: 2.02s\tremaining: 2.64s\n", |
|
|
4589 |
"217:\tlearn: 0.0605239\ttotal: 2.03s\tremaining: 2.63s\n", |
|
|
4590 |
"218:\tlearn: 0.0605162\ttotal: 2.04s\tremaining: 2.62s\n", |
|
|
4591 |
"219:\tlearn: 0.0605067\ttotal: 2.05s\tremaining: 2.61s\n", |
|
|
4592 |
"220:\tlearn: 0.0604990\ttotal: 2.06s\tremaining: 2.6s\n", |
|
|
4593 |
"221:\tlearn: 0.0604882\ttotal: 2.07s\tremaining: 2.59s\n", |
|
|
4594 |
"222:\tlearn: 0.0604755\ttotal: 2.08s\tremaining: 2.58s\n", |
|
|
4595 |
"223:\tlearn: 0.0604586\ttotal: 2.09s\tremaining: 2.57s\n", |
|
|
4596 |
"224:\tlearn: 0.0604526\ttotal: 2.1s\tremaining: 2.56s\n", |
|
|
4597 |
"225:\tlearn: 0.0604437\ttotal: 2.11s\tremaining: 2.55s\n", |
|
|
4598 |
"226:\tlearn: 0.0604304\ttotal: 2.12s\tremaining: 2.54s\n", |
|
|
4599 |
"227:\tlearn: 0.0604222\ttotal: 2.12s\tremaining: 2.53s\n", |
|
|
4600 |
"228:\tlearn: 0.0604107\ttotal: 2.13s\tremaining: 2.52s\n", |
|
|
4601 |
"229:\tlearn: 0.0604032\ttotal: 2.14s\tremaining: 2.52s\n", |
|
|
4602 |
"230:\tlearn: 0.0603939\ttotal: 2.15s\tremaining: 2.51s\n", |
|
|
4603 |
"231:\tlearn: 0.0603809\ttotal: 2.16s\tremaining: 2.5s\n", |
|
|
4604 |
"232:\tlearn: 0.0603694\ttotal: 2.17s\tremaining: 2.49s\n", |
|
|
4605 |
"233:\tlearn: 0.0603504\ttotal: 2.18s\tremaining: 2.48s\n", |
|
|
4606 |
"234:\tlearn: 0.0603391\ttotal: 2.19s\tremaining: 2.47s\n", |
|
|
4607 |
"235:\tlearn: 0.0603273\ttotal: 2.2s\tremaining: 2.46s\n", |
|
|
4608 |
"236:\tlearn: 0.0603146\ttotal: 2.21s\tremaining: 2.45s\n", |
|
|
4609 |
"237:\tlearn: 0.0603013\ttotal: 2.22s\tremaining: 2.44s\n", |
|
|
4610 |
"238:\tlearn: 0.0602950\ttotal: 2.22s\tremaining: 2.43s\n", |
|
|
4611 |
"239:\tlearn: 0.0602841\ttotal: 2.23s\tremaining: 2.42s\n", |
|
|
4612 |
"240:\tlearn: 0.0602715\ttotal: 2.24s\tremaining: 2.41s\n", |
|
|
4613 |
"241:\tlearn: 0.0602657\ttotal: 2.25s\tremaining: 2.4s\n", |
|
|
4614 |
"242:\tlearn: 0.0602541\ttotal: 2.26s\tremaining: 2.39s\n", |
|
|
4615 |
"243:\tlearn: 0.0602432\ttotal: 2.27s\tremaining: 2.38s\n", |
|
|
4616 |
"244:\tlearn: 0.0602388\ttotal: 2.28s\tremaining: 2.37s\n", |
|
|
4617 |
"245:\tlearn: 0.0602338\ttotal: 2.29s\tremaining: 2.36s\n", |
|
|
4618 |
"246:\tlearn: 0.0602254\ttotal: 2.3s\tremaining: 2.35s\n", |
|
|
4619 |
"247:\tlearn: 0.0602169\ttotal: 2.31s\tremaining: 2.34s\n", |
|
|
4620 |
"248:\tlearn: 0.0602052\ttotal: 2.32s\tremaining: 2.33s\n", |
|
|
4621 |
"249:\tlearn: 0.0601975\ttotal: 2.33s\tremaining: 2.33s\n", |
|
|
4622 |
"250:\tlearn: 0.0601855\ttotal: 2.33s\tremaining: 2.32s\n", |
|
|
4623 |
"251:\tlearn: 0.0601784\ttotal: 2.34s\tremaining: 2.31s\n", |
|
|
4624 |
"252:\tlearn: 0.0601639\ttotal: 2.35s\tremaining: 2.3s\n", |
|
|
4625 |
"253:\tlearn: 0.0601496\ttotal: 2.36s\tremaining: 2.29s\n", |
|
|
4626 |
"254:\tlearn: 0.0601408\ttotal: 2.37s\tremaining: 2.28s\n", |
|
|
4627 |
"255:\tlearn: 0.0601308\ttotal: 2.38s\tremaining: 2.27s\n", |
|
|
4628 |
"256:\tlearn: 0.0601223\ttotal: 2.39s\tremaining: 2.26s\n", |
|
|
4629 |
"257:\tlearn: 0.0601045\ttotal: 2.4s\tremaining: 2.25s\n", |
|
|
4630 |
"258:\tlearn: 0.0600967\ttotal: 2.41s\tremaining: 2.24s\n", |
|
|
4631 |
"259:\tlearn: 0.0600825\ttotal: 2.42s\tremaining: 2.23s\n", |
|
|
4632 |
"260:\tlearn: 0.0600741\ttotal: 2.43s\tremaining: 2.22s\n", |
|
|
4633 |
"261:\tlearn: 0.0600637\ttotal: 2.44s\tremaining: 2.21s\n", |
|
|
4634 |
"262:\tlearn: 0.0600533\ttotal: 2.44s\tremaining: 2.2s\n", |
|
|
4635 |
"263:\tlearn: 0.0600443\ttotal: 2.45s\tremaining: 2.19s\n", |
|
|
4636 |
"264:\tlearn: 0.0600347\ttotal: 2.46s\tremaining: 2.18s\n", |
|
|
4637 |
"265:\tlearn: 0.0600209\ttotal: 2.47s\tremaining: 2.17s\n", |
|
|
4638 |
"266:\tlearn: 0.0600162\ttotal: 2.48s\tremaining: 2.17s\n", |
|
|
4639 |
"267:\tlearn: 0.0600030\ttotal: 2.49s\tremaining: 2.15s\n", |
|
|
4640 |
"268:\tlearn: 0.0599939\ttotal: 2.5s\tremaining: 2.15s\n", |
|
|
4641 |
"269:\tlearn: 0.0599905\ttotal: 2.51s\tremaining: 2.14s\n", |
|
|
4642 |
"270:\tlearn: 0.0599853\ttotal: 2.52s\tremaining: 2.13s\n", |
|
|
4643 |
"271:\tlearn: 0.0599759\ttotal: 2.53s\tremaining: 2.12s\n", |
|
|
4644 |
"272:\tlearn: 0.0599700\ttotal: 2.54s\tremaining: 2.11s\n", |
|
|
4645 |
"273:\tlearn: 0.0599606\ttotal: 2.54s\tremaining: 2.1s\n", |
|
|
4646 |
"274:\tlearn: 0.0599445\ttotal: 2.55s\tremaining: 2.09s\n", |
|
|
4647 |
"275:\tlearn: 0.0599363\ttotal: 2.56s\tremaining: 2.08s\n", |
|
|
4648 |
"276:\tlearn: 0.0599293\ttotal: 2.57s\tremaining: 2.07s\n", |
|
|
4649 |
"277:\tlearn: 0.0599189\ttotal: 2.58s\tremaining: 2.06s\n", |
|
|
4650 |
"278:\tlearn: 0.0599090\ttotal: 2.59s\tremaining: 2.05s\n", |
|
|
4651 |
"279:\tlearn: 0.0599009\ttotal: 2.6s\tremaining: 2.04s\n", |
|
|
4652 |
"280:\tlearn: 0.0598855\ttotal: 2.61s\tremaining: 2.03s\n", |
|
|
4653 |
"281:\tlearn: 0.0598800\ttotal: 2.62s\tremaining: 2.02s\n", |
|
|
4654 |
"282:\tlearn: 0.0598744\ttotal: 2.63s\tremaining: 2.02s\n", |
|
|
4655 |
"283:\tlearn: 0.0598632\ttotal: 2.64s\tremaining: 2s\n", |
|
|
4656 |
"284:\tlearn: 0.0598525\ttotal: 2.65s\tremaining: 2s\n", |
|
|
4657 |
"285:\tlearn: 0.0598483\ttotal: 2.65s\tremaining: 1.99s\n", |
|
|
4658 |
"286:\tlearn: 0.0598313\ttotal: 2.67s\tremaining: 1.98s\n", |
|
|
4659 |
"287:\tlearn: 0.0598226\ttotal: 2.67s\tremaining: 1.97s\n", |
|
|
4660 |
"288:\tlearn: 0.0598168\ttotal: 2.68s\tremaining: 1.96s\n", |
|
|
4661 |
"289:\tlearn: 0.0598095\ttotal: 2.69s\tremaining: 1.95s\n", |
|
|
4662 |
"290:\tlearn: 0.0598022\ttotal: 2.7s\tremaining: 1.94s\n", |
|
|
4663 |
"291:\tlearn: 0.0597964\ttotal: 2.71s\tremaining: 1.93s\n", |
|
|
4664 |
"292:\tlearn: 0.0597813\ttotal: 2.72s\tremaining: 1.92s\n", |
|
|
4665 |
"293:\tlearn: 0.0597702\ttotal: 2.73s\tremaining: 1.91s\n", |
|
|
4666 |
"294:\tlearn: 0.0597599\ttotal: 2.74s\tremaining: 1.9s\n", |
|
|
4667 |
"295:\tlearn: 0.0597454\ttotal: 2.75s\tremaining: 1.89s\n", |
|
|
4668 |
"296:\tlearn: 0.0597360\ttotal: 2.76s\tremaining: 1.88s\n", |
|
|
4669 |
"297:\tlearn: 0.0597263\ttotal: 2.77s\tremaining: 1.88s\n", |
|
|
4670 |
"298:\tlearn: 0.0597161\ttotal: 2.78s\tremaining: 1.87s\n", |
|
|
4671 |
"299:\tlearn: 0.0597012\ttotal: 2.79s\tremaining: 1.86s\n", |
|
|
4672 |
"300:\tlearn: 0.0596887\ttotal: 2.79s\tremaining: 1.85s\n", |
|
|
4673 |
"301:\tlearn: 0.0596628\ttotal: 2.8s\tremaining: 1.84s\n", |
|
|
4674 |
"302:\tlearn: 0.0596502\ttotal: 2.81s\tremaining: 1.83s\n", |
|
|
4675 |
"303:\tlearn: 0.0596415\ttotal: 2.82s\tremaining: 1.82s\n", |
|
|
4676 |
"304:\tlearn: 0.0596326\ttotal: 2.83s\tremaining: 1.81s\n", |
|
|
4677 |
"305:\tlearn: 0.0596266\ttotal: 2.84s\tremaining: 1.8s\n", |
|
|
4678 |
"306:\tlearn: 0.0596180\ttotal: 2.85s\tremaining: 1.79s\n", |
|
|
4679 |
"307:\tlearn: 0.0596085\ttotal: 2.86s\tremaining: 1.78s\n", |
|
|
4680 |
"308:\tlearn: 0.0596011\ttotal: 2.87s\tremaining: 1.77s\n", |
|
|
4681 |
"309:\tlearn: 0.0595902\ttotal: 2.88s\tremaining: 1.76s\n", |
|
|
4682 |
"310:\tlearn: 0.0595808\ttotal: 2.89s\tremaining: 1.75s\n", |
|
|
4683 |
"311:\tlearn: 0.0595681\ttotal: 2.9s\tremaining: 1.75s\n", |
|
|
4684 |
"312:\tlearn: 0.0595615\ttotal: 2.91s\tremaining: 1.74s\n", |
|
|
4685 |
"313:\tlearn: 0.0595529\ttotal: 2.92s\tremaining: 1.73s\n", |
|
|
4686 |
"314:\tlearn: 0.0595444\ttotal: 2.92s\tremaining: 1.72s\n", |
|
|
4687 |
"315:\tlearn: 0.0595383\ttotal: 2.93s\tremaining: 1.71s\n", |
|
|
4688 |
"316:\tlearn: 0.0595255\ttotal: 2.94s\tremaining: 1.7s\n", |
|
|
4689 |
"317:\tlearn: 0.0595126\ttotal: 2.95s\tremaining: 1.69s\n", |
|
|
4690 |
"318:\tlearn: 0.0595058\ttotal: 2.96s\tremaining: 1.68s\n", |
|
|
4691 |
"319:\tlearn: 0.0595013\ttotal: 2.97s\tremaining: 1.67s\n", |
|
|
4692 |
"320:\tlearn: 0.0594914\ttotal: 2.98s\tremaining: 1.66s\n", |
|
|
4693 |
"321:\tlearn: 0.0594793\ttotal: 2.99s\tremaining: 1.65s\n", |
|
|
4694 |
"322:\tlearn: 0.0594705\ttotal: 3s\tremaining: 1.64s\n", |
|
|
4695 |
"323:\tlearn: 0.0594618\ttotal: 3.01s\tremaining: 1.64s\n", |
|
|
4696 |
"324:\tlearn: 0.0594574\ttotal: 3.02s\tremaining: 1.63s\n", |
|
|
4697 |
"325:\tlearn: 0.0594470\ttotal: 3.03s\tremaining: 1.62s\n", |
|
|
4698 |
"326:\tlearn: 0.0594389\ttotal: 3.04s\tremaining: 1.61s\n", |
|
|
4699 |
