Switch to unified view

a b/4-L2-train-and-submit.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "experiment_name = 'sm'"
10
   ]
11
  },
12
  {
13
   "cell_type": "code",
14
   "execution_count": 2,
15
   "metadata": {},
16
   "outputs": [],
17
   "source": [
18
    "from pathlib import Path\n",
19
    "from fastai.data_block import get_files\n",
20
    "import pickle\n",
21
    "import torch\n",
22
    "import numpy as np, pandas as pd"
23
   ]
24
  },
25
  {
26
   "cell_type": "code",
27
   "execution_count": 3,
28
   "metadata": {},
29
   "outputs": [],
30
   "source": [
31
    "class defaultlist(list):\n",
32
    "    def __init__(self, fx):\n",
33
    "        self._fx = fx\n",
34
    "    def _fill(self, index):\n",
35
    "        while len(self) <= index:\n",
36
    "            self.append(self._fx())\n",
37
    "    def __setitem__(self, index, value):\n",
38
    "        self._fill(index)\n",
39
    "        list.__setitem__(self, index, value)\n",
40
    "    def __getitem__(self, index):\n",
41
    "        self._fill(index)\n",
42
    "        return list.__getitem__(self, index)"
43
   ]
44
  },
45
  {
46
   "cell_type": "code",
47
   "execution_count": 4,
48
   "metadata": {},
49
   "outputs": [],
50
   "source": [
51
    "data_dir = Path('data/predictions')\n",
52
    "base_classes = [ 'any', 'epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural' ]"
53
   ]
54
  },
55
  {
56
   "cell_type": "code",
57
   "execution_count": 5,
58
   "metadata": {},
59
   "outputs": [],
60
   "source": [
61
    "stage = \"stage_2\""
62
   ]
63
  },
64
  {
65
   "cell_type": "code",
66
   "execution_count": 6,
67
   "metadata": {},
68
   "outputs": [],
69
   "source": [
70
    "fn_to_study_ix = pickle.load(open(f'data/{stage}_fn_to_study_ix.pickle', 'rb'))\n",
71
    "study_ix_to_fn = pickle.load(open(f'data/{stage}_study_ix_to_fn.pickle', 'rb'))\n",
72
    "study_to_data = pickle.load(open(f'data/{stage}_study_to_data.pickle', 'rb'))\n",
73
    "df = pd.read_csv(f\"data/{stage}_train_dicom_diags_norm.csv\")\n",
74
    "df = df.set_index(['fid'])\n"
75
   ]
76
  },
77
  {
78
   "cell_type": "code",
79
   "execution_count": 7,
80
   "metadata": {},
81
   "outputs": [],
82
   "source": [
83
    "labels_df = df.loc[:,'any':'subdural']\n",
84
    "labels_df.index.name = 'fn'"
85
   ]
86
  },
87
  {
88
   "cell_type": "code",
89
   "execution_count": 8,
90
   "metadata": {
91
    "scrolled": true
92
   },
93
   "outputs": [
94
    {
95
     "data": {
96
      "text/plain": [
97
       "(['data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0413_subdural_loss_fold1_of_5',\n",
98
       "  'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0406_subdural_loss_fold2_of_5',\n",
99
       "  'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0403_subdural_loss_fold3_of_5',\n",
100
       "  'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0399_subdural_loss_fold4_of_5',\n",
101
       "  'data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0386_subdural_loss_fold5_of_5',\n",
102
       "  'data/predictions/densenet121_sz512_cv0.0749_weighted_loss_fold1_of_5',\n",
103
       "  'data/predictions/densenet121_sz512_cv0.0743_weighted_loss_fold2_of_5',\n",
104
       "  'data/predictions/densenet121_sz512_cv0.0748_weighted_loss_fold3_of_5',\n",
105
       "  'data/predictions/densenet121_sz512_cv0.0738_weighted_loss_fold4_of_5',\n",
106
       "  'data/predictions/densenet121_sz512_cv0.0739_weighted_loss_fold5_of_5',\n",
107
       "  'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0375_subdural_loss_fold1_of_5',\n",
108
       "  'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0369_subdural_loss_fold2_of_5',\n",
109
       "  'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0371_subdural_loss_fold3_of_5',\n",
110
       "  'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0366_subdural_loss_fold4_of_5',\n",
111
       "  'data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0365_subdural_loss_fold5_of_5',\n",
112
       "  'data/predictions/resnet101_sz512_cv0.0758_weighted_loss_fold1_of_5',\n",
113
       "  'data/predictions/resnet101_sz512_cv0.0754_weighted_loss_fold2_of_5',\n",
114
       "  'data/predictions/resnet101_sz512_cv0.0761_weighted_loss_fold3_of_5',\n",
115
       "  'data/predictions/resnet101_sz512_cv0.0751_weighted_loss_fold4_of_5',\n",
116
       "  'data/predictions/resnet101_sz512_cv0.0749_weighted_loss_fold5_of_5',\n",
117
       "  'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0556_subdural_loss_fold1_of_5',\n",
118
       "  'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0550_subdural_loss_fold2_of_5',\n",
119
       "  'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0528_subdural_loss_fold3_of_5',\n",
120
       "  'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0530_subdural_loss_fold4_of_5',\n",
121
       "  'data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0522_subdural_loss_fold5_of_5',\n",
122
       "  'data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold1_of_5',\n",
123
       "  'data/predictions/resnet18_sz512_cv0.0773_weighted_loss_fold2_of_5',\n",
124
       "  'data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold3_of_5',\n",
125
       "  'data/predictions/resnet18_sz512_cv0.0762_weighted_loss_fold4_of_5',\n",
126
       "  'data/predictions/resnet18_sz512_cv0.0768_weighted_loss_fold5_of_5',\n",
127
       "  'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0496_subdural_loss_fold1_of_5',\n",
128
       "  'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0484_subdural_loss_fold2_of_5',\n",
129
       "  'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0474_subdural_loss_fold3_of_5',\n",
130
       "  'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0466_subdural_loss_fold4_of_5',\n",
131
       "  'data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0453_subdural_loss_fold5_of_5',\n",
132
       "  'data/predictions/resnet34_sz512_cv0.0765_weighted_loss_fold1_of_5',\n",
133
       "  'data/predictions/resnet34_sz512_cv0.0763_weighted_loss_fold2_of_5',\n",
134
       "  'data/predictions/resnet34_sz512_cv0.0782_weighted_loss_fold3_of_5',\n",
135
       "  'data/predictions/resnet34_sz512_cv0.0750_weighted_loss_fold4_of_5',\n",
136
       "  'data/predictions/resnet34_sz512_cv0.0759_weighted_loss_fold5_of_5',\n",
137
       "  'data/predictions/resnet50_sz512_cv0.0761_weighted_loss_fold1_of_5',\n",
138
       "  'data/predictions/resnet50_sz512_cv0.0754_weighted_loss_fold2_of_5',\n",
139
       "  'data/predictions/resnet50_sz512_cv0.0764_weighted_loss_fold3_of_5',\n",
140
       "  'data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold4_of_5',\n",
141
       "  'data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold5_of_5',\n",
142
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0387_subdural_loss_fold1_of_5',\n",
143
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0378_subdural_loss_fold2_of_5',\n",
144
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0381_subdural_loss_fold3_of_5',\n",
145
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0376_subdural_loss_fold4_of_5',\n",
146
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0372_subdural_loss_fold5_of_5'],\n",
147
       " ['data/predictions/densenet121',\n",
148
       "  'data/predictions/densenet121-53_train_cpu_window_uint8',\n",
149
       "  'data/predictions/resnet101',\n",
150
       "  'data/predictions/resnet101-53_train_cpu_window_uint8',\n",
151
       "  'data/predictions/resnet18',\n",
152
       "  'data/predictions/resnet18-53_train_cpu_window_uint8',\n",
153
       "  'data/predictions/resnet34',\n",
154
       "  'data/predictions/resnet34-53_train_cpu_window_uint8',\n",
155
       "  'data/predictions/resnet50',\n",
156
       "  'data/predictions/resnext50_32x4d-53_train_cpu_window_uint8'])"
157
      ]
158
     },
159
     "execution_count": 8,
160