"327:\tlearn: 0.0594316\ttotal: 3.05s\tremaining: 1.6s\n", |
|
|
4700 |
"328:\tlearn: 0.0594217\ttotal: 3.06s\tremaining: 1.59s\n", |
|
|
4701 |
"329:\tlearn: 0.0594156\ttotal: 3.07s\tremaining: 1.58s\n", |
|
|
4702 |
"330:\tlearn: 0.0594062\ttotal: 3.08s\tremaining: 1.57s\n", |
|
|
4703 |
"331:\tlearn: 0.0593972\ttotal: 3.08s\tremaining: 1.56s\n", |
|
|
4704 |
"332:\tlearn: 0.0593861\ttotal: 3.09s\tremaining: 1.55s\n", |
|
|
4705 |
"333:\tlearn: 0.0593770\ttotal: 3.1s\tremaining: 1.54s\n", |
|
|
4706 |
"334:\tlearn: 0.0593660\ttotal: 3.11s\tremaining: 1.53s\n", |
|
|
4707 |
"335:\tlearn: 0.0593566\ttotal: 3.12s\tremaining: 1.52s\n", |
|
|
4708 |
"336:\tlearn: 0.0593486\ttotal: 3.13s\tremaining: 1.51s\n", |
|
|
4709 |
"337:\tlearn: 0.0593373\ttotal: 3.14s\tremaining: 1.5s\n", |
|
|
4710 |
"338:\tlearn: 0.0593241\ttotal: 3.15s\tremaining: 1.5s\n", |
|
|
4711 |
"339:\tlearn: 0.0593142\ttotal: 3.16s\tremaining: 1.49s\n", |
|
|
4712 |
"340:\tlearn: 0.0593084\ttotal: 3.17s\tremaining: 1.48s\n", |
|
|
4713 |
"341:\tlearn: 0.0593020\ttotal: 3.18s\tremaining: 1.47s\n", |
|
|
4714 |
"342:\tlearn: 0.0592939\ttotal: 3.19s\tremaining: 1.46s\n", |
|
|
4715 |
"343:\tlearn: 0.0592803\ttotal: 3.2s\tremaining: 1.45s\n", |
|
|
4716 |
"344:\tlearn: 0.0592742\ttotal: 3.21s\tremaining: 1.44s\n", |
|
|
4717 |
"345:\tlearn: 0.0592647\ttotal: 3.21s\tremaining: 1.43s\n", |
|
|
4718 |
"346:\tlearn: 0.0592590\ttotal: 3.22s\tremaining: 1.42s\n", |
|
|
4719 |
"347:\tlearn: 0.0592468\ttotal: 3.23s\tremaining: 1.41s\n", |
|
|
4720 |
"348:\tlearn: 0.0592403\ttotal: 3.24s\tremaining: 1.4s\n", |
|
|
4721 |
"349:\tlearn: 0.0592297\ttotal: 3.25s\tremaining: 1.39s\n", |
|
|
4722 |
"350:\tlearn: 0.0592209\ttotal: 3.26s\tremaining: 1.38s\n" |
|
|
4723 |
] |
|
|
4724 |
}, |
|
|
4725 |
{ |
|
|
4726 |
"name": "stdout", |
|
|
4727 |
"output_type": "stream", |
|
|
4728 |
"text": [ |
|
|
4729 |
"351:\tlearn: 0.0592165\ttotal: 3.27s\tremaining: 1.37s\n", |
|
|
4730 |
"352:\tlearn: 0.0592114\ttotal: 3.28s\tremaining: 1.36s\n", |
|
|
4731 |
"353:\tlearn: 0.0592041\ttotal: 3.29s\tremaining: 1.35s\n", |
|
|
4732 |
"354:\tlearn: 0.0591966\ttotal: 3.3s\tremaining: 1.35s\n", |
|
|
4733 |
"355:\tlearn: 0.0591925\ttotal: 3.31s\tremaining: 1.34s\n", |
|
|
4734 |
"356:\tlearn: 0.0591861\ttotal: 3.31s\tremaining: 1.33s\n", |
|
|
4735 |
"357:\tlearn: 0.0591820\ttotal: 3.32s\tremaining: 1.32s\n", |
|
|
4736 |
"358:\tlearn: 0.0591759\ttotal: 3.33s\tremaining: 1.31s\n", |
|
|
4737 |
"359:\tlearn: 0.0591648\ttotal: 3.34s\tremaining: 1.3s\n", |
|
|
4738 |
"360:\tlearn: 0.0591556\ttotal: 3.35s\tremaining: 1.29s\n", |
|
|
4739 |
"361:\tlearn: 0.0591503\ttotal: 3.36s\tremaining: 1.28s\n", |
|
|
4740 |
"362:\tlearn: 0.0591408\ttotal: 3.37s\tremaining: 1.27s\n", |
|
|
4741 |
"363:\tlearn: 0.0591339\ttotal: 3.38s\tremaining: 1.26s\n", |
|
|
4742 |
"364:\tlearn: 0.0591270\ttotal: 3.39s\tremaining: 1.25s\n", |
|
|
4743 |
"365:\tlearn: 0.0591207\ttotal: 3.4s\tremaining: 1.24s\n", |
|
|
4744 |
"366:\tlearn: 0.0591123\ttotal: 3.41s\tremaining: 1.24s\n", |
|
|
4745 |
"367:\tlearn: 0.0591006\ttotal: 3.42s\tremaining: 1.23s\n", |
|
|
4746 |
"368:\tlearn: 0.0590962\ttotal: 3.43s\tremaining: 1.22s\n", |
|
|
4747 |
"369:\tlearn: 0.0590894\ttotal: 3.43s\tremaining: 1.21s\n", |
|
|
4748 |
"370:\tlearn: 0.0590827\ttotal: 3.44s\tremaining: 1.2s\n", |
|
|
4749 |
"371:\tlearn: 0.0590723\ttotal: 3.45s\tremaining: 1.19s\n", |
|
|
4750 |
"372:\tlearn: 0.0590614\ttotal: 3.46s\tremaining: 1.18s\n", |
|
|
4751 |
"373:\tlearn: 0.0590537\ttotal: 3.47s\tremaining: 1.17s\n", |
|
|
4752 |
"374:\tlearn: 0.0590434\ttotal: 3.48s\tremaining: 1.16s\n", |
|
|
4753 |
"375:\tlearn: 0.0590289\ttotal: 3.49s\tremaining: 1.15s\n", |
|
|
4754 |
"376:\tlearn: 0.0590202\ttotal: 3.5s\tremaining: 1.14s\n", |
|
|
4755 |
"377:\tlearn: 0.0590136\ttotal: 3.51s\tremaining: 1.13s\n", |
|
|
4756 |
"378:\tlearn: 0.0590028\ttotal: 3.52s\tremaining: 1.12s\n", |
|
|
4757 |
"379:\tlearn: 0.0589927\ttotal: 3.53s\tremaining: 1.11s\n", |
|
|
4758 |
"380:\tlearn: 0.0589792\ttotal: 3.54s\tremaining: 1.1s\n", |
|
|
4759 |
"381:\tlearn: 0.0589731\ttotal: 3.55s\tremaining: 1.09s\n", |
|
|
4760 |
"382:\tlearn: 0.0589625\ttotal: 3.56s\tremaining: 1.09s\n", |
|
|
4761 |
"383:\tlearn: 0.0589538\ttotal: 3.57s\tremaining: 1.08s\n", |
|
|
4762 |
"384:\tlearn: 0.0589464\ttotal: 3.58s\tremaining: 1.07s\n", |
|
|
4763 |
"385:\tlearn: 0.0589238\ttotal: 3.58s\tremaining: 1.06s\n", |
|
|
4764 |
"386:\tlearn: 0.0589083\ttotal: 3.59s\tremaining: 1.05s\n", |
|
|
4765 |
"387:\tlearn: 0.0588977\ttotal: 3.6s\tremaining: 1.04s\n", |
|
|
4766 |
"388:\tlearn: 0.0588895\ttotal: 3.61s\tremaining: 1.03s\n", |
|
|
4767 |
"389:\tlearn: 0.0588812\ttotal: 3.62s\tremaining: 1.02s\n", |
|
|
4768 |
"390:\tlearn: 0.0588731\ttotal: 3.63s\tremaining: 1.01s\n", |
|
|
4769 |
"391:\tlearn: 0.0588629\ttotal: 3.64s\tremaining: 1s\n", |
|
|
4770 |
"392:\tlearn: 0.0588531\ttotal: 3.65s\tremaining: 994ms\n", |
|
|
4771 |
"393:\tlearn: 0.0588491\ttotal: 3.66s\tremaining: 984ms\n", |
|
|
4772 |
"394:\tlearn: 0.0588386\ttotal: 3.67s\tremaining: 975ms\n", |
|
|
4773 |
"395:\tlearn: 0.0588325\ttotal: 3.68s\tremaining: 966ms\n", |
|
|
4774 |
"396:\tlearn: 0.0588247\ttotal: 3.69s\tremaining: 956ms\n", |
|
|
4775 |
"397:\tlearn: 0.0588129\ttotal: 3.69s\tremaining: 947ms\n", |
|
|
4776 |
"398:\tlearn: 0.0588086\ttotal: 3.7s\tremaining: 938ms\n", |
|
|
4777 |
"399:\tlearn: 0.0588003\ttotal: 3.71s\tremaining: 929ms\n", |
|
|
4778 |
"400:\tlearn: 0.0587978\ttotal: 3.72s\tremaining: 919ms\n", |
|
|
4779 |
"401:\tlearn: 0.0587906\ttotal: 3.73s\tremaining: 910ms\n", |
|
|
4780 |
"402:\tlearn: 0.0587855\ttotal: 3.74s\tremaining: 901ms\n", |
|
|
4781 |
"403:\tlearn: 0.0587781\ttotal: 3.75s\tremaining: 891ms\n", |
|
|
4782 |
"404:\tlearn: 0.0587703\ttotal: 3.76s\tremaining: 882ms\n", |
|
|
4783 |
"405:\tlearn: 0.0587609\ttotal: 3.77s\tremaining: 873ms\n", |
|
|
4784 |
"406:\tlearn: 0.0587520\ttotal: 3.78s\tremaining: 863ms\n", |
|
|
4785 |
"407:\tlearn: 0.0587406\ttotal: 3.79s\tremaining: 854ms\n", |
|
|
4786 |
"408:\tlearn: 0.0587354\ttotal: 3.8s\tremaining: 845ms\n", |
|
|
4787 |
"409:\tlearn: 0.0587263\ttotal: 3.81s\tremaining: 835ms\n", |
|
|
4788 |
"410:\tlearn: 0.0587173\ttotal: 3.81s\tremaining: 826ms\n", |
|
|
4789 |
"411:\tlearn: 0.0587098\ttotal: 3.82s\tremaining: 817ms\n", |
|
|
4790 |
"412:\tlearn: 0.0587024\ttotal: 3.83s\tremaining: 808ms\n", |
|
|
4791 |
"413:\tlearn: 0.0586972\ttotal: 3.84s\tremaining: 798ms\n", |
|
|
4792 |
"414:\tlearn: 0.0586873\ttotal: 3.85s\tremaining: 789ms\n", |
|
|
4793 |
"415:\tlearn: 0.0586832\ttotal: 3.86s\tremaining: 780ms\n", |
|
|
4794 |
"416:\tlearn: 0.0586756\ttotal: 3.87s\tremaining: 770ms\n", |
|
|
4795 |
"417:\tlearn: 0.0586683\ttotal: 3.88s\tremaining: 761ms\n", |
|
|
4796 |
"418:\tlearn: 0.0586607\ttotal: 3.89s\tremaining: 752ms\n", |
|
|
4797 |
"419:\tlearn: 0.0586482\ttotal: 3.9s\tremaining: 742ms\n", |
|
|
4798 |
"420:\tlearn: 0.0586347\ttotal: 3.91s\tremaining: 733ms\n", |
|
|
4799 |
"421:\tlearn: 0.0586285\ttotal: 3.92s\tremaining: 724ms\n", |
|
|
4800 |
"422:\tlearn: 0.0586106\ttotal: 3.92s\tremaining: 715ms\n", |
|
|
4801 |
"423:\tlearn: 0.0586052\ttotal: 3.93s\tremaining: 705ms\n", |
|
|
4802 |
"424:\tlearn: 0.0585935\ttotal: 3.94s\tremaining: 696ms\n", |
|
|
4803 |
"425:\tlearn: 0.0585862\ttotal: 3.95s\tremaining: 687ms\n", |
|
|
4804 |
"426:\tlearn: 0.0585784\ttotal: 3.96s\tremaining: 677ms\n", |
|
|
4805 |
"427:\tlearn: 0.0585714\ttotal: 3.97s\tremaining: 668ms\n", |
|
|
4806 |
"428:\tlearn: 0.0585661\ttotal: 3.98s\tremaining: 659ms\n", |
|
|
4807 |
"429:\tlearn: 0.0585602\ttotal: 3.99s\tremaining: 650ms\n", |
|
|
4808 |
"430:\tlearn: 0.0585553\ttotal: 4s\tremaining: 640ms\n", |
|
|
4809 |
"431:\tlearn: 0.0585522\ttotal: 4.01s\tremaining: 631ms\n", |
|
|
4810 |
"432:\tlearn: 0.0585447\ttotal: 4.02s\tremaining: 622ms\n", |
|
|
4811 |
"433:\tlearn: 0.0585333\ttotal: 4.03s\tremaining: 612ms\n", |
|
|
4812 |
"434:\tlearn: 0.0585209\ttotal: 4.04s\tremaining: 603ms\n", |
|
|
4813 |
"435:\tlearn: 0.0585153\ttotal: 4.04s\tremaining: 594ms\n", |
|
|
4814 |