     "metadata": {},
161
     "output_type": "execute_result"
162
    }
163
   ],
164
   "source": [
165
    "csvs = sorted([str(fn) for fn in get_files(data_dir, extensions='.csv')])\n",
166
    "csv = csvs[0]\n",
167
    "def where_test(csv):\n",
168
    "    res = csv.find('_test') \n",
169
    "    return res if res!= -1 else csv.find('_valid') \n",
170
    "where_fold = lambda csv: csv.index('fold')\n",
171
    "where_stem = lambda csv: len(csv)-csv[::-1].index('/')\n",
172
    "where_sz   = lambda csv: csv.index('_sz')\n",
173
    "model_fns = sorted(np.unique([csv[:where_test(csv)] for csv in csvs]),\n",
174
    "                   key=lambda x:x[where_stem(x):where_sz(x)]+x[where_fold(x):where_test(x)])\n",
175
    "archs     = np.unique([model_fn[:where_sz(model_fn)] for model_fn in model_fns]).tolist()\n",
176
    "n_folds = len(model_fns)//len(archs)\n",
177
    "model_fns, archs, "
178
   ]
179
  },
180
  {
181
   "cell_type": "code",
182
   "execution_count": 9,
183
   "metadata": {},
184
   "outputs": [
185
    {
186
     "name": "stdout",
187
     "output_type": "stream",
188
     "text": [
189
      "0 data/predictions/densenet121_sz512_cv0.0749_weighted_loss_fold1_of_5\n",
190
      "1 data/predictions/densenet121_sz512_cv0.0743_weighted_loss_fold2_of_5\n",
191
      "2 data/predictions/densenet121_sz512_cv0.0748_weighted_loss_fold3_of_5\n",
192
      "3 data/predictions/densenet121_sz512_cv0.0738_weighted_loss_fold4_of_5\n",
193
      "4 data/predictions/densenet121_sz512_cv0.0739_weighted_loss_fold5_of_5\n",
194
      "0 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0413_subdural_loss_fold1_of_5\n",
195
      "1 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0406_subdural_loss_fold2_of_5\n",
196
      "2 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0403_subdural_loss_fold3_of_5\n",
197
      "3 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0399_subdural_loss_fold4_of_5\n",
198
      "4 data/predictions/densenet121-53_train_cpu_window_uint8_sz512_cv0.0386_subdural_loss_fold5_of_5\n",
199
      "0 data/predictions/resnet101_sz512_cv0.0758_weighted_loss_fold1_of_5\n",
200
      "1 data/predictions/resnet101_sz512_cv0.0754_weighted_loss_fold2_of_5\n",
201
      "2 data/predictions/resnet101_sz512_cv0.0761_weighted_loss_fold3_of_5\n",
202
      "3 data/predictions/resnet101_sz512_cv0.0751_weighted_loss_fold4_of_5\n",
203
      "4 data/predictions/resnet101_sz512_cv0.0749_weighted_loss_fold5_of_5\n",
204
      "0 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0375_subdural_loss_fold1_of_5\n",
205
      "1 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0369_subdural_loss_fold2_of_5\n",
206
      "2 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0371_subdural_loss_fold3_of_5\n",
207
      "3 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0366_subdural_loss_fold4_of_5\n",
208
      "4 data/predictions/resnet101-53_train_cpu_window_uint8_sz512_cv0.0365_subdural_loss_fold5_of_5\n",
209
      "0 data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold1_of_5\n",
210
      "1 data/predictions/resnet18_sz512_cv0.0773_weighted_loss_fold2_of_5\n",
211
      "2 data/predictions/resnet18_sz512_cv0.0786_weighted_loss_fold3_of_5\n",
212
      "3 data/predictions/resnet18_sz512_cv0.0762_weighted_loss_fold4_of_5\n",
213
      "4 data/predictions/resnet18_sz512_cv0.0768_weighted_loss_fold5_of_5\n",
214
      "0 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0556_subdural_loss_fold1_of_5\n",
215
      "1 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0550_subdural_loss_fold2_of_5\n",
216
      "2 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0528_subdural_loss_fold3_of_5\n",
217
      "3 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0530_subdural_loss_fold4_of_5\n",
218
      "4 data/predictions/resnet18-53_train_cpu_window_uint8_sz512_cv0.0522_subdural_loss_fold5_of_5\n",
219
      "0 data/predictions/resnet34_sz512_cv0.0765_weighted_loss_fold1_of_5\n",
220
      "1 data/predictions/resnet34_sz512_cv0.0763_weighted_loss_fold2_of_5\n",
221
      "2 data/predictions/resnet34_sz512_cv0.0782_weighted_loss_fold3_of_5\n",
222
      "3 data/predictions/resnet34_sz512_cv0.0750_weighted_loss_fold4_of_5\n",
223
      "4 data/predictions/resnet34_sz512_cv0.0759_weighted_loss_fold5_of_5\n",
224
      "0 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0496_subdural_loss_fold1_of_5\n",
225
      "1 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0484_subdural_loss_fold2_of_5\n",
226
      "2 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0474_subdural_loss_fold3_of_5\n",
227
      "3 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0466_subdural_loss_fold4_of_5\n",
228
      "4 data/predictions/resnet34-53_train_cpu_window_uint8_sz512_cv0.0453_subdural_loss_fold5_of_5\n",
229
      "0 data/predictions/resnet50_sz512_cv0.0761_weighted_loss_fold1_of_5\n",
230
      "1 data/predictions/resnet50_sz512_cv0.0754_weighted_loss_fold2_of_5\n",
231
      "2 data/predictions/resnet50_sz512_cv0.0764_weighted_loss_fold3_of_5\n",
232
      "3 data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold4_of_5\n",
233
      "4 data/predictions/resnet50_sz512_cv0.0751_weighted_loss_fold5_of_5\n",
234
      "0 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0387_subdural_loss_fold1_of_5\n",
235
      "1 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0378_subdural_loss_fold2_of_5\n",
236
      "2 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0381_subdural_loss_fold3_of_5\n",
237
      "3 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0376_subdural_loss_fold4_of_5\n",
238
      "4 data/predictions/resnext50_32x4d-53_train_cpu_window_uint8_sz512_cv0.0372_subdural_loss_fold5_of_5\n"
239
     ]
240
    }
241
   ],
242
   "source": [
243
    "arch_names = [arch[where_stem(arch):] for arch in archs]\n",
244
    "test_folds_dfs, train_arch_dfs = defaultlist(list),[]\n",
245
    "for arch in archs:\n",
246
    "    train_model_dfs = []\n",
247
    "    _arch = arch[where_stem(arch):]\n",
248
    "    for i,model_fn in enumerate([model for model in model_fns if model.find(arch+\"_\")!=-1]):\n",
249
    "        print(i,model_fn)\n",
250
    "        t_df = pd.read_csv(model_fn + '_valid_fns.csv')\n",
251
    "        t = torch.load(model_fn + '_valid.pth')\n",
252
    "        t_mean, t_std = t.mean(dim=0), t.std(dim=0)\n",
253
    "        train_model_dfs.append(pd.DataFrame({**{'fn' : t_df.values.squeeze(-1),},\n",
254
    "                      **{f'X{_arch}_{c}_mean' : t_mean[:,6+i].numpy() for i,c in enumerate(base_classes)},\n",
255
    "                      **{f'X{_arch}_{c}_std'  :  t_std[:,6+i].numpy() for i,c in enumerate(base_classes)}}))\n",
256
    "        \n",
257
    "        t_df = pd.read_csv(model_fn + '_test_fns.csv')\n",
258
    "        t = torch.load(model_fn + '_test.pth')\n",
259
    "        t_mean, t_std = t.mean(dim=0), t.std(dim=0)\n",
260
    "        test_folds_dfs[i].append(pd.DataFrame({**{'fn' : t_df.values.squeeze(-1),},\n",
261
    "                      **{f'X{_arch}_{c}_mean' : t_mean[:,6+i].numpy() for i,c in enumerate(base_classes)},\n",
262
    "                      **{f'X{_arch}_{c}_std'  :  t_std[:,6+i].numpy() for i,c in enumerate(base_classes)}}))\n",
263
    "\n",
264
    "    train_arch_dfs.append(pd.concat(train_model_dfs, axis=0))"
265
   ]
266
  },
267
  {
268
   "cell_type": "code",
269
   "execution_count": 10,
270
   "metadata": {},
271
   "outputs": [],
272
   "source": [
273
    "tta_df = train_arch_dfs[0]\n",
274
    "for arch_df in train_arch_dfs[1:]:\n",
275
    "    tta_df = tta_df.merge(arch_df,on='fn')"
276
   ]
277
  },
278
  {
279
   "cell_type": "code",
280
   "execution_count": 11,
281
   "metadata": {},
282
   "outputs": [],
283
   "source": [
284
    "tta_df = tta_df.merge(labels_df,on='fn')"
285
   ]
286
  },
287
  {
288
   "cell_type": "code",
289
   "execution_count": 12,
290
   "metadata": {},
291
   "outputs": [
292
    {
293
     "data": {
294
      "text/html": [
295
       "<div>\n",
296
       "<style scoped>\n",
297
       "    .dataframe tbody tr th:only-of-type {\n",
298
       "        vertical-align: middle;\n",
299
       "    }\n",
300
       "\n",
301
       "    .dataframe tbody tr th {\n",
302
       "        vertical-align: top;\n",
303
       "    }\n",
304
       "\n",
305
       "    .dataframe thead th {\n",
306
       "        text-align: right;\n",
307
       "    }\n",
308
       "</style>\n",
309
       "<table border=\"1\" class=\"dataframe\">\n",
310
       "  <thead>\n",
311
       "    <tr style=\"text-align: right;\">\n",
312
       "      <th></th>\n",
313
       "      <th>fn</th>\n",
314
       "      <th>Xdensenet121_any_mean</th>\n",
315
       "      <th>Xdensenet121_epidural_mean</th>\n",
316
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
317
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
318
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
319
       "      <th>Xdensenet121_subdural_mean</th>\n",
320
       "      <th>Xdensenet121_any_std</th>\n",
321
       "      <th>Xdensenet121_epidural_std</th>\n",
322
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
323
       "      <th>...</th>\n",
324
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_std</th>\n",
325
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_std</th>\n",
326
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std</th>\n",
327
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std</th>\n",
328
       "      <th>any</th>\n",
329
       "      <th>epidural</th>\n",
330
       "      <th>intraparenchymal</th>\n",
331
       "      <th>intraventricular</th>\n",
332
       "      <th>subarachnoid</th>\n",
333
       "      <th>subdural</th>\n",
334
       "    </tr>\n",
335
       "  </thead>\n",
336
       "  <tbody>\n",
337
       "    <tr>\n",
338
       "      <th>0</th>\n",
339
       "      <td>ID_0000950d7</td>\n",
340
       "      <td>0.000216</td>\n",
341
       "      <td>0.000009</td>\n",
342
       "      <td>0.000040</td>\n",
343
       "      <td>0.000017</td>\n",
344
       "      <td>0.000131</td>\n",
345
       "      <td>0.000070</td>\n",
346
       "      <td>0.000077</td>\n",
347
       "      <td>2.602864e-06</td>\n",
348
       "      <td>0.000013</td>\n",
349
       "      <td>...</td>\n",
350
       "      <td>0.000009</td>\n",
351
       "      <td>2.093691e-06</td>\n",
352
       "      <td>0.000017</td>\n",
353
       "      <td>0.000002</td>\n",
354
       "      <td>0</td>\n",
355
       "      <td>0</td>\n",
356
       "      <td>0</td>\n",
357
       "      <td>0</td>\n",
358
       "      <td>0</td>\n",
359
       "      <td>0</td>\n",
360
       "    </tr>\n",
361
       "    <tr>\n",
362
       "      <th>1</th>\n",
363
       "      <td>ID_0000aee4b</td>\n",
364
       "      <td>0.000652</td>\n",
365
       "      <td>0.000132</td>\n",
366
       "      <td>0.000049</td>\n",
367
       "      <td>0.000030</td>\n",
368
       "      <td>0.000237</td>\n",
369
       "      <td>0.000415</td>\n",
370
       "      <td>0.000478</td>\n",
371
       "      <td>7.363618e-05</td>\n",
372
       "      <td>0.000018</td>\n",
373
       "      <td>...</td>\n",
374
       "      <td>0.000003</td>\n",
375
       "      <td>4.035392e-07</td>\n",
376
       "      <td>0.000253</td>\n",
377
       "      <td>0.000225</td>\n",
378
       "      <td>0</td>\n",
379
       "      <td>0</td>\n",
380
       "      <td>0</td>\n",
381
       "      <td>0</td>\n",
382
       "      <td>0</td>\n",
383
       "      <td>0</td>\n",
384
       "    </tr>\n",
385
       "    <tr>\n",
386
       "      <th>2</th>\n",
387
       "      <td>ID_0001de0e8</td>\n",
388
       "      <td>0.000875</td>\n",
389
       "      <td>0.000079</td>\n",
390
       "      <td>0.000283</td>\n",
391
       "      <td>0.000013</td>\n",
392
       "      <td>0.000218</td>\n",
393
       "      <td>0.000636</td>\n",
394
       "      <td>0.001155</td>\n",
395
       "      <td>8.438517e-05</td>\n",
396
       "      <td>0.000151</td>\n",
397
       "      <td>...</td>\n",
398
       "      <td>0.000247</td>\n",
399
       "      <td>1.205952e-05</td>\n",
400
       "      <td>0.001305</td>\n",
401
       "      <td>0.000090</td>\n",
402
       "      <td>0</td>\n",
403
       "      <td>0</td>\n",
404
       "      <td>0</td>\n",
405
       "      <td>0</td>\n",
406
       "      <td>0</td>\n",
407
       "      <td>0</td>\n",
408
       "    </tr>\n",
409
       "    <tr>\n",
410
       "      <th>3</th>\n",
411
       "      <td>ID_0002003a8</td>\n",
412
       "      <td>0.001583</td>\n",
413
       "      <td>0.000008</td>\n",
414
       "      <td>0.000745</td>\n",
415
       "      <td>0.000176</td>\n",
416
       "      <td>0.000233</td>\n",
417
       "      <td>0.000478</td>\n",
418
       "      <td>0.000657</td>\n",
419
       "      <td>8.040458e-07</td>\n",
420
       "      <td>0.000355</td>\n",
421
       "      <td>...</td>\n",
422
       "      <td>0.000542</td>\n",
423
       "      <td>3.861410e-04</td>\n",
424
       "      <td>0.000488</td>\n",
425
       "      <td>0.000947</td>\n",
426
       "      <td>0</td>\n",
427
       "      <td>0</td>\n",
428
       "      <td>0</td>\n",
429
       "      <td>0</td>\n",
430
       "      <td>0</td>\n",
431
       "      <td>0</td>\n",
432
       "    </tr>\n",
433
       "    <tr>\n",
434
       "      <th>4</th>\n",
435
       "      <td>ID_000229f2a</td>\n",
436
       "      <td>0.000251</td>\n",
437
       "      <td>0.000041</td>\n",
438
       "      <td>0.000084</td>\n",
439
       "      <td>0.000039</td>\n",
440
       "      <td>0.000162</td>\n",
441
       "      <td>0.000084</td>\n",
442
       "      <td>0.000072</td>\n",
443
       "      <td>1.584314e-05</td>\n",
444
       "      <td>0.000014</td>\n",
445
       "      <td>...</td>\n",
446
       "      <td>0.001312</td>\n",
447
       "      <td>1.682060e-06</td>\n",
448
       "      <td>0.000491</td>\n",
449
       "      <td>0.000120</td>\n",
450
       "      <td>0</td>\n",
451
       "      <td>0</td>\n",
452
       "      <td>0</td>\n",
453
       "      <td>0</td>\n",
454
       "      <td>0</td>\n",
455
       "      <td>0</td>\n",
456
       "    </tr>\n",
457
       "  </tbody>\n",
458
       "</table>\n",
459
       "<p>5 rows × 127 columns</p>\n",
460
       "</div>"
461
      ],
462
      "text/plain": [
463
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
464
       "0  ID_0000950d7               0.000216                    0.000009   \n",
465
       "1  ID_0000aee4b               0.000652                    0.000132   \n",
466
       "2  ID_0001de0e8               0.000875                    0.000079   \n",
467
       "3  ID_0002003a8               0.001583                    0.000008   \n",
468
       "4  ID_000229f2a               0.000251                    0.000041   \n",
469
       "\n",
470
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
471
       "0                            0.000040                            0.000017   \n",
472
       "1                            0.000049                            0.000030   \n",
473
       "2                            0.000283                            0.000013   \n",
474
       "3                            0.000745                            0.000176   \n",
475
       "4                            0.000084                            0.000039   \n",
476
       "\n",
477
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
478
       "0                        0.000131                    0.000070   \n",
479
       "1                        0.000237                    0.000415   \n",
480
       "2                        0.000218                    0.000636   \n",
481
       "3                        0.000233                    0.000478   \n",
482