"436:\tlearn: 0.0585059\ttotal: 4.05s\tremaining: 585ms\n", |
|
|
4815 |
"437:\tlearn: 0.0585007\ttotal: 4.06s\tremaining: 575ms\n", |
|
|
4816 |
"438:\tlearn: 0.0584926\ttotal: 4.07s\tremaining: 566ms\n", |
|
|
4817 |
"439:\tlearn: 0.0584845\ttotal: 4.08s\tremaining: 557ms\n", |
|
|
4818 |
"440:\tlearn: 0.0584768\ttotal: 4.09s\tremaining: 547ms\n", |
|
|
4819 |
"441:\tlearn: 0.0584641\ttotal: 4.1s\tremaining: 538ms\n", |
|
|
4820 |
"442:\tlearn: 0.0584572\ttotal: 4.11s\tremaining: 529ms\n", |
|
|
4821 |
"443:\tlearn: 0.0584491\ttotal: 4.12s\tremaining: 519ms\n", |
|
|
4822 |
"444:\tlearn: 0.0584329\ttotal: 4.13s\tremaining: 510ms\n", |
|
|
4823 |
"445:\tlearn: 0.0584213\ttotal: 4.14s\tremaining: 501ms\n", |
|
|
4824 |
"446:\tlearn: 0.0584126\ttotal: 4.15s\tremaining: 492ms\n", |
|
|
4825 |
"447:\tlearn: 0.0584050\ttotal: 4.16s\tremaining: 482ms\n", |
|
|
4826 |
"448:\tlearn: 0.0583978\ttotal: 4.17s\tremaining: 473ms\n", |
|
|
4827 |
"449:\tlearn: 0.0583930\ttotal: 4.17s\tremaining: 464ms\n", |
|
|
4828 |
"450:\tlearn: 0.0583843\ttotal: 4.18s\tremaining: 455ms\n", |
|
|
4829 |
"451:\tlearn: 0.0583751\ttotal: 4.19s\tremaining: 445ms\n", |
|
|
4830 |
"452:\tlearn: 0.0583647\ttotal: 4.2s\tremaining: 436ms\n", |
|
|
4831 |
"453:\tlearn: 0.0583575\ttotal: 4.21s\tremaining: 427ms\n", |
|
|
4832 |
"454:\tlearn: 0.0583527\ttotal: 4.22s\tremaining: 417ms\n", |
|
|
4833 |
"455:\tlearn: 0.0583424\ttotal: 4.23s\tremaining: 408ms\n", |
|
|
4834 |
"456:\tlearn: 0.0583332\ttotal: 4.24s\tremaining: 399ms\n", |
|
|
4835 |
"457:\tlearn: 0.0583283\ttotal: 4.25s\tremaining: 389ms\n", |
|
|
4836 |
"458:\tlearn: 0.0583160\ttotal: 4.26s\tremaining: 380ms\n", |
|
|
4837 |
"459:\tlearn: 0.0583130\ttotal: 4.26s\tremaining: 371ms\n", |
|
|
4838 |
"460:\tlearn: 0.0583084\ttotal: 4.27s\tremaining: 362ms\n", |
|
|
4839 |
"461:\tlearn: 0.0583032\ttotal: 4.28s\tremaining: 352ms\n", |
|
|
4840 |
"462:\tlearn: 0.0582945\ttotal: 4.29s\tremaining: 343ms\n", |
|
|
4841 |
"463:\tlearn: 0.0582893\ttotal: 4.3s\tremaining: 334ms\n", |
|
|
4842 |
"464:\tlearn: 0.0582822\ttotal: 4.31s\tremaining: 325ms\n", |
|
|
4843 |
"465:\tlearn: 0.0582737\ttotal: 4.32s\tremaining: 315ms\n", |
|
|
4844 |
"466:\tlearn: 0.0582691\ttotal: 4.33s\tremaining: 306ms\n", |
|
|
4845 |
"467:\tlearn: 0.0582597\ttotal: 4.34s\tremaining: 297ms\n", |
|
|
4846 |
"468:\tlearn: 0.0582556\ttotal: 4.35s\tremaining: 288ms\n", |
|
|
4847 |
"469:\tlearn: 0.0582485\ttotal: 4.36s\tremaining: 278ms\n", |
|
|
4848 |
"470:\tlearn: 0.0582445\ttotal: 4.37s\tremaining: 269ms\n", |
|
|
4849 |
"471:\tlearn: 0.0582374\ttotal: 4.38s\tremaining: 260ms\n", |
|
|
4850 |
"472:\tlearn: 0.0582325\ttotal: 4.39s\tremaining: 250ms\n", |
|
|
4851 |
"473:\tlearn: 0.0582208\ttotal: 4.4s\tremaining: 241ms\n", |
|
|
4852 |
"474:\tlearn: 0.0582138\ttotal: 4.41s\tremaining: 232ms\n", |
|
|
4853 |
"475:\tlearn: 0.0582067\ttotal: 4.42s\tremaining: 223ms\n", |
|
|
4854 |
"476:\tlearn: 0.0581962\ttotal: 4.42s\tremaining: 213ms\n", |
|
|
4855 |
"477:\tlearn: 0.0581876\ttotal: 4.43s\tremaining: 204ms\n", |
|
|
4856 |
"478:\tlearn: 0.0581809\ttotal: 4.44s\tremaining: 195ms\n", |
|
|
4857 |
"479:\tlearn: 0.0581743\ttotal: 4.45s\tremaining: 186ms\n", |
|
|
4858 |
"480:\tlearn: 0.0581672\ttotal: 4.46s\tremaining: 176ms\n", |
|
|
4859 |
"481:\tlearn: 0.0581591\ttotal: 4.47s\tremaining: 167ms\n", |
|
|
4860 |
"482:\tlearn: 0.0581521\ttotal: 4.48s\tremaining: 158ms\n", |
|
|
4861 |
"483:\tlearn: 0.0581421\ttotal: 4.49s\tremaining: 148ms\n", |
|
|
4862 |
"484:\tlearn: 0.0581393\ttotal: 4.5s\tremaining: 139ms\n", |
|
|
4863 |
"485:\tlearn: 0.0581340\ttotal: 4.51s\tremaining: 130ms\n", |
|
|
4864 |
"486:\tlearn: 0.0581273\ttotal: 4.52s\tremaining: 121ms\n", |
|
|
4865 |
"487:\tlearn: 0.0581233\ttotal: 4.53s\tremaining: 111ms\n", |
|
|
4866 |
"488:\tlearn: 0.0581150\ttotal: 4.54s\tremaining: 102ms\n", |
|
|
4867 |
"489:\tlearn: 0.0581071\ttotal: 4.54s\tremaining: 92.8ms\n", |
|
|
4868 |
"490:\tlearn: 0.0581019\ttotal: 4.55s\tremaining: 83.5ms\n", |
|
|
4869 |
"491:\tlearn: 0.0580959\ttotal: 4.56s\tremaining: 74.2ms\n", |
|
|
4870 |
"492:\tlearn: 0.0580895\ttotal: 4.57s\tremaining: 64.9ms\n", |
|
|
4871 |
"493:\tlearn: 0.0580769\ttotal: 4.58s\tremaining: 55.6ms\n", |
|
|
4872 |
"494:\tlearn: 0.0580736\ttotal: 4.59s\tremaining: 46.4ms\n", |
|
|
4873 |
"495:\tlearn: 0.0580688\ttotal: 4.6s\tremaining: 37.1ms\n", |
|
|
4874 |
"496:\tlearn: 0.0580616\ttotal: 4.61s\tremaining: 27.8ms\n", |
|
|
4875 |
"497:\tlearn: 0.0580503\ttotal: 4.62s\tremaining: 18.6ms\n", |
|
|
4876 |
"498:\tlearn: 0.0580430\ttotal: 4.63s\tremaining: 9.29ms\n", |
|
|
4877 |
"499:\tlearn: 0.0580407\ttotal: 4.64s\tremaining: 0us\n" |
|
|
4878 |
] |
|
|
4879 |
}, |
|
|
4880 |
{ |
|
|
4881 |
"name": "stderr", |
|
|
4882 |
"output_type": "stream", |
|
|
4883 |
"text": [ |
|
|
4884 |
"Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n" |
|
|
4885 |
] |
|
|
4886 |
}, |
|
|
4887 |
{ |
|
|
4888 |
"name": "stdout", |
|
|
4889 |
"output_type": "stream", |
|
|
4890 |
"text": [ |
|
|
4891 |
"0:\tlearn: 0.6257764\ttotal: 15ms\tremaining: 7.48s\n", |
|
|
4892 |
"1:\tlearn: 0.5651476\ttotal: 28.9ms\tremaining: 7.2s\n", |
|
|
4893 |
"2:\tlearn: 0.5085256\ttotal: 43ms\tremaining: 7.12s\n", |
|
|
4894 |
"3:\tlearn: 0.4633903\ttotal: 56.4ms\tremaining: 7s\n", |
|
|
4895 |
"4:\tlearn: 0.4234627\ttotal: 70.7ms\tremaining: 7s\n", |
|
|
4896 |
"5:\tlearn: 0.3840513\ttotal: 84.6ms\tremaining: 6.96s\n", |
|
|
4897 |
"6:\tlearn: 0.3526822\ttotal: 94.5ms\tremaining: 6.65s\n", |
|
|
4898 |
"7:\tlearn: 0.3229816\ttotal: 104ms\tremaining: 6.41s\n", |
|
|
4899 |
"8:\tlearn: 0.2984860\ttotal: 114ms\tremaining: 6.22s\n", |
|
|
4900 |
"9:\tlearn: 0.2753699\ttotal: 125ms\tremaining: 6.1s\n", |
|
|
4901 |
"10:\tlearn: 0.2558969\ttotal: 135ms\tremaining: 5.99s\n", |
|
|
4902 |
"11:\tlearn: 0.2379854\ttotal: 144ms\tremaining: 5.88s\n", |
|
|
4903 |
"12:\tlearn: 0.2226474\ttotal: 154ms\tremaining: 5.78s\n", |
|
|
4904 |
"13:\tlearn: 0.2101508\ttotal: 164ms\tremaining: 5.7s\n", |
|
|
4905 |
"14:\tlearn: 0.1979292\ttotal: 174ms\tremaining: 5.63s\n", |
|
|
4906 |
"15:\tlearn: 0.1869549\ttotal: 184ms\tremaining: 5.56s\n", |
|
|
4907 |
"16:\tlearn: 0.1774927\ttotal: 193ms\tremaining: 5.49s\n", |
|
|
4908 |
"17:\tlearn: 0.1694308\ttotal: 203ms\tremaining: 5.44s\n", |
|
|
4909 |
"18:\tlearn: 0.1621997\ttotal: 214ms\tremaining: 5.41s\n", |
|
|
4910 |
"19:\tlearn: 0.1545322\ttotal: 224ms\tremaining: 5.37s\n", |
|
|
4911 |
"20:\tlearn: 0.1481794\ttotal: 234ms\tremaining: 5.33s\n", |
|
|
4912 |
"21:\tlearn: 0.1417536\ttotal: 244ms\tremaining: 5.29s\n", |
|
|
4913 |
"22:\tlearn: 0.1362018\ttotal: 254ms\tremaining: 5.26s\n", |
|
|
4914 |
"23:\tlearn: 0.1310937\ttotal: 264ms\tremaining: 5.23s\n", |
|
|
4915 |
"24:\tlearn: 0.1273010\ttotal: 274ms\tremaining: 5.2s\n", |
|
|
4916 |
"25:\tlearn: 0.1242802\ttotal: 284ms\tremaining: 5.17s\n", |
|
|
4917 |
"26:\tlearn: 0.1213909\ttotal: 293ms\tremaining: 5.12s\n", |
|
|
4918 |
"27:\tlearn: 0.1186649\ttotal: 301ms\tremaining: 5.08s\n", |
|
|
4919 |
"28:\tlearn: 0.1152861\ttotal: 310ms\tremaining: 5.04s\n", |
|
|
4920 |
"29:\tlearn: 0.1122106\ttotal: 320ms\tremaining: 5.01s\n", |
|
|
4921 |
"30:\tlearn: 0.1096162\ttotal: 329ms\tremaining: 4.97s\n", |
|
|
4922 |
"31:\tlearn: 0.1070164\ttotal: 338ms\tremaining: 4.94s\n", |
|
|
4923 |
"32:\tlearn: 0.1046425\ttotal: 347ms\tremaining: 4.91s\n", |
|
|
4924 |
"33:\tlearn: 0.1024993\ttotal: 356ms\tremaining: 4.88s\n", |
|
|
4925 |
"34:\tlearn: 0.1010733\ttotal: 365ms\tremaining: 4.85s\n", |
|
|
4926 |
"35:\tlearn: 0.0997385\ttotal: 374ms\tremaining: 4.82s\n", |
|
|
4927 |
"36:\tlearn: 0.0981950\ttotal: 383ms\tremaining: 4.79s\n", |
|
|
4928 |
"37:\tlearn: 0.0970868\ttotal: 392ms\tremaining: 4.77s\n", |
|
|
4929 |
"38:\tlearn: 0.0957960\ttotal: 401ms\tremaining: 4.74s\n", |
|
|
4930 |
"39:\tlearn: 0.0948432\ttotal: 410ms\tremaining: 4.72s\n", |
|
|
4931 |
"40:\tlearn: 0.0938939\ttotal: 419ms\tremaining: 4.69s\n", |
|
|
4932 |
"41:\tlearn: 0.0929877\ttotal: 428ms\tremaining: 4.67s\n", |
|
|
4933 |
"42:\tlearn: 0.0919962\ttotal: 437ms\tremaining: 4.65s\n", |
|
|
4934 |