       "4                        0.000162                    0.000084   \n",
483
       "\n",
484
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
485
       "0              0.000077               2.602864e-06   \n",
486
       "1              0.000478               7.363618e-05   \n",
487
       "2              0.001155               8.438517e-05   \n",
488
       "3              0.000657               8.040458e-07   \n",
489
       "4              0.000072               1.584314e-05   \n",
490
       "\n",
491
       "   Xdensenet121_intraparenchymal_std  ...  \\\n",
492
       "0                           0.000013  ...   \n",
493
       "1                           0.000018  ...   \n",
494
       "2                           0.000151  ...   \n",
495
       "3                           0.000355  ...   \n",
496
       "4                           0.000014  ...   \n",
497
       "\n",
498
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_std  \\\n",
499
       "0                                           0.000009                 \n",
500
       "1                                           0.000003                 \n",
501
       "2                                           0.000247                 \n",
502
       "3                                           0.000542                 \n",
503
       "4                                           0.001312                 \n",
504
       "\n",
505
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_std  \\\n",
506
       "0                                       2.093691e-06                 \n",
507
       "1                                       4.035392e-07                 \n",
508
       "2                                       1.205952e-05                 \n",
509
       "3                                       3.861410e-04                 \n",
510
       "4                                       1.682060e-06                 \n",
511
       "\n",
512
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std  \\\n",
513
       "0                                           0.000017             \n",
514
       "1                                           0.000253             \n",
515
       "2                                           0.001305             \n",
516
       "3                                           0.000488             \n",
517
       "4                                           0.000491             \n",
518
       "\n",
519
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std  any  epidural  \\\n",
520
       "0                                           0.000002          0         0   \n",
521
       "1                                           0.000225          0         0   \n",
522
       "2                                           0.000090          0         0   \n",
523
       "3                                           0.000947          0         0   \n",
524
       "4                                           0.000120          0         0   \n",
525
       "\n",
526
       "   intraparenchymal  intraventricular  subarachnoid  subdural  \n",
527
       "0                 0                 0             0         0  \n",
528
       "1                 0                 0             0         0  \n",
529
       "2                 0                 0             0         0  \n",
530
       "3                 0                 0             0         0  \n",
531
       "4                 0                 0             0         0  \n",
532
       "\n",
533
       "[5 rows x 127 columns]"
534
      ]
535
     },
536
     "execution_count": 12,
537
     "metadata": {},
538
     "output_type": "execute_result"
539
    }
540
   ],
541
   "source": [
542
    "tta_df.head()"
543
   ]
544
  },
545
  {
546
   "cell_type": "code",
547
   "execution_count": 13,
548
   "metadata": {},
549
   "outputs": [
550
    {
551
     "data": {
552
      "text/plain": [
553
       "(752802, 752802)"
554
      ]
555
     },
556
     "execution_count": 13,
557
     "metadata": {},
558
     "output_type": "execute_result"
559
    }
560
   ],
561
   "source": [
562
    "len(tta_df), len(labels_df)"
563
   ]
564
  },
565
  {
566
   "cell_type": "markdown",
567
   "metadata": {},
568
   "source": [
569
    "# Begin boosting data preparation"
570
   ]
571
  },
572
  {
573
   "cell_type": "code",
574
   "execution_count": 14,
575
   "metadata": {},
576
   "outputs": [
577
    {
578
     "data": {
579
      "text/html": [
580
       "<div>\n",
581
       "<style scoped>\n",
582
       "    .dataframe tbody tr th:only-of-type {\n",
583
       "        vertical-align: middle;\n",
584
       "    }\n",
585
       "\n",
586
       "    .dataframe tbody tr th {\n",
587
       "        vertical-align: top;\n",
588
       "    }\n",
589
       "\n",
590
       "    .dataframe thead th {\n",
591
       "        text-align: right;\n",
592
       "    }\n",
593
       "</style>\n",
594
       "<table border=\"1\" class=\"dataframe\">\n",
595
       "  <thead>\n",
596
       "    <tr style=\"text-align: right;\">\n",
597
       "      <th></th>\n",
598
       "      <th>fn</th>\n",
599
       "      <th>Xdensenet121_any_mean</th>\n",
600
       "      <th>Xdensenet121_epidural_mean</th>\n",
601
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
602
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
603
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
604
       "      <th>Xdensenet121_subdural_mean</th>\n",
605
       "      <th>Xdensenet121_any_std</th>\n",
606
       "      <th>Xdensenet121_epidural_std</th>\n",
607
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
608
       "      <th>...</th>\n",
609
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std</th>\n",
610
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std</th>\n",
611
       "      <th>any</th>\n",
612
       "      <th>epidural</th>\n",
613
       "      <th>intraparenchymal</th>\n",
614
       "      <th>intraventricular</th>\n",
615
       "      <th>subarachnoid</th>\n",
616
       "      <th>subdural</th>\n",
617
       "      <th>study</th>\n",
618
       "      <th>z</th>\n",
619
       "    </tr>\n",
620
       "  </thead>\n",
621
       "  <tbody>\n",
622
       "    <tr>\n",
623
       "      <th>0</th>\n",
624
       "      <td>ID_0000950d7</td>\n",
625
       "      <td>0.000216</td>\n",
626
       "      <td>0.000009</td>\n",
627
       "      <td>0.000040</td>\n",
628
       "      <td>0.000017</td>\n",
629
       "      <td>0.000131</td>\n",
630
       "      <td>0.000070</td>\n",
631
       "      <td>0.000077</td>\n",
632
       "      <td>2.602864e-06</td>\n",
633
       "      <td>0.000013</td>\n",
634
       "      <td>...</td>\n",
635
       "      <td>0.000017</td>\n",
636
       "      <td>0.000002</td>\n",
637
       "      <td>0</td>\n",
638
       "      <td>0</td>\n",
639
       "      <td>0</td>\n",
640
       "      <td>0</td>\n",
641
       "      <td>0</td>\n",
642
       "      <td>0</td>\n",
643
       "      <td>ID_84296c3845</td>\n",
644
       "      <td>32</td>\n",
645
       "    </tr>\n",
646
       "    <tr>\n",
647
       "      <th>1</th>\n",
648
       "      <td>ID_0000aee4b</td>\n",
649
       "      <td>0.000652</td>\n",
650
       "      <td>0.000132</td>\n",
651
       "      <td>0.000049</td>\n",
652
       "      <td>0.000030</td>\n",
653
       "      <td>0.000237</td>\n",
654
       "      <td>0.000415</td>\n",
655
       "      <td>0.000478</td>\n",
656
       "      <td>7.363618e-05</td>\n",
657
       "      <td>0.000018</td>\n",
658
       "      <td>...</td>\n",
659
       "      <td>0.000253</td>\n",
660
       "      <td>0.000225</td>\n",
661
       "      <td>0</td>\n",
662
       "      <td>0</td>\n",
663
       "      <td>0</td>\n",
664
       "      <td>0</td>\n",
665
       "      <td>0</td>\n",
666
       "      <td>0</td>\n",
667
       "      <td>ID_1e59488a44</td>\n",
668
       "      <td>7</td>\n",
669
       "    </tr>\n",
670
       "    <tr>\n",
671
       "      <th>2</th>\n",
672
       "      <td>ID_0001de0e8</td>\n",
673
       "      <td>0.000875</td>\n",
674
       "      <td>0.000079</td>\n",
675
       "      <td>0.000283</td>\n",
676
       "      <td>0.000013</td>\n",
677
       "      <td>0.000218</td>\n",
678
       "      <td>0.000636</td>\n",
679
       "      <td>0.001155</td>\n",
680
       "      <td>8.438517e-05</td>\n",
681
       "      <td>0.000151</td>\n",
682
       "      <td>...</td>\n",
683
       "      <td>0.001305</td>\n",
684
       "      <td>0.000090</td>\n",
685
       "      <td>0</td>\n",
686
       "      <td>0</td>\n",
687
       "      <td>0</td>\n",
688
       "      <td>0</td>\n",
689
       "      <td>0</td>\n",
690
       "      <td>0</td>\n",
691
       "      <td>ID_9d97cf289b</td>\n",
692
       "      <td>22</td>\n",
693
       "    </tr>\n",
694
       "    <tr>\n",
695
       "      <th>3</th>\n",
696
       "      <td>ID_0002003a8</td>\n",
697
       "      <td>0.001583</td>\n",
698
       "      <td>0.000008</td>\n",
699
       "      <td>0.000745</td>\n",
700
       "      <td>0.000176</td>\n",
701
       "      <td>0.000233</td>\n",
702
       "      <td>0.000478</td>\n",
703
       "      <td>0.000657</td>\n",
704
       "      <td>8.040458e-07</td>\n",
705
       "      <td>0.000355</td>\n",
706
       "      <td>...</td>\n",
707
       "      <td>0.000488</td>\n",
708
       "      <td>0.000947</td>\n",
709
       "      <td>0</td>\n",
710
       "      <td>0</td>\n",
711
       "      <td>0</td>\n",
712
       "      <td>0</td>\n",
713
       "      <td>0</td>\n",
714
       "      <td>0</td>\n",
715
       "      <td>ID_805824f65e</td>\n",
716
       "      <td>17</td>\n",
717
       "    </tr>\n",
718
       "    <tr>\n",
719
       "      <th>4</th>\n",
720
       "      <td>ID_000229f2a</td>\n",
721
       "      <td>0.000251</td>\n",
722
       "      <td>0.000041</td>\n",
723
       "      <td>0.000084</td>\n",
724
       "      <td>0.000039</td>\n",
725
       "      <td>0.000162</td>\n",
726
       "      <td>0.000084</td>\n",
727
       "      <td>0.000072</td>\n",
728
       "      <td>1.584314e-05</td>\n",
729
       "      <td>0.000014</td>\n",
730
       "      <td>...</td>\n",
731
       "      <td>0.000491</td>\n",
732
       "      <td>0.000120</td>\n",
733
       "      <td>0</td>\n",
734
       "      <td>0</td>\n",
735
       "      <td>0</td>\n",
736
       "      <td>0</td>\n",
737
       "      <td>0</td>\n",
738
       "      <td>0</td>\n",
739
       "      <td>ID_f54eba3225</td>\n",
740
       "      <td>30</td>\n",
741
       "    </tr>\n",
742
       "  </tbody>\n",
743
       "</table>\n",
744
       "<p>5 rows × 129 columns</p>\n",
745
       "</div>"
746
      ],
747
      "text/plain": [
748
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
749
       "0  ID_0000950d7               0.000216                    0.000009   \n",
750
       "1  ID_0000aee4b               0.000652                    0.000132   \n",
751
       "2  ID_0001de0e8               0.000875                    0.000079   \n",
752
       "3  ID_0002003a8               0.001583                    0.000008   \n",
753
       "4  ID_000229f2a               0.000251                    0.000041   \n",
754
       "\n",
755
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
756
       "0                            0.000040                            0.000017   \n",
757
       "1                            0.000049                            0.000030   \n",
758
       "2                            0.000283                            0.000013   \n",
759
       "3                            0.000745                            0.000176   \n",
760
       "4                            0.000084                            0.000039   \n",
761
       "\n",
762
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
763
       "0                        0.000131                    0.000070   \n",
764
       "1                        0.000237                    0.000415   \n",
765
       "2                        0.000218                    0.000636   \n",
766
       "3                        0.000233                    0.000478   \n",
767
       "4                        0.000162                    0.000084   \n",
768
       "\n",
769
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
770
       "0              0.000077               2.602864e-06   \n",
771
       "1              0.000478               7.363618e-05   \n",
772
       "2              0.001155               8.438517e-05   \n",
773
       "3              0.000657               8.040458e-07   \n",
774
       "4              0.000072               1.584314e-05   \n",
775
       "\n",
776
       "   Xdensenet121_intraparenchymal_std  ...  \\\n",
777
       "0                           0.000013  ...   \n",
778
       "1                           0.000018  ...   \n",
779
       "2                           0.000151  ...   \n",
780
       "3                           0.000355  ...   \n",
781
       "4                           0.000014  ...   \n",
782
       "\n",
783
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_std  \\\n",
784
       "0                                           0.000017             \n",
785
       "1                                           0.000253             \n",
786
       "2                                           0.001305             \n",
787
       "3                                           0.000488             \n",
788
       "4                                           0.000491             \n",
789
       "\n",
790
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_std  any  epidural  \\\n",
791
       "0                                           0.000002          0         0   \n",
792
       "1                                           0.000225          0         0   \n",
793
       "2                                           0.000090          0         0   \n",
794
       "3                                           0.000947          0         0   \n",
795
       "4                                           0.000120          0         0   \n",
796
       "\n",
797
       "   intraparenchymal  intraventricular  subarachnoid  subdural          study  \\\n",
798
       "0                 0                 0             0         0  ID_84296c3845   \n",
799
       "1                 0                 0             0         0  ID_1e59488a44   \n",
800
       "2                 0                 0             0         0  ID_9d97cf289b   \n",
801
       "3                 0                 0             0         0  ID_805824f65e   \n",
802
       "4                 0                 0             0         0  ID_f54eba3225   \n",
803
       "\n",
804
       "    z  \n",
805
       "0  32  \n",
806
       "1   7  \n",
807
       "2  22  \n",
808
       "3  17  \n",
809
       "4  30  \n",
810
       "\n",
811
       "[5 rows x 129 columns]"
812
      ]
813
     },
814
     "execution_count": 14,
815
     "metadata": {},
816
     "output_type": "execute_result"
817
    }
818
   ],
819
   "source": [
820
    "#add study and z position to dataframe to join\n",
821
    "tta_df['study'] = tta_df.fn.apply(lambda fn: fn_to_study_ix[fn][0] )\n",
822
    "tta_df['z'] = tta_df.fn.apply(lambda fn: int(fn_to_study_ix[fn][1]) )\n",
823
    "tta_df.head()"
824
   ]
825
  },
826
  {
827
   "cell_type": "code",
828
   "execution_count": 15,
829
   "metadata": {},
830
   "outputs": [
831
    {
832
     "data": {
833
      "text/html": [
834
       "<div>\n",
835
       "<style scoped>\n",
836
       "    .dataframe tbody tr th:only-of-type {\n",
837
       "        vertical-align: middle;\n",
838
       "    }\n",
839
       "\n",
840
       "    .dataframe tbody tr th {\n",
841
       "        vertical-align: top;\n",
842
       "    }\n",
843
       "\n",
844
       "    .dataframe thead th {\n",