"43:\tlearn: 0.0910057\ttotal: 447ms\tremaining: 4.63s\n", |
|
|
4935 |
"44:\tlearn: 0.0905920\ttotal: 456ms\tremaining: 4.61s\n", |
|
|
4936 |
"45:\tlearn: 0.0900491\ttotal: 465ms\tremaining: 4.59s\n", |
|
|
4937 |
"46:\tlearn: 0.0893054\ttotal: 475ms\tremaining: 4.57s\n", |
|
|
4938 |
"47:\tlearn: 0.0886174\ttotal: 484ms\tremaining: 4.56s\n", |
|
|
4939 |
"48:\tlearn: 0.0879410\ttotal: 493ms\tremaining: 4.54s\n", |
|
|
4940 |
"49:\tlearn: 0.0873311\ttotal: 502ms\tremaining: 4.52s\n", |
|
|
4941 |
"50:\tlearn: 0.0867164\ttotal: 512ms\tremaining: 4.51s\n", |
|
|
4942 |
"51:\tlearn: 0.0861954\ttotal: 521ms\tremaining: 4.49s\n", |
|
|
4943 |
"52:\tlearn: 0.0857554\ttotal: 531ms\tremaining: 4.47s\n", |
|
|
4944 |
"53:\tlearn: 0.0853713\ttotal: 540ms\tremaining: 4.46s\n", |
|
|
4945 |
"54:\tlearn: 0.0850961\ttotal: 549ms\tremaining: 4.44s\n", |
|
|
4946 |
"55:\tlearn: 0.0846955\ttotal: 558ms\tremaining: 4.42s\n", |
|
|
4947 |
"56:\tlearn: 0.0842343\ttotal: 567ms\tremaining: 4.41s\n", |
|
|
4948 |
"57:\tlearn: 0.0838028\ttotal: 577ms\tremaining: 4.39s\n", |
|
|
4949 |
"58:\tlearn: 0.0835021\ttotal: 586ms\tremaining: 4.38s\n", |
|
|
4950 |
"59:\tlearn: 0.0832483\ttotal: 595ms\tremaining: 4.36s\n", |
|
|
4951 |
"60:\tlearn: 0.0830413\ttotal: 605ms\tremaining: 4.35s\n", |
|
|
4952 |
"61:\tlearn: 0.0827062\ttotal: 614ms\tremaining: 4.34s\n", |
|
|
4953 |
"62:\tlearn: 0.0826085\ttotal: 623ms\tremaining: 4.32s\n", |
|
|
4954 |
"63:\tlearn: 0.0823317\ttotal: 633ms\tremaining: 4.31s\n", |
|
|
4955 |
"64:\tlearn: 0.0821482\ttotal: 642ms\tremaining: 4.3s\n", |
|
|
4956 |
"65:\tlearn: 0.0820028\ttotal: 651ms\tremaining: 4.28s\n", |
|
|
4957 |
"66:\tlearn: 0.0817650\ttotal: 660ms\tremaining: 4.27s\n", |
|
|
4958 |
"67:\tlearn: 0.0814728\ttotal: 669ms\tremaining: 4.25s\n", |
|
|
4959 |
"68:\tlearn: 0.0812960\ttotal: 678ms\tremaining: 4.24s\n", |
|
|
4960 |
"69:\tlearn: 0.0810990\ttotal: 688ms\tremaining: 4.22s\n", |
|
|
4961 |
"70:\tlearn: 0.0809106\ttotal: 697ms\tremaining: 4.21s\n", |
|
|
4962 |
"71:\tlearn: 0.0807946\ttotal: 706ms\tremaining: 4.2s\n", |
|
|
4963 |
"72:\tlearn: 0.0806369\ttotal: 716ms\tremaining: 4.18s\n", |
|
|
4964 |
"73:\tlearn: 0.0805664\ttotal: 725ms\tremaining: 4.17s\n", |
|
|
4965 |
"74:\tlearn: 0.0803649\ttotal: 734ms\tremaining: 4.16s\n", |
|
|
4966 |
"75:\tlearn: 0.0802542\ttotal: 744ms\tremaining: 4.15s\n", |
|
|
4967 |
"76:\tlearn: 0.0801177\ttotal: 753ms\tremaining: 4.13s\n", |
|
|
4968 |
"77:\tlearn: 0.0799576\ttotal: 762ms\tremaining: 4.12s\n", |
|
|
4969 |
"78:\tlearn: 0.0798259\ttotal: 771ms\tremaining: 4.11s\n", |
|
|
4970 |
"79:\tlearn: 0.0796954\ttotal: 781ms\tremaining: 4.1s\n", |
|
|
4971 |
"80:\tlearn: 0.0796217\ttotal: 790ms\tremaining: 4.09s\n", |
|
|
4972 |
"81:\tlearn: 0.0795715\ttotal: 799ms\tremaining: 4.07s\n", |
|
|
4973 |
"82:\tlearn: 0.0794620\ttotal: 808ms\tremaining: 4.06s\n", |
|
|
4974 |
"83:\tlearn: 0.0794056\ttotal: 818ms\tremaining: 4.05s\n", |
|
|
4975 |
"84:\tlearn: 0.0793202\ttotal: 827ms\tremaining: 4.04s\n", |
|
|
4976 |
"85:\tlearn: 0.0792080\ttotal: 837ms\tremaining: 4.03s\n", |
|
|
4977 |
"86:\tlearn: 0.0791575\ttotal: 846ms\tremaining: 4.01s\n", |
|
|
4978 |
"87:\tlearn: 0.0790723\ttotal: 855ms\tremaining: 4s\n", |
|
|
4979 |
"88:\tlearn: 0.0789626\ttotal: 864ms\tremaining: 3.99s\n", |
|
|
4980 |
"89:\tlearn: 0.0788389\ttotal: 874ms\tremaining: 3.98s\n", |
|
|
4981 |
"90:\tlearn: 0.0787519\ttotal: 883ms\tremaining: 3.97s\n", |
|
|
4982 |
"91:\tlearn: 0.0786343\ttotal: 892ms\tremaining: 3.96s\n", |
|
|
4983 |
"92:\tlearn: 0.0785206\ttotal: 902ms\tremaining: 3.94s\n", |
|
|
4984 |
"93:\tlearn: 0.0784946\ttotal: 911ms\tremaining: 3.93s\n", |
|
|
4985 |
"94:\tlearn: 0.0783924\ttotal: 920ms\tremaining: 3.92s\n", |
|
|
4986 |
"95:\tlearn: 0.0783602\ttotal: 929ms\tremaining: 3.91s\n", |
|
|
4987 |
"96:\tlearn: 0.0782653\ttotal: 938ms\tremaining: 3.9s\n", |
|
|
4988 |
"97:\tlearn: 0.0781952\ttotal: 947ms\tremaining: 3.88s\n", |
|
|
4989 |
"98:\tlearn: 0.0781549\ttotal: 956ms\tremaining: 3.87s\n", |
|
|
4990 |
"99:\tlearn: 0.0780717\ttotal: 966ms\tremaining: 3.86s\n", |
|
|
4991 |
"100:\tlearn: 0.0780515\ttotal: 975ms\tremaining: 3.85s\n", |
|
|
4992 |
"101:\tlearn: 0.0779741\ttotal: 984ms\tremaining: 3.84s\n", |
|
|
4993 |
"102:\tlearn: 0.0779167\ttotal: 994ms\tremaining: 3.83s\n", |
|
|
4994 |
"103:\tlearn: 0.0778442\ttotal: 1s\tremaining: 3.82s\n", |
|
|
4995 |
"104:\tlearn: 0.0778131\ttotal: 1.01s\tremaining: 3.81s\n", |
|
|
4996 |
"105:\tlearn: 0.0777720\ttotal: 1.02s\tremaining: 3.8s\n", |
|
|
4997 |
"106:\tlearn: 0.0777100\ttotal: 1.03s\tremaining: 3.79s\n", |
|
|
4998 |
"107:\tlearn: 0.0776803\ttotal: 1.04s\tremaining: 3.77s\n", |
|
|
4999 |
"108:\tlearn: 0.0776092\ttotal: 1.05s\tremaining: 3.77s\n", |
|
|
5000 |
"109:\tlearn: 0.0775392\ttotal: 1.06s\tremaining: 3.76s\n", |
|
|
5001 |
"110:\tlearn: 0.0775169\ttotal: 1.07s\tremaining: 3.75s\n", |
|
|
5002 |
"111:\tlearn: 0.0774538\ttotal: 1.08s\tremaining: 3.74s\n", |
|
|
5003 |
"112:\tlearn: 0.0773908\ttotal: 1.09s\tremaining: 3.73s\n", |
|
|
5004 |
"113:\tlearn: 0.0773621\ttotal: 1.1s\tremaining: 3.71s\n", |
|
|
5005 |
"114:\tlearn: 0.0773347\ttotal: 1.11s\tremaining: 3.7s\n", |
|
|
5006 |
"115:\tlearn: 0.0772693\ttotal: 1.11s\tremaining: 3.69s\n", |
|
|
5007 |
"116:\tlearn: 0.0772137\ttotal: 1.12s\tremaining: 3.68s\n", |
|
|
5008 |
"117:\tlearn: 0.0771861\ttotal: 1.13s\tremaining: 3.67s\n", |
|
|
5009 |
"118:\tlearn: 0.0771647\ttotal: 1.14s\tremaining: 3.66s\n", |
|
|
5010 |
"119:\tlearn: 0.0771411\ttotal: 1.15s\tremaining: 3.65s\n", |
|
|
5011 |
"120:\tlearn: 0.0770859\ttotal: 1.16s\tremaining: 3.64s\n", |
|
|
5012 |
"121:\tlearn: 0.0770651\ttotal: 1.17s\tremaining: 3.63s\n", |
|
|
5013 |
"122:\tlearn: 0.0770420\ttotal: 1.18s\tremaining: 3.62s\n", |
|
|
5014 |
"123:\tlearn: 0.0770212\ttotal: 1.19s\tremaining: 3.6s\n", |
|
|
5015 |
"124:\tlearn: 0.0769653\ttotal: 1.2s\tremaining: 3.59s\n", |
|
|
5016 |
"125:\tlearn: 0.0769195\ttotal: 1.21s\tremaining: 3.58s\n", |
|
|
5017 |
"126:\tlearn: 0.0768683\ttotal: 1.22s\tremaining: 3.57s\n", |
|
|
5018 |
"127:\tlearn: 0.0768469\ttotal: 1.23s\tremaining: 3.56s\n", |
|
|
5019 |
"128:\tlearn: 0.0767996\ttotal: 1.23s\tremaining: 3.55s\n", |
|
|
5020 |
"129:\tlearn: 0.0767662\ttotal: 1.24s\tremaining: 3.54s\n", |
|
|
5021 |
"130:\tlearn: 0.0767396\ttotal: 1.25s\tremaining: 3.53s\n", |
|
|
5022 |
"131:\tlearn: 0.0767134\ttotal: 1.26s\tremaining: 3.52s\n", |
|
|
5023 |
"132:\tlearn: 0.0766596\ttotal: 1.27s\tremaining: 3.51s\n", |
|
|
5024 |
"133:\tlearn: 0.0766478\ttotal: 1.28s\tremaining: 3.5s\n", |
|
|
5025 |
"134:\tlearn: 0.0766240\ttotal: 1.29s\tremaining: 3.49s\n", |
|
|
5026 |
"135:\tlearn: 0.0766052\ttotal: 1.3s\tremaining: 3.48s\n", |
|
|
5027 |
"136:\tlearn: 0.0765608\ttotal: 1.31s\tremaining: 3.47s\n", |
|
|
5028 |
"137:\tlearn: 0.0765447\ttotal: 1.32s\tremaining: 3.46s\n", |
|
|
5029 |
"138:\tlearn: 0.0765267\ttotal: 1.33s\tremaining: 3.45s\n", |
|
|
5030 |
"139:\tlearn: 0.0765102\ttotal: 1.34s\tremaining: 3.44s\n", |
|
|
5031 |
"140:\tlearn: 0.0764873\ttotal: 1.34s\tremaining: 3.42s\n", |
|
|
5032 |
"141:\tlearn: 0.0764716\ttotal: 1.35s\tremaining: 3.42s\n", |
|
|
5033 |
"142:\tlearn: 0.0764434\ttotal: 1.36s\tremaining: 3.4s\n", |
|
|
5034 |
"143:\tlearn: 0.0763954\ttotal: 1.37s\tremaining: 3.39s\n", |
|
|
5035 |
"144:\tlearn: 0.0763774\ttotal: 1.38s\tremaining: 3.38s\n", |
|
|
5036 |
"145:\tlearn: 0.0763486\ttotal: 1.39s\tremaining: 3.37s\n", |
|
|
5037 |
"146:\tlearn: 0.0762991\ttotal: 1.4s\tremaining: 3.36s\n", |
|
|
5038 |
"147:\tlearn: 0.0762784\ttotal: 1.41s\tremaining: 3.35s\n", |
|
|
5039 |
"148:\tlearn: 0.0762503\ttotal: 1.42s\tremaining: 3.34s\n", |
|
|
5040 |
"149:\tlearn: 0.0762339\ttotal: 1.43s\tremaining: 3.33s\n", |
|
|
5041 |
"150:\tlearn: 0.0762174\ttotal: 1.44s\tremaining: 3.32s\n", |
|
|
5042 |
"151:\tlearn: 0.0761927\ttotal: 1.45s\tremaining: 3.31s\n", |
|
|
5043 |
"152:\tlearn: 0.0761661\ttotal: 1.46s\tremaining: 3.3s\n", |
|
|
5044 |
"153:\tlearn: 0.0761471\ttotal: 1.47s\tremaining: 3.29s\n", |
|
|
5045 |
"154:\tlearn: 0.0761114\ttotal: 1.47s\tremaining: 3.28s\n", |
|
|
5046 |
"155:\tlearn: 0.0760798\ttotal: 1.48s\tremaining: 3.27s\n", |
|
|
5047 |
"156:\tlearn: 0.0760466\ttotal: 1.49s\tremaining: 3.26s\n", |
|
|
5048 |
"157:\tlearn: 0.0760247\ttotal: 1.5s\tremaining: 3.25s\n", |
|
|
5049 |
"158:\tlearn: 0.0760067\ttotal: 1.51s\tremaining: 3.24s\n", |
|
|
5050 |
"159:\tlearn: 0.0759755\ttotal: 1.52s\tremaining: 3.23s\n", |
|
|
5051 |
"160:\tlearn: 0.0759545\ttotal: 1.53s\tremaining: 3.22s\n", |
|
|
5052 |
"161:\tlearn: 0.0759382\ttotal: 1.54s\tremaining: 3.21s\n", |
|
|
5053 |
"162:\tlearn: 0.0759257\ttotal: 1.55s\tremaining: 3.2s\n", |
|
|
5054 |
"163:\tlearn: 0.0759074\ttotal: 1.56s\tremaining: 3.19s\n", |
|
|
5055 |
"164:\tlearn: 0.0758858\ttotal: 1.57s\tremaining: 3.18s\n", |
|
|
5056 |
"165:\tlearn: 0.0758716\ttotal: 1.57s\tremaining: 3.17s\n", |
|
|
5057 |
"166:\tlearn: 0.0758546\ttotal: 1.58s\tremaining: 3.16s\n", |
|
|
5058 |
"167:\tlearn: 0.0758355\ttotal: 1.59s\tremaining: 3.15s\n", |
|
|
5059 |
"168:\tlearn: 0.0757954\ttotal: 1.6s\tremaining: 3.14s\n", |
|
|
5060 |
"169:\tlearn: 0.0757762\ttotal: 1.61s\tremaining: 3.13s\n", |
|
|
5061 |
"170:\tlearn: 0.0757607\ttotal: 1.62s\tremaining: 3.12s\n", |
|
|
5062 |
"171:\tlearn: 0.0757418\ttotal: 1.63s\tremaining: 3.11s\n", |
|
|
5063 |
"172:\tlearn: 0.0757304\ttotal: 1.64s\tremaining: 3.1s\n" |
|
|
5064 |
] |
|
|
5065 |
}, |
|
|
5066 |
{ |
|
|
5067 |
"name": "stdout", |
|
|
5068 |
"output_type": "stream", |
|
|
5069 |
"text": [ |
|
|
5070 |
"173:\tlearn: 0.0756912\ttotal: 1.65s\tremaining: 3.09s\n", |
|
|
5071 |
"174:\tlearn: 0.0756692\ttotal: 1.66s\tremaining: 3.08s\n", |
|
|
5072 |
"175:\tlearn: 0.0756538\ttotal: 1.67s\tremaining: 3.07s\n", |
|
|
5073 |
"176:\tlearn: 0.0756379\ttotal: 1.68s\tremaining: 3.06s\n", |
|
|
5074 |
"177:\tlearn: 0.0756186\ttotal: 1.69s\tremaining: 3.05s\n", |
|
|
5075 |
"178:\tlearn: 0.0756015\ttotal: 1.7s\tremaining: 3.04s\n", |
|
|
5076 |
"179:\tlearn: 0.0755803\ttotal: 1.71s\tremaining: 3.04s\n", |
|
|
5077 |
"180:\tlearn: 0.0755621\ttotal: 1.72s\tremaining: 3.02s\n", |
|
|
5078 |
"181:\tlearn: 0.0755436\ttotal: 1.73s\tremaining: 3.01s\n", |
|
|
5079 |
"182:\tlearn: 0.0755217\ttotal: 1.74s\tremaining: 3s\n", |
|
|
5080 |
"183:\tlearn: 0.0755030\ttotal: 1.74s\tremaining: 3s\n", |
|
|
5081 |
"184:\tlearn: 0.0754736\ttotal: 1.75s\tremaining: 2.99s\n", |
|
|
5082 |
"185:\tlearn: 0.0754556\ttotal: 1.76s\tremaining: 2.98s\n", |
|
|
5083 |
"186:\tlearn: 0.0754395\ttotal: 1.77s\tremaining: 2.97s\n", |
|
|
5084 |
"187:\tlearn: 0.0754149\ttotal: 1.78s\tremaining: 2.96s\n", |
|
|
5085 |
"188:\tlearn: 0.0754039\ttotal: 1.79s\tremaining: 2.95s\n", |
|
|
5086 |
"189:\tlearn: 0.0753808\ttotal: 1.8s\tremaining: 2.94s\n", |
|
|
5087 |
"190:\tlearn: 0.0753634\ttotal: 1.81s\tremaining: 2.93s\n", |
|
|
5088 |
"191:\tlearn: 0.0753438\ttotal: 1.82s\tremaining: 2.92s\n", |
|
|
5089 |
"192:\tlearn: 0.0753286\ttotal: 1.83s\tremaining: 2.91s\n", |
|
|
5090 |
"193:\tlearn: 0.0752987\ttotal: 1.84s\tremaining: 2.9s\n", |
|
|
5091 |
"194:\tlearn: 0.0752792\ttotal: 1.85s\tremaining: 2.89s\n", |
|
|
5092 |
"195:\tlearn: 0.0752612\ttotal: 1.86s\tremaining: 2.88s\n", |
|
|
5093 |
"196:\tlearn: 0.0752265\ttotal: 1.87s\tremaining: 2.87s\n", |
|
|
5094 |
"197:\tlearn: 0.0752110\ttotal: 1.88s\tremaining: 2.86s\n", |
|
|
5095 |
"198:\tlearn: 0.0751697\ttotal: 1.89s\tremaining: 2.85s\n", |
|
|
5096 |
"199:\tlearn: 0.0751552\ttotal: 1.89s\tremaining: 2.84s\n", |
|
|
5097 |
"200:\tlearn: 0.0751416\ttotal: 1.9s\tremaining: 2.83s\n", |
|
|
5098 |
"201:\tlearn: 0.0751209\ttotal: 1.91s\tremaining: 2.82s\n", |
|
|
5099 |
"202:\tlearn: 0.0750913\ttotal: 1.92s\tremaining: 2.81s\n", |
|
|
5100 |
"203:\tlearn: 0.0750649\ttotal: 1.93s\tremaining: 2.81s\n", |
|
|
5101 |
"204:\tlearn: 0.0750495\ttotal: 1.94s\tremaining: 2.79s\n", |
|
|
5102 |
"205:\tlearn: 0.0750160\ttotal: 1.95s\tremaining: 2.79s\n", |
|
|
5103 |
"206:\tlearn: 0.0749961\ttotal: 1.96s\tremaining: 2.78s\n", |
|
|
5104 |
"207:\tlearn: 0.0749767\ttotal: 1.97s\tremaining: 2.77s\n", |
|
|
5105 |
"208:\tlearn: 0.0749566\ttotal: 1.98s\tremaining: 2.76s\n", |
|
|
5106 |
"209:\tlearn: 0.0749401\ttotal: 1.99s\tremaining: 2.75s\n", |
|
|
5107 |
"210:\tlearn: 0.0749216\ttotal: 2s\tremaining: 2.74s\n", |
|
|
5108 |
"211:\tlearn: 0.0748842\ttotal: 2.01s\tremaining: 2.73s\n", |
|
|
5109 |
"212:\tlearn: 0.0748558\ttotal: 2.02s\tremaining: 2.72s\n", |
|
|
5110 |
"213:\tlearn: 0.0748431\ttotal: 2.03s\tremaining: 2.71s\n", |
|
|
5111 |
"214:\tlearn: 0.0748219\ttotal: 2.04s\tremaining: 2.7s\n", |
|
|
5112 |
"215:\tlearn: 0.0747943\ttotal: 2.05s\tremaining: 2.69s\n", |
|
|
5113 |
"216:\tlearn: 0.0747617\ttotal: 2.06s\tremaining: 2.68s\n", |
|
|
5114 |
"217:\tlearn: 0.0747479\ttotal: 2.07s\tremaining: 2.67s\n", |
|
|
5115 |
"218:\tlearn: 0.0747359\ttotal: 2.08s\tremaining: 2.67s\n", |
|
|
5116 |
"219:\tlearn: 0.0747165\ttotal: 2.09s\tremaining: 2.65s\n", |
|
|
5117 |
"220:\tlearn: 0.0747016\ttotal: 2.1s\tremaining: 2.65s\n", |
|
|
5118 |
"221:\tlearn: 0.0746867\ttotal: 2.1s\tremaining: 2.64s\n", |
|
|
5119 |
"222:\tlearn: 0.0746728\ttotal: 2.11s\tremaining: 2.63s\n", |
|
|
5120 |
"223:\tlearn: 0.0746608\ttotal: 2.12s\tremaining: 2.62s\n", |
|
|
5121 |
"224:\tlearn: 0.0746510\ttotal: 2.13s\tremaining: 2.61s\n", |
|
|
5122 |
"225:\tlearn: 0.0746298\ttotal: 2.14s\tremaining: 2.6s\n", |
|
|
5123 |
"226:\tlearn: 0.0746142\ttotal: 2.15s\tremaining: 2.59s\n", |
|
|
5124 |
"227:\tlearn: 0.0745971\ttotal: 2.16s\tremaining: 2.58s\n", |
|
|
5125 |
"228:\tlearn: 0.0745830\ttotal: 2.17s\tremaining: 2.57s\n", |
|
|
5126 |
"229:\tlearn: 0.0745643\ttotal: 2.18s\tremaining: 2.56s\n", |
|
|
5127 |
"230:\tlearn: 0.0745454\ttotal: 2.19s\tremaining: 2.55s\n", |
|
|
5128 |
"231:\tlearn: 0.0745321\ttotal: 2.2s\tremaining: 2.54s\n", |
|
|
5129 |
"232:\tlearn: 0.0745202\ttotal: 2.21s\tremaining: 2.53s\n", |
|
|
5130 |
"233:\tlearn: 0.0745024\ttotal: 2.21s\tremaining: 2.52s\n", |
|
|
5131 |
"234:\tlearn: 0.0744866\ttotal: 2.22s\tremaining: 2.51s\n", |
|
|
5132 |
"235:\tlearn: 0.0744663\ttotal: 2.23s\tremaining: 2.5s\n", |
|
|
5133 |
"236:\tlearn: 0.0744455\ttotal: 2.24s\tremaining: 2.49s\n", |
|
|
5134 |
"237:\tlearn: 0.0744222\ttotal: 2.25s\tremaining: 2.48s\n", |
|
|
5135 |
"238:\tlearn: 0.0744013\ttotal: 2.26s\tremaining: 2.47s\n", |
|
|
5136 |
"239:\tlearn: 0.0743854\ttotal: 2.27s\tremaining: 2.46s\n", |
|
|
5137 |
"240:\tlearn: 0.0743624\ttotal: 2.28s\tremaining: 2.45s\n", |
|
|
5138 |
"241:\tlearn: 0.0743498\ttotal: 2.29s\tremaining: 2.44s\n", |
|
|
5139 |
"242:\tlearn: 0.0743336\ttotal: 2.3s\tremaining: 2.43s\n", |
|
|
5140 |
"243:\tlearn: 0.0743106\ttotal: 2.31s\tremaining: 2.42s\n", |
|
|
5141 |
"244:\tlearn: 0.0742881\ttotal: 2.32s\tremaining: 2.41s\n", |
|
|
5142 |
"245:\tlearn: 0.0742759\ttotal: 2.33s\tremaining: 2.4s\n", |
|
|
5143 |
"246:\tlearn: 0.0742584\ttotal: 2.33s\tremaining: 2.39s\n", |
|
|
5144 |
"247:\tlearn: 0.0742471\ttotal: 2.34s\tremaining: 2.38s\n", |
|
|
5145 |
"248:\tlearn: 0.0742266\ttotal: 2.35s\tremaining: 2.37s\n", |
|
|
5146 |
"249:\tlearn: 0.0742131\ttotal: 2.36s\tremaining: 2.36s\n", |
|
|
5147 |
"250:\tlearn: 0.0741980\ttotal: 2.37s\tremaining: 2.35s\n", |
|
|
5148 |
"251:\tlearn: 0.0741745\ttotal: 2.38s\tremaining: 2.34s\n", |
|
|
5149 |
"252:\tlearn: 0.0741568\ttotal: 2.39s\tremaining: 2.33s\n", |
|
|
5150 |
"253:\tlearn: 0.0741407\ttotal: 2.4s\tremaining: 2.32s\n", |
|
|
5151 |
"254:\tlearn: 0.0741089\ttotal: 2.41s\tremaining: 2.31s\n", |
|
|
5152 |
"255:\tlearn: 0.0740969\ttotal: 2.42s\tremaining: 2.3s\n", |
|
|
5153 |
"256:\tlearn: 0.0740842\ttotal: 2.43s\tremaining: 2.29s\n", |
|
|
5154 |
"257:\tlearn: 0.0740648\ttotal: 2.44s\tremaining: 2.29s\n", |
|
|
5155 |
"258:\tlearn: 0.0740522\ttotal: 2.44s\tremaining: 2.27s\n", |
|
|
5156 |
"259:\tlearn: 0.0740265\ttotal: 2.46s\tremaining: 2.27s\n", |
|
|
5157 |
"260:\tlearn: 0.0740038\ttotal: 2.46s\tremaining: 2.26s\n", |
|
|
5158 |
"261:\tlearn: 0.0739822\ttotal: 2.47s\tremaining: 2.25s\n", |
|
|
5159 |
"262:\tlearn: 0.0739671\ttotal: 2.48s\tremaining: 2.24s\n", |
|
|
5160 |
"263:\tlearn: 0.0739568\ttotal: 2.49s\tremaining: 2.23s\n", |