845
       "        text-align: right;\n",
846
       "    }\n",
847
       "</style>\n",
848
       "<table border=\"1\" class=\"dataframe\">\n",
849
       "  <thead>\n",
850
       "    <tr style=\"text-align: right;\">\n",
851
       "      <th></th>\n",
852
       "      <th>fn</th>\n",
853
       "      <th>Xdensenet121_any_mean</th>\n",
854
       "      <th>Xdensenet121_epidural_mean</th>\n",
855
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
856
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
857
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
858
       "      <th>Xdensenet121_subdural_mean</th>\n",
859
       "      <th>Xdensenet121_any_std</th>\n",
860
       "      <th>Xdensenet121_epidural_std</th>\n",
861
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
862
       "      <th>...</th>\n",
863
       "      <th>Xresnet50_intraparenchymal_mean-1</th>\n",
864
       "      <th>Xresnet50_intraventricular_mean-1</th>\n",
865
       "      <th>Xresnet50_subarachnoid_mean-1</th>\n",
866
       "      <th>Xresnet50_subdural_mean-1</th>\n",
867
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean-1</th>\n",
868
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean-1</th>\n",
869
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean-1</th>\n",
870
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean-1</th>\n",
871
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean-1</th>\n",
872
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean-1</th>\n",
873
       "    </tr>\n",
874
       "  </thead>\n",
875
       "  <tbody>\n",
876
       "    <tr>\n",
877
       "      <th>0</th>\n",
878
       "      <td>ID_0000950d7</td>\n",
879
       "      <td>0.000216</td>\n",
880
       "      <td>0.000009</td>\n",
881
       "      <td>0.000040</td>\n",
882
       "      <td>0.000017</td>\n",
883
       "      <td>0.000131</td>\n",
884
       "      <td>0.000070</td>\n",
885
       "      <td>0.000077</td>\n",
886
       "      <td>2.602864e-06</td>\n",
887
       "      <td>0.000013</td>\n",
888
       "      <td>...</td>\n",
889
       "      <td>0.000003</td>\n",
890
       "      <td>2.410099e-07</td>\n",
891
       "      <td>0.000009</td>\n",
892
       "      <td>0.000010</td>\n",
893
       "      <td>0.000023</td>\n",
894
       "      <td>0.000012</td>\n",
895
       "      <td>0.000041</td>\n",
896
       "      <td>0.000015</td>\n",
897
       "      <td>0.000040</td>\n",
898
       "      <td>0.000004</td>\n",
899
       "    </tr>\n",
900
       "    <tr>\n",
901
       "      <th>1</th>\n",
902
       "      <td>ID_0000aee4b</td>\n",
903
       "      <td>0.000652</td>\n",
904
       "      <td>0.000132</td>\n",
905
       "      <td>0.000049</td>\n",
906
       "      <td>0.000030</td>\n",
907
       "      <td>0.000237</td>\n",
908
       "      <td>0.000415</td>\n",
909
       "      <td>0.000478</td>\n",
910
       "      <td>7.363618e-05</td>\n",
911
       "      <td>0.000018</td>\n",
912
       "      <td>...</td>\n",
913
       "      <td>0.000032</td>\n",
914
       "      <td>2.871577e-05</td>\n",
915
       "      <td>0.000192</td>\n",
916
       "      <td>0.000307</td>\n",
917
       "      <td>0.000320</td>\n",
918
       "      <td>0.000031</td>\n",
919
       "      <td>0.000005</td>\n",
920
       "      <td>0.000004</td>\n",
921
       "      <td>0.000129</td>\n",
922
       "      <td>0.000094</td>\n",
923
       "    </tr>\n",
924
       "    <tr>\n",
925
       "      <th>2</th>\n",
926
       "      <td>ID_0001de0e8</td>\n",
927
       "      <td>0.000875</td>\n",
928
       "      <td>0.000079</td>\n",
929
       "      <td>0.000283</td>\n",
930
       "      <td>0.000013</td>\n",
931
       "      <td>0.000218</td>\n",
932
       "      <td>0.000636</td>\n",
933
       "      <td>0.001155</td>\n",
934
       "      <td>8.438517e-05</td>\n",
935
       "      <td>0.000151</td>\n",
936
       "      <td>...</td>\n",
937
       "      <td>0.000386</td>\n",
938
       "      <td>4.940505e-05</td>\n",
939
       "      <td>0.001212</td>\n",
940
       "      <td>0.001620</td>\n",
941
       "      <td>0.002983</td>\n",
942
       "      <td>0.000075</td>\n",
943
       "      <td>0.000413</td>\n",
944
       "      <td>0.000028</td>\n",
945
       "      <td>0.001168</td>\n",
946
       "      <td>0.000841</td>\n",
947
       "    </tr>\n",
948
       "    <tr>\n",
949
       "      <th>3</th>\n",
950
       "      <td>ID_0002003a8</td>\n",
951
       "      <td>0.001583</td>\n",
952
       "      <td>0.000008</td>\n",
953
       "      <td>0.000745</td>\n",
954
       "      <td>0.000176</td>\n",
955
       "      <td>0.000233</td>\n",
956
       "      <td>0.000478</td>\n",
957
       "      <td>0.000657</td>\n",
958
       "      <td>8.040458e-07</td>\n",
959
       "      <td>0.000355</td>\n",
960
       "      <td>...</td>\n",
961
       "      <td>0.000253</td>\n",
962
       "      <td>2.354449e-05</td>\n",
963
       "      <td>0.000079</td>\n",
964
       "      <td>0.000145</td>\n",
965
       "      <td>0.000816</td>\n",
966
       "      <td>0.000072</td>\n",
967
       "      <td>0.000268</td>\n",
968
       "      <td>0.000263</td>\n",
969
       "      <td>0.000419</td>\n",
970
       "      <td>0.000390</td>\n",
971
       "    </tr>\n",
972
       "    <tr>\n",
973
       "      <th>4</th>\n",
974
       "      <td>ID_000229f2a</td>\n",
975
       "      <td>0.000251</td>\n",
976
       "      <td>0.000041</td>\n",
977
       "      <td>0.000084</td>\n",
978
       "      <td>0.000039</td>\n",
979
       "      <td>0.000162</td>\n",
980
       "      <td>0.000084</td>\n",
981
       "      <td>0.000072</td>\n",
982
       "      <td>1.584314e-05</td>\n",
983
       "      <td>0.000014</td>\n",
984
       "      <td>...</td>\n",
985
       "      <td>0.000087</td>\n",
986
       "      <td>1.064072e-05</td>\n",
987
       "      <td>0.000406</td>\n",
988
       "      <td>0.000361</td>\n",
989
       "      <td>0.000489</td>\n",
990
       "      <td>0.000057</td>\n",
991
       "      <td>0.000044</td>\n",
992
       "      <td>0.000004</td>\n",
993
       "      <td>0.000202</td>\n",
994
       "      <td>0.000139</td>\n",
995
       "    </tr>\n",
996
       "  </tbody>\n",
997
       "</table>\n",
998
       "<p>5 rows × 251 columns</p>\n",
999
       "</div>"
1000
      ],
1001
      "text/plain": [
1002
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
1003
       "0  ID_0000950d7               0.000216                    0.000009   \n",
1004
       "1  ID_0000aee4b               0.000652                    0.000132   \n",
1005
       "2  ID_0001de0e8               0.000875                    0.000079   \n",
1006
       "3  ID_0002003a8               0.001583                    0.000008   \n",
1007
       "4  ID_000229f2a               0.000251                    0.000041   \n",
1008
       "\n",
1009
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
1010
       "0                            0.000040                            0.000017   \n",
1011
       "1                            0.000049                            0.000030   \n",
1012
       "2                            0.000283                            0.000013   \n",
1013
       "3                            0.000745                            0.000176   \n",
1014
       "4                            0.000084                            0.000039   \n",
1015
       "\n",
1016
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
1017
       "0                        0.000131                    0.000070   \n",
1018
       "1                        0.000237                    0.000415   \n",
1019
       "2                        0.000218                    0.000636   \n",
1020
       "3                        0.000233                    0.000478   \n",
1021
       "4                        0.000162                    0.000084   \n",
1022
       "\n",
1023