|
|
5161 |
"264:\tlearn: 0.0739377\ttotal: 2.5s\tremaining: 2.22s\n", |
|
|
5162 |
"265:\tlearn: 0.0739275\ttotal: 2.51s\tremaining: 2.21s\n", |
|
|
5163 |
"266:\tlearn: 0.0739158\ttotal: 2.52s\tremaining: 2.2s\n", |
|
|
5164 |
"267:\tlearn: 0.0738968\ttotal: 2.53s\tremaining: 2.19s\n", |
|
|
5165 |
"268:\tlearn: 0.0738828\ttotal: 2.54s\tremaining: 2.18s\n", |
|
|
5166 |
"269:\tlearn: 0.0738738\ttotal: 2.55s\tremaining: 2.17s\n", |
|
|
5167 |
"270:\tlearn: 0.0738530\ttotal: 2.56s\tremaining: 2.16s\n", |
|
|
5168 |
"271:\tlearn: 0.0738385\ttotal: 2.57s\tremaining: 2.15s\n", |
|
|
5169 |
"272:\tlearn: 0.0738217\ttotal: 2.57s\tremaining: 2.14s\n", |
|
|
5170 |
"273:\tlearn: 0.0738107\ttotal: 2.58s\tremaining: 2.13s\n", |
|
|
5171 |
"274:\tlearn: 0.0737937\ttotal: 2.59s\tremaining: 2.12s\n", |
|
|
5172 |
"275:\tlearn: 0.0737767\ttotal: 2.6s\tremaining: 2.11s\n", |
|
|
5173 |
"276:\tlearn: 0.0737616\ttotal: 2.61s\tremaining: 2.1s\n", |
|
|
5174 |
"277:\tlearn: 0.0737502\ttotal: 2.62s\tremaining: 2.09s\n", |
|
|
5175 |
"278:\tlearn: 0.0737328\ttotal: 2.63s\tremaining: 2.08s\n", |
|
|
5176 |
"279:\tlearn: 0.0737203\ttotal: 2.64s\tremaining: 2.07s\n", |
|
|
5177 |
"280:\tlearn: 0.0737007\ttotal: 2.65s\tremaining: 2.06s\n", |
|
|
5178 |
"281:\tlearn: 0.0736849\ttotal: 2.66s\tremaining: 2.06s\n", |
|
|
5179 |
"282:\tlearn: 0.0736769\ttotal: 2.67s\tremaining: 2.05s\n", |
|
|
5180 |
"283:\tlearn: 0.0736578\ttotal: 2.68s\tremaining: 2.04s\n", |
|
|
5181 |
"284:\tlearn: 0.0736427\ttotal: 2.69s\tremaining: 2.03s\n", |
|
|
5182 |
"285:\tlearn: 0.0736287\ttotal: 2.69s\tremaining: 2.02s\n", |
|
|
5183 |
"286:\tlearn: 0.0736217\ttotal: 2.7s\tremaining: 2.01s\n", |
|
|
5184 |
"287:\tlearn: 0.0736067\ttotal: 2.71s\tremaining: 2s\n", |
|
|
5185 |
"288:\tlearn: 0.0735961\ttotal: 2.72s\tremaining: 1.99s\n", |
|
|
5186 |
"289:\tlearn: 0.0735789\ttotal: 2.73s\tremaining: 1.98s\n", |
|
|
5187 |
"290:\tlearn: 0.0735650\ttotal: 2.74s\tremaining: 1.97s\n", |
|
|
5188 |
"291:\tlearn: 0.0735480\ttotal: 2.75s\tremaining: 1.96s\n", |
|
|
5189 |
"292:\tlearn: 0.0735351\ttotal: 2.76s\tremaining: 1.95s\n", |
|
|
5190 |
"293:\tlearn: 0.0735144\ttotal: 2.77s\tremaining: 1.94s\n", |
|
|
5191 |
"294:\tlearn: 0.0734994\ttotal: 2.78s\tremaining: 1.93s\n", |
|
|
5192 |
"295:\tlearn: 0.0734780\ttotal: 2.79s\tremaining: 1.92s\n", |
|
|
5193 |
"296:\tlearn: 0.0734637\ttotal: 2.8s\tremaining: 1.91s\n", |
|
|
5194 |
"297:\tlearn: 0.0734448\ttotal: 2.81s\tremaining: 1.9s\n", |
|
|
5195 |
"298:\tlearn: 0.0734306\ttotal: 2.82s\tremaining: 1.89s\n", |
|
|
5196 |
"299:\tlearn: 0.0734133\ttotal: 2.83s\tremaining: 1.88s\n", |
|
|
5197 |
"300:\tlearn: 0.0733927\ttotal: 2.83s\tremaining: 1.87s\n", |
|
|
5198 |
"301:\tlearn: 0.0733793\ttotal: 2.84s\tremaining: 1.86s\n", |
|
|
5199 |
"302:\tlearn: 0.0733619\ttotal: 2.85s\tremaining: 1.85s\n", |
|
|
5200 |
"303:\tlearn: 0.0733459\ttotal: 2.86s\tremaining: 1.84s\n", |
|
|
5201 |
"304:\tlearn: 0.0733379\ttotal: 2.87s\tremaining: 1.83s\n", |
|
|
5202 |
"305:\tlearn: 0.0733261\ttotal: 2.88s\tremaining: 1.83s\n", |
|
|
5203 |
"306:\tlearn: 0.0733182\ttotal: 2.89s\tremaining: 1.82s\n", |
|
|
5204 |
"307:\tlearn: 0.0733047\ttotal: 2.9s\tremaining: 1.81s\n", |
|
|
5205 |
"308:\tlearn: 0.0732879\ttotal: 2.91s\tremaining: 1.8s\n", |
|
|
5206 |
"309:\tlearn: 0.0732732\ttotal: 2.92s\tremaining: 1.79s\n", |
|
|
5207 |
"310:\tlearn: 0.0732567\ttotal: 2.93s\tremaining: 1.78s\n", |
|
|
5208 |
"311:\tlearn: 0.0732464\ttotal: 2.94s\tremaining: 1.77s\n", |
|
|
5209 |
"312:\tlearn: 0.0732296\ttotal: 2.94s\tremaining: 1.76s\n", |
|
|
5210 |
"313:\tlearn: 0.0732169\ttotal: 2.95s\tremaining: 1.75s\n", |
|
|
5211 |
"314:\tlearn: 0.0731990\ttotal: 2.96s\tremaining: 1.74s\n", |
|
|
5212 |
"315:\tlearn: 0.0731851\ttotal: 2.97s\tremaining: 1.73s\n", |
|
|
5213 |
"316:\tlearn: 0.0731691\ttotal: 2.98s\tremaining: 1.72s\n", |
|
|
5214 |
"317:\tlearn: 0.0731539\ttotal: 2.99s\tremaining: 1.71s\n", |
|
|
5215 |
"318:\tlearn: 0.0731409\ttotal: 3s\tremaining: 1.7s\n", |
|
|
5216 |
"319:\tlearn: 0.0731239\ttotal: 3.01s\tremaining: 1.69s\n", |
|
|
5217 |
"320:\tlearn: 0.0731167\ttotal: 3.02s\tremaining: 1.68s\n", |
|
|
5218 |
"321:\tlearn: 0.0730990\ttotal: 3.03s\tremaining: 1.67s\n", |
|
|
5219 |
"322:\tlearn: 0.0730824\ttotal: 3.04s\tremaining: 1.66s\n", |
|
|
5220 |
"323:\tlearn: 0.0730710\ttotal: 3.05s\tremaining: 1.66s\n", |
|
|
5221 |
"324:\tlearn: 0.0730631\ttotal: 3.06s\tremaining: 1.65s\n", |
|
|
5222 |
"325:\tlearn: 0.0730454\ttotal: 3.06s\tremaining: 1.64s\n", |
|
|
5223 |
"326:\tlearn: 0.0730259\ttotal: 3.07s\tremaining: 1.63s\n", |
|
|
5224 |
"327:\tlearn: 0.0730080\ttotal: 3.08s\tremaining: 1.62s\n", |
|
|
5225 |
"328:\tlearn: 0.0729973\ttotal: 3.09s\tremaining: 1.61s\n", |
|
|
5226 |
"329:\tlearn: 0.0729854\ttotal: 3.1s\tremaining: 1.6s\n", |
|
|
5227 |
"330:\tlearn: 0.0729719\ttotal: 3.11s\tremaining: 1.59s\n", |
|
|
5228 |
"331:\tlearn: 0.0729522\ttotal: 3.12s\tremaining: 1.58s\n", |
|
|
5229 |
"332:\tlearn: 0.0729362\ttotal: 3.13s\tremaining: 1.57s\n", |
|
|
5230 |
"333:\tlearn: 0.0729223\ttotal: 3.14s\tremaining: 1.56s\n", |
|
|
5231 |
"334:\tlearn: 0.0729088\ttotal: 3.15s\tremaining: 1.55s\n", |
|
|
5232 |
"335:\tlearn: 0.0728980\ttotal: 3.16s\tremaining: 1.54s\n", |
|
|
5233 |
"336:\tlearn: 0.0728841\ttotal: 3.17s\tremaining: 1.53s\n", |
|
|
5234 |
"337:\tlearn: 0.0728731\ttotal: 3.17s\tremaining: 1.52s\n", |
|
|
5235 |
"338:\tlearn: 0.0728568\ttotal: 3.18s\tremaining: 1.51s\n", |
|
|
5236 |
"339:\tlearn: 0.0728383\ttotal: 3.19s\tremaining: 1.5s\n", |
|
|
5237 |
"340:\tlearn: 0.0728278\ttotal: 3.2s\tremaining: 1.49s\n", |
|
|
5238 |
"341:\tlearn: 0.0728188\ttotal: 3.21s\tremaining: 1.48s\n", |
|
|
5239 |
"342:\tlearn: 0.0728046\ttotal: 3.22s\tremaining: 1.47s\n", |
|
|
5240 |
"343:\tlearn: 0.0727955\ttotal: 3.23s\tremaining: 1.46s\n", |
|
|
5241 |
"344:\tlearn: 0.0727719\ttotal: 3.24s\tremaining: 1.46s\n", |
|
|
5242 |
"345:\tlearn: 0.0727531\ttotal: 3.25s\tremaining: 1.45s\n", |
|
|
5243 |
"346:\tlearn: 0.0727345\ttotal: 3.26s\tremaining: 1.44s\n", |
|
|
5244 |
"347:\tlearn: 0.0727180\ttotal: 3.27s\tremaining: 1.43s\n" |
|
|
5245 |
] |
|
|
5246 |
}, |
|
|
5247 |
{ |
|
|
5248 |
"name": "stdout", |
|
|
5249 |
"output_type": "stream", |
|
|
5250 |
"text": [ |
|
|
5251 |
"348:\tlearn: 0.0727054\ttotal: 3.28s\tremaining: 1.42s\n", |
|
|
5252 |
"349:\tlearn: 0.0726937\ttotal: 3.29s\tremaining: 1.41s\n", |
|
|
5253 |
"350:\tlearn: 0.0726851\ttotal: 3.29s\tremaining: 1.4s\n", |
|
|
5254 |
"351:\tlearn: 0.0726723\ttotal: 3.3s\tremaining: 1.39s\n", |
|
|
5255 |
"352:\tlearn: 0.0726589\ttotal: 3.31s\tremaining: 1.38s\n", |
|
|
5256 |
"353:\tlearn: 0.0726447\ttotal: 3.32s\tremaining: 1.37s\n", |
|
|
5257 |
"354:\tlearn: 0.0726371\ttotal: 3.33s\tremaining: 1.36s\n", |
|
|
5258 |
"355:\tlearn: 0.0726234\ttotal: 3.34s\tremaining: 1.35s\n", |
|
|
5259 |
"356:\tlearn: 0.0726058\ttotal: 3.35s\tremaining: 1.34s\n", |
|
|
5260 |
"357:\tlearn: 0.0725990\ttotal: 3.36s\tremaining: 1.33s\n", |
|
|
5261 |
"358:\tlearn: 0.0725809\ttotal: 3.37s\tremaining: 1.32s\n", |
|
|
5262 |
"359:\tlearn: 0.0725742\ttotal: 3.38s\tremaining: 1.31s\n", |
|
|
5263 |
"360:\tlearn: 0.0725603\ttotal: 3.38s\tremaining: 1.3s\n", |
|
|
5264 |
"361:\tlearn: 0.0725405\ttotal: 3.39s\tremaining: 1.29s\n", |
|
|
5265 |
"362:\tlearn: 0.0725202\ttotal: 3.4s\tremaining: 1.28s\n", |
|
|
5266 |
"363:\tlearn: 0.0725112\ttotal: 3.41s\tremaining: 1.27s\n", |
|
|
5267 |
"364:\tlearn: 0.0724904\ttotal: 3.42s\tremaining: 1.26s\n", |
|
|
5268 |
"365:\tlearn: 0.0724800\ttotal: 3.43s\tremaining: 1.26s\n", |
|
|
5269 |
"366:\tlearn: 0.0724662\ttotal: 3.44s\tremaining: 1.25s\n", |
|
|
5270 |
"367:\tlearn: 0.0724458\ttotal: 3.45s\tremaining: 1.24s\n", |
|
|
5271 |
"368:\tlearn: 0.0724359\ttotal: 3.46s\tremaining: 1.23s\n", |
|
|
5272 |
"369:\tlearn: 0.0724198\ttotal: 3.47s\tremaining: 1.22s\n", |
|
|
5273 |
"370:\tlearn: 0.0724060\ttotal: 3.48s\tremaining: 1.21s\n", |
|
|
5274 |
"371:\tlearn: 0.0723882\ttotal: 3.49s\tremaining: 1.2s\n", |
|
|
5275 |
"372:\tlearn: 0.0723750\ttotal: 3.5s\tremaining: 1.19s\n", |
|
|
5276 |
"373:\tlearn: 0.0723575\ttotal: 3.5s\tremaining: 1.18s\n", |
|
|
5277 |
"374:\tlearn: 0.0723401\ttotal: 3.51s\tremaining: 1.17s\n", |
|
|
5278 |
"375:\tlearn: 0.0723282\ttotal: 3.52s\tremaining: 1.16s\n", |
|
|
5279 |
"376:\tlearn: 0.0723209\ttotal: 3.53s\tremaining: 1.15s\n", |
|
|
5280 |
"377:\tlearn: 0.0723067\ttotal: 3.54s\tremaining: 1.14s\n", |
|
|
5281 |
"378:\tlearn: 0.0723002\ttotal: 3.55s\tremaining: 1.13s\n", |
|
|
5282 |
"379:\tlearn: 0.0722854\ttotal: 3.56s\tremaining: 1.12s\n", |
|
|
5283 |
"380:\tlearn: 0.0722713\ttotal: 3.57s\tremaining: 1.11s\n", |
|
|
5284 |
"381:\tlearn: 0.0722583\ttotal: 3.58s\tremaining: 1.1s\n", |
|
|
5285 |
"382:\tlearn: 0.0722447\ttotal: 3.59s\tremaining: 1.09s\n", |
|
|
5286 |
"383:\tlearn: 0.0722340\ttotal: 3.6s\tremaining: 1.09s\n", |
|
|
5287 |
"384:\tlearn: 0.0722257\ttotal: 3.61s\tremaining: 1.08s\n", |
|
|
5288 |
"385:\tlearn: 0.0722123\ttotal: 3.62s\tremaining: 1.07s\n", |
|
|
5289 |
"386:\tlearn: 0.0722020\ttotal: 3.63s\tremaining: 1.06s\n", |
|
|
5290 |
"387:\tlearn: 0.0721919\ttotal: 3.63s\tremaining: 1.05s\n", |
|
|
5291 |
"388:\tlearn: 0.0721809\ttotal: 3.64s\tremaining: 1.04s\n", |
|
|
5292 |
"389:\tlearn: 0.0721664\ttotal: 3.65s\tremaining: 1.03s\n", |
|
|
5293 |
"390:\tlearn: 0.0721542\ttotal: 3.66s\tremaining: 1.02s\n", |
|
|
5294 |
"391:\tlearn: 0.0721382\ttotal: 3.67s\tremaining: 1.01s\n", |
|
|
5295 |
"392:\tlearn: 0.0721300\ttotal: 3.68s\tremaining: 1s\n", |
|
|
5296 |
"393:\tlearn: 0.0721132\ttotal: 3.69s\tremaining: 992ms\n", |
|
|
5297 |
"394:\tlearn: 0.0720966\ttotal: 3.7s\tremaining: 983ms\n", |
|
|
5298 |
"395:\tlearn: 0.0720859\ttotal: 3.71s\tremaining: 974ms\n", |
|
|
5299 |
"396:\tlearn: 0.0720791\ttotal: 3.72s\tremaining: 965ms\n", |
|
|
5300 |
"397:\tlearn: 0.0720603\ttotal: 3.73s\tremaining: 955ms\n", |
|
|
5301 |
"398:\tlearn: 0.0720437\ttotal: 3.74s\tremaining: 946ms\n", |
|
|
5302 |
"399:\tlearn: 0.0720353\ttotal: 3.75s\tremaining: 936ms\n", |
|
|
5303 |
"400:\tlearn: 0.0720230\ttotal: 3.75s\tremaining: 927ms\n", |
|
|
5304 |
"401:\tlearn: 0.0720101\ttotal: 3.76s\tremaining: 918ms\n", |
|
|
5305 |
"402:\tlearn: 0.0719957\ttotal: 3.77s\tremaining: 908ms\n", |
|
|
5306 |
"403:\tlearn: 0.0719793\ttotal: 3.78s\tremaining: 899ms\n", |
|
|
5307 |
"404:\tlearn: 0.0719648\ttotal: 3.79s\tremaining: 890ms\n", |
|
|
5308 |
"405:\tlearn: 0.0719545\ttotal: 3.8s\tremaining: 880ms\n", |
|
|
5309 |
"406:\tlearn: 0.0719462\ttotal: 3.81s\tremaining: 871ms\n", |
|
|
5310 |
"407:\tlearn: 0.0719292\ttotal: 3.82s\tremaining: 861ms\n", |
|
|
5311 |
"408:\tlearn: 0.0719149\ttotal: 3.83s\tremaining: 852ms\n", |
|
|
5312 |
"409:\tlearn: 0.0719043\ttotal: 3.84s\tremaining: 843ms\n", |
|
|
5313 |
"410:\tlearn: 0.0718889\ttotal: 3.85s\tremaining: 833ms\n", |
|
|
5314 |
"411:\tlearn: 0.0718678\ttotal: 3.86s\tremaining: 824ms\n", |
|
|
5315 |
"412:\tlearn: 0.0718597\ttotal: 3.87s\tremaining: 815ms\n", |
|
|
5316 |
"413:\tlearn: 0.0718502\ttotal: 3.88s\tremaining: 805ms\n", |
|
|
5317 |
"414:\tlearn: 0.0718380\ttotal: 3.89s\tremaining: 796ms\n", |
|
|
5318 |
"415:\tlearn: 0.0718257\ttotal: 3.9s\tremaining: 787ms\n", |
|
|
5319 |
"416:\tlearn: 0.0718165\ttotal: 3.9s\tremaining: 777ms\n", |
|
|
5320 |
"417:\tlearn: 0.0718029\ttotal: 3.91s\tremaining: 768ms\n", |
|
|
5321 |
"418:\tlearn: 0.0717902\ttotal: 3.92s\tremaining: 758ms\n", |
|
|
5322 |
"419:\tlearn: 0.0717771\ttotal: 3.93s\tremaining: 749ms\n", |
|
|
5323 |
"420:\tlearn: 0.0717688\ttotal: 3.94s\tremaining: 740ms\n", |
|
|
5324 |
"421:\tlearn: 0.0717573\ttotal: 3.95s\tremaining: 730ms\n", |
|
|
5325 |
"422:\tlearn: 0.0717474\ttotal: 3.96s\tremaining: 721ms\n", |
|
|
5326 |
"423:\tlearn: 0.0717324\ttotal: 3.97s\tremaining: 711ms\n", |
|
|
5327 |
"424:\tlearn: 0.0717264\ttotal: 3.98s\tremaining: 702ms\n", |
|
|
5328 |
"425:\tlearn: 0.0717157\ttotal: 3.99s\tremaining: 693ms\n", |
|
|
5329 |
"426:\tlearn: 0.0717059\ttotal: 4s\tremaining: 683ms\n", |
|
|
5330 |
"427:\tlearn: 0.0716873\ttotal: 4.01s\tremaining: 674ms\n", |
|
|
5331 |
"428:\tlearn: 0.0716677\ttotal: 4.01s\tremaining: 665ms\n", |
|
|
5332 |
"429:\tlearn: 0.0716600\ttotal: 4.03s\tremaining: 655ms\n", |
|
|
5333 |
"430:\tlearn: 0.0716483\ttotal: 4.04s\tremaining: 646ms\n", |
|
|
5334 |
"431:\tlearn: 0.0716365\ttotal: 4.04s\tremaining: 637ms\n", |
|
|
5335 |
"432:\tlearn: 0.0716202\ttotal: 4.05s\tremaining: 628ms\n", |
|
|
5336 |
"433:\tlearn: 0.0716095\ttotal: 4.06s\tremaining: 618ms\n", |
|
|
5337 |
"434:\tlearn: 0.0715985\ttotal: 4.07s\tremaining: 609ms\n", |
|
|
5338 |
"435:\tlearn: 0.0715876\ttotal: 4.08s\tremaining: 599ms\n", |
|
|
5339 |
"436:\tlearn: 0.0715798\ttotal: 4.09s\tremaining: 590ms\n", |
|
|
5340 |
"437:\tlearn: 0.0715610\ttotal: 4.1s\tremaining: 581ms\n", |
|
|
5341 |
"438:\tlearn: 0.0715484\ttotal: 4.11s\tremaining: 571ms\n", |
|
|
5342 |
"439:\tlearn: 0.0715376\ttotal: 4.12s\tremaining: 562ms\n", |
|
|
5343 |
"440:\tlearn: 0.0715258\ttotal: 4.13s\tremaining: 553ms\n", |
|
|
5344 |
"441:\tlearn: 0.0715089\ttotal: 4.14s\tremaining: 543ms\n", |
|
|
5345 |
"442:\tlearn: 0.0714980\ttotal: 4.15s\tremaining: 534ms\n", |
|
|
5346 |
"443:\tlearn: 0.0714831\ttotal: 4.16s\tremaining: 524ms\n", |
|
|
5347 |
"444:\tlearn: 0.0714712\ttotal: 4.17s\tremaining: 515ms\n", |
|
|
5348 |
"445:\tlearn: 0.0714504\ttotal: 4.18s\tremaining: 506ms\n", |
|
|
5349 |
"446:\tlearn: 0.0714367\ttotal: 4.19s\tremaining: 496ms\n", |
|
|
5350 |
"447:\tlearn: 0.0714226\ttotal: 4.2s\tremaining: 487ms\n", |
|
|
5351 |
"448:\tlearn: 0.0714022\ttotal: 4.21s\tremaining: 478ms\n", |
|
|
5352 |
"449:\tlearn: 0.0713922\ttotal: 4.21s\tremaining: 468ms\n", |
|
|
5353 |
"450:\tlearn: 0.0713754\ttotal: 4.22s\tremaining: 459ms\n", |
|
|
5354 |
"451:\tlearn: 0.0713548\ttotal: 4.23s\tremaining: 449ms\n", |
|
|
5355 |
"452:\tlearn: 0.0713430\ttotal: 4.24s\tremaining: 440ms\n", |
|
|
5356 |
"453:\tlearn: 0.0713314\ttotal: 4.25s\tremaining: 431ms\n", |
|
|
5357 |
"454:\tlearn: 0.0713193\ttotal: 4.26s\tremaining: 421ms\n", |
|
|
5358 |
"455:\tlearn: 0.0713045\ttotal: 4.27s\tremaining: 412ms\n", |
|
|
5359 |
"456:\tlearn: 0.0712836\ttotal: 4.28s\tremaining: 403ms\n", |
|
|
5360 |
"457:\tlearn: 0.0712709\ttotal: 4.29s\tremaining: 393ms\n", |
|
|
5361 |
"458:\tlearn: 0.0712616\ttotal: 4.3s\tremaining: 384ms\n", |
|
|
5362 |
"459:\tlearn: 0.0712485\ttotal: 4.31s\tremaining: 375ms\n", |
|
|
5363 |
"460:\tlearn: 0.0712362\ttotal: 4.32s\tremaining: 365ms\n", |
|
|
5364 |
"461:\tlearn: 0.0712228\ttotal: 4.33s\tremaining: 356ms\n", |
|
|
5365 |
"462:\tlearn: 0.0712109\ttotal: 4.33s\tremaining: 346ms\n", |
|
|
5366 |
"463:\tlearn: 0.0711906\ttotal: 4.34s\tremaining: 337ms\n", |
|
|
5367 |
"464:\tlearn: 0.0711781\ttotal: 4.35s\tremaining: 328ms\n", |
|
|
5368 |
"465:\tlearn: 0.0711673\ttotal: 4.36s\tremaining: 318ms\n", |
|
|
5369 |
"466:\tlearn: 0.0711520\ttotal: 4.37s\tremaining: 309ms\n", |
|
|
5370 |
"467:\tlearn: 0.0711382\ttotal: 4.38s\tremaining: 300ms\n", |
|
|
5371 |
"468:\tlearn: 0.0711256\ttotal: 4.39s\tremaining: 290ms\n", |
|
|
5372 |
"469:\tlearn: 0.0711134\ttotal: 4.4s\tremaining: 281ms\n", |
|
|
5373 |
"470:\tlearn: 0.0710990\ttotal: 4.41s\tremaining: 272ms\n", |
|
|
5374 |
"471:\tlearn: 0.0710890\ttotal: 4.42s\tremaining: 262ms\n", |
|
|
5375 |
"472:\tlearn: 0.0710718\ttotal: 4.43s\tremaining: 253ms\n", |
|
|
5376 |
"473:\tlearn: 0.0710646\ttotal: 4.44s\tremaining: 243ms\n", |
|
|
5377 |
"474:\tlearn: 0.0710488\ttotal: 4.45s\tremaining: 234ms\n", |
|
|
5378 |
"475:\tlearn: 0.0710442\ttotal: 4.46s\tremaining: 225ms\n", |
|
|
5379 |
"476:\tlearn: 0.0710264\ttotal: 4.47s\tremaining: 215ms\n", |
|
|
5380 |
"477:\tlearn: 0.0710169\ttotal: 4.48s\tremaining: 206ms\n", |
|
|
5381 |
"478:\tlearn: 0.0710066\ttotal: 4.49s\tremaining: 197ms\n", |
|
|
5382 |
"479:\tlearn: 0.0709930\ttotal: 4.5s\tremaining: 187ms\n", |
|
|
5383 |
"480:\tlearn: 0.0709806\ttotal: 4.5s\tremaining: 178ms\n", |
|
|
5384 |
"481:\tlearn: 0.0709720\ttotal: 4.51s\tremaining: 169ms\n", |
|
|
5385 |
"482:\tlearn: 0.0709628\ttotal: 4.52s\tremaining: 159ms\n", |
|
|
5386 |
"483:\tlearn: 0.0709569\ttotal: 4.53s\tremaining: 150ms\n", |