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
1024
       "0              0.000077               2.602864e-06   \n",
1025
       "1              0.000478               7.363618e-05   \n",
1026
       "2              0.001155               8.438517e-05   \n",
1027
       "3              0.000657               8.040458e-07   \n",
1028
       "4              0.000072               1.584314e-05   \n",
1029
       "\n",
1030
       "   Xdensenet121_intraparenchymal_std  ...  Xresnet50_intraparenchymal_mean-1  \\\n",
1031
       "0                           0.000013  ...                           0.000003   \n",
1032
       "1                           0.000018  ...                           0.000032   \n",
1033
       "2                           0.000151  ...                           0.000386   \n",
1034
       "3                           0.000355  ...                           0.000253   \n",
1035
       "4                           0.000014  ...                           0.000087   \n",
1036
       "\n",
1037
       "   Xresnet50_intraventricular_mean-1  Xresnet50_subarachnoid_mean-1  \\\n",
1038
       "0                       2.410099e-07                       0.000009   \n",
1039
       "1                       2.871577e-05                       0.000192   \n",
1040
       "2                       4.940505e-05                       0.001212   \n",
1041
       "3                       2.354449e-05                       0.000079   \n",
1042
       "4                       1.064072e-05                       0.000406   \n",
1043
       "\n",
1044
       "   Xresnet50_subdural_mean-1  \\\n",
1045
       "0                   0.000010   \n",
1046
       "1                   0.000307   \n",
1047
       "2                   0.001620   \n",
1048
       "3                   0.000145   \n",
1049
       "4                   0.000361   \n",
1050
       "\n",
1051
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean-1  \\\n",
1052
       "0                                           0.000023       \n",
1053
       "1                                           0.000320       \n",
1054
       "2                                           0.002983       \n",
1055
       "3                                           0.000816       \n",
1056
       "4                                           0.000489       \n",
1057
       "\n",
1058
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean-1  \\\n",
1059
       "0                                           0.000012            \n",
1060
       "1                                           0.000031            \n",
1061
       "2                                           0.000075            \n",
1062
       "3                                           0.000072            \n",
1063
       "4                                           0.000057            \n",
1064
       "\n",
1065
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean-1  \\\n",
1066
       "0                                           0.000041                    \n",
1067
       "1                                           0.000005                    \n",
1068
       "2                                           0.000413                    \n",
1069
       "3                                           0.000268                    \n",
1070
       "4                                           0.000044                    \n",
1071
       "\n",
1072
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean-1  \\\n",
1073
       "0                                           0.000015                    \n",
1074
       "1                                           0.000004                    \n",
1075
       "2                                           0.000028                    \n",
1076
       "3                                           0.000263                    \n",
1077
       "4                                           0.000004                    \n",
1078
       "\n",
1079
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean-1  \\\n",
1080
       "0                                           0.000040                \n",
1081
       "1                                           0.000129                \n",
1082
       "2                                           0.001168                \n",
1083
       "3                                           0.000419                \n",
1084
       "4                                           0.000202                \n",
1085
       "\n",
1086
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean-1  \n",
1087
       "0                                           0.000004           \n",
1088
       "1                                           0.000094           \n",
1089
       "2                                           0.000841           \n",
1090
       "3                                           0.000390           \n",
1091
       "4                                           0.000139           \n",
1092
       "\n",
1093
       "[5 rows x 251 columns]"
1094
      ]
1095
     },
1096
     "execution_count": 15,
1097
     "metadata": {},
1098
     "output_type": "execute_result"
1099
    }
1100
   ],
1101
   "source": [
1102
    "#now join top and bottom\n",
1103
    "tta_df['z+'] = tta_df.z+1\n",
1104
    "tta_df['z-'] = tta_df.z-1\n",
1105
    "#only merge means to avoid too many columns\n",
1106
    "merge_cols = [c for c in tta_df.columns if 'mean' in c] \n",
1107
    "merged_df = pd.merge(tta_df, tta_df[merge_cols+ ['study','z+']], how='left', left_on=['study', 'z'], right_on=['study','z+'], suffixes=('','+1'))\n",
1108
    "merged_df = pd.merge(merged_df, tta_df[merge_cols+ ['study','z-']], how='left', left_on=['study', 'z'], right_on=['study','z-'], suffixes=('','-1'))\n",
1109
    "merged_df.drop(['z++1','z--1'], axis=1, inplace=True) #after merge these columns are not needed\n",
1110
    "len(merged_df)\n",
1111
    "merged_df.head()\n"
1112
   ]
1113
  },
1114
  {
1115
   "cell_type": "code",
1116
   "execution_count": 16,
1117
   "metadata": {},
1118
   "outputs": [
1119
    {
1120
     "data": {
1121
      "text/html": [
1122
       "<div>\n",
1123
       "<style scoped>\n",
1124
       "    .dataframe tbody tr th:only-of-type {\n",
1125
       "        vertical-align: middle;\n",
1126
       "    }\n",
1127
       "\n",
1128
       "    .dataframe tbody tr th {\n",
1129
       "        vertical-align: top;\n",
1130
       "    }\n",
1131
       "\n",
1132
       "    .dataframe thead th {\n",
1133
       "        text-align: right;\n",
1134
       "    }\n",
1135
       "</style>\n",
1136
       "<table border=\"1\" class=\"dataframe\">\n",
1137
       "  <thead>\n",
1138
       "    <tr style=\"text-align: right;\">\n",
1139
       "      <th></th>\n",
1140
       "      <th>fn</th>\n",
1141
       "      <th>Xdensenet121_any_mean</th>\n",
1142
       "      <th>Xdensenet121_epidural_mean</th>\n",
1143
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
1144
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
1145
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
1146
       "      <th>Xdensenet121_subdural_mean</th>\n",
1147
       "      <th>Xdensenet121_any_std</th>\n",
1148
       "      <th>Xdensenet121_epidural_std</th>\n",
1149
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
1150
       "      <th>...</th>\n",
1151
       "      <th>Xresnet50_intraparenchymal_mean_max</th>\n",
1152
       "      <th>Xresnet50_intraventricular_mean_max</th>\n",
1153
       "      <th>Xresnet50_subarachnoid_mean_max</th>\n",
1154
       "      <th>Xresnet50_subdural_mean_max</th>\n",
1155
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n",
1156
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n",
1157
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n",
1158
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n",
1159
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n",
1160
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n",