|
|
5387 |
"484:\tlearn: 0.0709400\ttotal: 4.54s\tremaining: 140ms\n", |
|
|
5388 |
"485:\tlearn: 0.0709190\ttotal: 4.55s\tremaining: 131ms\n", |
|
|
5389 |
"486:\tlearn: 0.0709130\ttotal: 4.56s\tremaining: 122ms\n", |
|
|
5390 |
"487:\tlearn: 0.0708958\ttotal: 4.57s\tremaining: 112ms\n", |
|
|
5391 |
"488:\tlearn: 0.0708877\ttotal: 4.58s\tremaining: 103ms\n", |
|
|
5392 |
"489:\tlearn: 0.0708704\ttotal: 4.59s\tremaining: 93.6ms\n", |
|
|
5393 |
"490:\tlearn: 0.0708477\ttotal: 4.6s\tremaining: 84.3ms\n", |
|
|
5394 |
"491:\tlearn: 0.0708380\ttotal: 4.61s\tremaining: 74.9ms\n", |
|
|
5395 |
"492:\tlearn: 0.0708320\ttotal: 4.62s\tremaining: 65.6ms\n", |
|
|
5396 |
"493:\tlearn: 0.0708244\ttotal: 4.63s\tremaining: 56.2ms\n", |
|
|
5397 |
"494:\tlearn: 0.0708139\ttotal: 4.64s\tremaining: 46.9ms\n", |
|
|
5398 |
"495:\tlearn: 0.0708022\ttotal: 4.65s\tremaining: 37.5ms\n", |
|
|
5399 |
"496:\tlearn: 0.0707959\ttotal: 4.66s\tremaining: 28.1ms\n", |
|
|
5400 |
"497:\tlearn: 0.0707823\ttotal: 4.67s\tremaining: 18.8ms\n", |
|
|
5401 |
"498:\tlearn: 0.0707698\ttotal: 4.68s\tremaining: 9.38ms\n", |
|
|
5402 |
"499:\tlearn: 0.0707596\ttotal: 4.69s\tremaining: 0us\n" |
|
|
5403 |
] |
|
|
5404 |
}, |
|
|
5405 |
{ |
|
|
5406 |
"data": { |
|
|
5407 |
"text/plain": [ |
|
|
5408 |
"MultiOutputRegressor(estimator=<catboost.core.CatBoostClassifier object at 0x7f8db10a8c18>,\n", |
|
|
5409 |
" n_jobs=None)" |
|
|
5410 |
] |
|
|
5411 |
}, |
|
|
5412 |
"execution_count": 27, |
|
|
5413 |
"metadata": {}, |
|
|
5414 |
"output_type": "execute_result" |
|
|
5415 |
} |
|
|
5416 |
], |
|
|
5417 |
"source": [ |
|
|
5418 |
"cb_clf = MultiOutputRegressor(CatBoostClassifier(task_type='GPU',depth=5,l2_leaf_reg=30,iterations=500))\n", |
|
|
5419 |
"cb_clf.fit(x_train,y_train)" |
|
|
5420 |
] |
|
|
5421 |
}, |
|
|
5422 |
{ |
|
|
5423 |
"cell_type": "markdown", |
|
|
5424 |
"metadata": {}, |
|
|
5425 |
"source": [ |
|
|
5426 |
"# Run predictions on trained XGB model" |
|
|
5427 |
] |
|
|
5428 |
}, |
|
|
5429 |
{ |
|
|
5430 |
"cell_type": "code", |
|
|
5431 |
"execution_count": 28, |
|
|
5432 |
"metadata": {}, |
|
|
5433 |
"outputs": [ |
|
|
5434 |
{ |
|
|
5435 |
"name": "stdout", |
|
|
5436 |
"output_type": "stream", |
|
|
5437 |
"text": [ |
|
|
5438 |
"0 any 0.09340231172025013\n", |
|
|
5439 |
"1 epidural 0.012141253590899853\n", |
|
|
5440 |
"2 intraparenchymal 0.039596951835288635\n", |
|
|
5441 |
"3 intraventricular 0.02329420861999448\n", |
|
|
5442 |
"4 subarachnoid 0.062225838595083294\n", |
|
|
5443 |
"5 subdural 0.07753075725012087\n", |
|
|
5444 |
"0.05737051904741248\n" |
|
|
5445 |
] |
|
|
5446 |
} |
|
|
5447 |
], |
|
|
5448 |
"source": [ |
|
|
5449 |
"#predictions from model and evaluation\n", |
|
|
5450 |
"x_test = val_df[model_vars]\n", |
|
|
5451 |
"y_pred = xgb_clf.predict(x_test)\n", |
|
|
5452 |
"y_true = val_df[base_classes]\n", |
|
|
5453 |
"\n", |
|
|
5454 |
"l = 0\n", |
|
|
5455 |
"for i,c in enumerate(y_true.columns):\n", |
|
|
5456 |
" loss = log_loss( y_true[c], y_pred[:,i] )\n", |
|
|
5457 |
" l += loss if i != 0 else loss*2\n", |
|
|
5458 |
" print(i,c,loss)\n", |
|
|
5459 |
"print(l/7.)" |
|
|
5460 |
] |
|
|
5461 |
}, |
|
|
5462 |
{ |
|
|
5463 |
"cell_type": "code", |
|
|
5464 |
"execution_count": 29, |
|
|
5465 |
"metadata": {}, |
|
|
5466 |
"outputs": [ |
|
|
5467 |
{ |
|
|
5468 |
"name": "stdout", |
|
|
5469 |
"output_type": "stream", |
|
|
5470 |
"text": [ |
|
|
5471 |
"0 any 0.0936741594705755\n", |
|
|
5472 |
"1 epidural 0.012621494943967658\n", |
|
|
5473 |
"2 intraparenchymal 0.039732457939622046\n", |
|
|
5474 |
"3 intraventricular 0.023184423126184128\n", |
|
|
5475 |
"4 subarachnoid 0.06195888386520253\n", |
|
|
5476 |
"5 subdural 0.0781302903061038\n", |
|
|
5477 |
"0.057567981303175884\n" |
|
|
5478 |
] |
|
|
5479 |
} |
|
|
5480 |
], |
|
|
5481 |
"source": [ |
|
|
5482 |
"#predictions from model and evaluation\n", |
|
|
5483 |
"x_test = val_df[model_vars]\n", |
|
|
5484 |
"_y_pred = [c.predict_proba(x_test)[:,1:] for c in cb_clf.estimators_]\n", |
|
|
5485 |
"y_pred = np.concatenate(_y_pred,axis=-1)\n", |
|
|
5486 |
"y_true = val_df[base_classes]\n", |
|
|
5487 |
"\n", |
|
|
5488 |
"l = 0\n", |
|
|
5489 |
"for i,c in enumerate(y_true.columns):\n", |
|
|
5490 |
" loss = log_loss( y_true[c], y_pred[:,i] )\n", |
|
|
5491 |
" l += loss if i != 0 else loss*2\n", |
|
|
5492 |
" print(i,c,loss)\n", |
|
|
5493 |
"print(l/7.)" |
|
|
5494 |
] |
|
|
5495 |
}, |
|
|
5496 |
{ |
|
|
5497 |
"cell_type": "markdown", |
|
|
5498 |
"metadata": {}, |
|
|
5499 |
"source": [ |
|
|
5500 |
"# Prepare submission with trained model" |
|
|
5501 |
] |
|
|
5502 |
}, |
|
|
5503 |
{ |
|
|
5504 |
"cell_type": "code", |
|
|
5505 |
"execution_count": 30, |
|
|
5506 |
"metadata": {}, |
|
|
5507 |
"outputs": [ |
|
|
5508 |
{ |
|
|
5509 |
"name": "stdout", |
|
|
5510 |
"output_type": "stream", |
|
|
5511 |
"text": [ |
|
|
5512 |
"finish\n" |
|
|
5513 |
] |
|
|
5514 |
} |
|
|
5515 |
], |
|
|
5516 |
"source": [ |
|
|
5517 |
"sub_path = 'data/submission_L2.csv'\n", |
|
|
5518 |
"\n", |
|
|
5519 |
"data = {}\n", |
|
|
5520 |
"for test_df in test_dfs:\n", |
|
|
5521 |
" x_test = test_df[model_vars]\n", |
|
|
5522 |
" xgb_probas = xgb_clf.predict(x_test)\n", |
|
|
5523 |
" cb_probas = np.concatenate([c.predict_proba(x_test)[:,1:] for c in cb_clf.estimators_],axis=-1)\n", |
|
|
5524 |
" \n", |
|
|
5525 |
" probas = (xgb_probas + cb_probas) / 2.\n", |
|
|
5526 |
" \n", |
|
|
5527 |
" for idx, row in test_df.iterrows():\n", |
|
|
5528 |
" file_id = row.fn\n", |
|
|
5529 |
" for klass_index, klass in enumerate(base_classes):\n", |
|
|
5530 |
" key = file_id + '_' + klass\n", |
|
|
5531 |
" if key not in data:\n", |
|
|
5532 |
" data[key] = probas[idx, klass_index]\n", |
|
|
5533 |
" else:\n", |
|
|
5534 |
" data[key] += probas[idx, klass_index]\n", |
|
|
5535 |
"\n", |
|
|
5536 |
"print('finish') \n", |
|
|
5537 |
" \n", |
|
|
5538 |
"final_prediction = []\n", |
|
|
5539 |
"for key in data:\n", |
|
|
5540 |
" final_prediction.append([key, data[key] / 5])\n", |
|
|
5541 |
"\n", |
|
|
5542 |
"df = pd.DataFrame(final_prediction, columns=['ID','Label'])\n", |
|
|
5543 |
"df.to_csv(sub_path, index=False)\n" |
|
|
5544 |
] |
|
|
5545 |
}, |
|
|
5546 |
{ |
|
|
5547 |
"cell_type": "code", |
|
|
5548 |
"execution_count": 31, |
|
|
5549 |
"metadata": {}, |
|
|
5550 |
"outputs": [ |
|
|
5551 |
{ |
|
|
5552 |
"data": { |
|
|
5553 |
"text/plain": [ |
|
|
5554 |
"'\"L2 Stacking of densenet121 densenet121-53_train_cpu_window_uint8 resnet101 resnet101-53_train_cpu_window_uint8 resnet18 resnet18-53_train_cpu_window_uint8 resnet34 resnet34-53_train_cpu_window_uint8 resnet50 resnext50_32x4d-53_train_cpu_window_uint8 ensembled with xgboost + catboost\"'" |
|
|
5555 |
] |
|
|
5556 |
}, |
|
|
5557 |
"execution_count": 31, |
|
|
5558 |
"metadata": {}, |
|
|
5559 |
"output_type": "execute_result" |
|
|
5560 |
} |
|
|
5561 |
], |
|
|
5562 |
"source": [ |
|
|
5563 |
"msg = '\"L2 Stacking of ' + \" \".join(arch_names) + ' ensembled with xgboost + catboost\"'\n", |
|
|
5564 |
"msg" |
|
|
5565 |
] |
|
|
5566 |
}, |
|
|
5567 |
{ |
|
|
5568 |
"cell_type": "code", |
|
|
5569 |
"execution_count": null, |
|
|
5570 |
"metadata": {}, |
|
|
5571 |
"outputs": [], |
|
|
5572 |
"source": [ |
|
|
5573 |
"!kaggle competitions submit -c rsna-intracranial-hemorrhage-detection -f {sub_path} -m {msg}" |
|
|
5574 |
] |
|
|
5575 |
} |
|
|
5576 |
], |
|
|
5577 |
"metadata": { |
|
|
5578 |
"kernelspec": { |
|
|
5579 |
"display_name": "Python 3", |
|
|
5580 |
"language": "python", |
|
|
5581 |
"name": "python3" |
|
|
5582 |
}, |
|
|
5583 |
"language_info": { |
|
|
5584 |
"codemirror_mode": { |
|
|
5585 |
"name": "ipython", |
|
|
5586 |
"version": 3 |
|
|
5587 |
}, |
|
|
5588 |
"file_extension": ".py", |
|
|
5589 |
"mimetype": "text/x-python", |
|
|
5590 |
"name": "python", |
|
|
5591 |
"nbconvert_exporter": "python", |
|
|
5592 |
"pygments_lexer": "ipython3", |
|
|
5593 |
"version": "3.7.3" |
|
|
5594 |
} |
|
|
5595 |
}, |
|
|
5596 |
"nbformat": 4, |
|
|
5597 |
"nbformat_minor": 2 |
|
|
5598 |
} |