1161
       "    </tr>\n",
1162
       "  </thead>\n",
1163
       "  <tbody>\n",
1164
       "    <tr>\n",
1165
       "      <th>0</th>\n",
1166
       "      <td>ID_0000950d7</td>\n",
1167
       "      <td>0.000216</td>\n",
1168
       "      <td>0.000009</td>\n",
1169
       "      <td>0.000040</td>\n",
1170
       "      <td>0.000017</td>\n",
1171
       "      <td>0.000131</td>\n",
1172
       "      <td>0.000070</td>\n",
1173
       "      <td>0.000077</td>\n",
1174
       "      <td>2.602864e-06</td>\n",
1175
       "      <td>0.000013</td>\n",
1176
       "      <td>...</td>\n",
1177
       "      <td>0.486492</td>\n",
1178
       "      <td>0.905775</td>\n",
1179
       "      <td>0.150154</td>\n",
1180
       "      <td>0.099021</td>\n",
1181
       "      <td>0.857974</td>\n",
1182
       "      <td>0.001780</td>\n",
1183
       "      <td>0.361130</td>\n",
1184
       "      <td>0.789858</td>\n",
1185
       "      <td>0.168123</td>\n",
1186
       "      <td>0.073204</td>\n",
1187
       "    </tr>\n",
1188
       "    <tr>\n",
1189
       "      <th>1</th>\n",
1190
       "      <td>ID_0000aee4b</td>\n",
1191
       "      <td>0.000652</td>\n",
1192
       "      <td>0.000132</td>\n",
1193
       "      <td>0.000049</td>\n",
1194
       "      <td>0.000030</td>\n",
1195
       "      <td>0.000237</td>\n",
1196
       "      <td>0.000415</td>\n",
1197
       "      <td>0.000478</td>\n",
1198
       "      <td>7.363618e-05</td>\n",
1199
       "      <td>0.000018</td>\n",
1200
       "      <td>...</td>\n",
1201
       "      <td>0.002535</td>\n",
1202
       "      <td>0.002878</td>\n",
1203
       "      <td>0.006184</td>\n",
1204
       "      <td>0.003424</td>\n",
1205
       "      <td>0.027332</td>\n",
1206
       "      <td>0.000609</td>\n",
1207
       "      <td>0.003878</td>\n",
1208
       "      <td>0.008006</td>\n",
1209
       "      <td>0.009463</td>\n",
1210
       "      <td>0.006090</td>\n",
1211
       "    </tr>\n",
1212
       "    <tr>\n",
1213
       "      <th>2</th>\n",
1214
       "      <td>ID_0001de0e8</td>\n",
1215
       "      <td>0.000875</td>\n",
1216
       "      <td>0.000079</td>\n",
1217
       "      <td>0.000283</td>\n",
1218
       "      <td>0.000013</td>\n",
1219
       "      <td>0.000218</td>\n",
1220
       "      <td>0.000636</td>\n",
1221
       "      <td>0.001155</td>\n",
1222
       "      <td>8.438517e-05</td>\n",
1223
       "      <td>0.000151</td>\n",
1224
       "      <td>...</td>\n",
1225
       "      <td>0.002166</td>\n",
1226
       "      <td>0.003913</td>\n",
1227
       "      <td>0.004683</td>\n",
1228
       "      <td>0.005613</td>\n",
1229
       "      <td>0.018091</td>\n",
1230
       "      <td>0.002842</td>\n",
1231
       "      <td>0.012398</td>\n",
1232
       "      <td>0.009452</td>\n",
1233
       "      <td>0.009165</td>\n",
1234
       "      <td>0.005672</td>\n",
1235
       "    </tr>\n",
1236
       "    <tr>\n",
1237
       "      <th>3</th>\n",
1238
       "      <td>ID_0002003a8</td>\n",
1239
       "      <td>0.001583</td>\n",
1240
       "      <td>0.000008</td>\n",
1241
       "      <td>0.000745</td>\n",
1242
       "      <td>0.000176</td>\n",
1243
       "      <td>0.000233</td>\n",
1244
       "      <td>0.000478</td>\n",
1245
       "      <td>0.000657</td>\n",
1246
       "      <td>8.040458e-07</td>\n",
1247
       "      <td>0.000355</td>\n",
1248
       "      <td>...</td>\n",
1249
       "      <td>0.001896</td>\n",
1250
       "      <td>0.001544</td>\n",
1251
       "      <td>0.004229</td>\n",
1252
       "      <td>0.002354</td>\n",
1253
       "      <td>0.021156</td>\n",
1254
       "      <td>0.000476</td>\n",
1255
       "      <td>0.005249</td>\n",
1256
       "      <td>0.028012</td>\n",
1257
       "      <td>0.004112</td>\n",
1258
       "      <td>0.020228</td>\n",
1259
       "    </tr>\n",
1260
       "    <tr>\n",
1261
       "      <th>4</th>\n",
1262
       "      <td>ID_000229f2a</td>\n",
1263
       "      <td>0.000251</td>\n",
1264
       "      <td>0.000041</td>\n",
1265
       "      <td>0.000084</td>\n",
1266
       "      <td>0.000039</td>\n",
1267
       "      <td>0.000162</td>\n",
1268
       "      <td>0.000084</td>\n",
1269
       "      <td>0.000072</td>\n",
1270
       "      <td>1.584314e-05</td>\n",
1271
       "      <td>0.000014</td>\n",
1272
       "      <td>...</td>\n",
1273
       "      <td>0.011392</td>\n",
1274
       "      <td>0.059925</td>\n",
1275
       "      <td>0.010892</td>\n",
1276
       "      <td>0.015900</td>\n",
1277
       "      <td>0.042269</td>\n",
1278
       "      <td>0.001678</td>\n",
1279
       "      <td>0.012257</td>\n",
1280
       "      <td>0.029033</td>\n",
1281
       "      <td>0.014108</td>\n",
1282
       "      <td>0.011063</td>\n",
1283
       "    </tr>\n",
1284
       "  </tbody>\n",
1285
       "</table>\n",
1286
       "<p>5 rows × 311 columns</p>\n",
1287
       "</div>"
1288
      ],
1289
      "text/plain": [
1290
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
1291
       "0  ID_0000950d7               0.000216                    0.000009   \n",
1292
       "1  ID_0000aee4b               0.000652                    0.000132   \n",
1293
       "2  ID_0001de0e8               0.000875                    0.000079   \n",
1294
       "3  ID_0002003a8               0.001583                    0.000008   \n",
1295
       "4  ID_000229f2a               0.000251                    0.000041   \n",
1296
       "\n",
1297
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
1298
       "0                            0.000040                            0.000017   \n",
1299
       "1                            0.000049                            0.000030   \n",
1300
       "2                            0.000283                            0.000013   \n",
1301
       "3                            0.000745                            0.000176   \n",
1302
       "4                            0.000084                            0.000039   \n",
1303
       "\n",
1304
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
1305
       "0                        0.000131                    0.000070   \n",
1306
       "1                        0.000237                    0.000415   \n",
1307
       "2                        0.000218                    0.000636   \n",
1308
       "3                        0.000233                    0.000478   \n",
1309
       "4                        0.000162                    0.000084   \n",
1310
       "\n",
1311
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
1312
       "0              0.000077               2.602864e-06   \n",
1313
       "1              0.000478               7.363618e-05   \n",
1314
       "2              0.001155               8.438517e-05   \n",
1315
       "3              0.000657               8.040458e-07   \n",
1316
       "4              0.000072               1.584314e-05   \n",
1317
       "\n",
1318
       "   Xdensenet121_intraparenchymal_std  ...  \\\n",
1319
       "0                           0.000013  ...   \n",
1320
       "1                           0.000018  ...   \n",
1321
       "2                           0.000151  ...   \n",
1322
       "3                           0.000355  ...   \n",
1323
       "4                           0.000014  ...   \n",
1324
       "\n",
1325
       "   Xresnet50_intraparenchymal_mean_max  Xresnet50_intraventricular_mean_max  \\\n",
1326
       "0                             0.486492                             0.905775   \n",
1327
       "1                             0.002535                             0.002878   \n",
1328
       "2                             0.002166                             0.003913   \n",
1329
       "3                             0.001896                             0.001544   \n",
1330
       "4                             0.011392                             0.059925   \n",
1331
       "\n",
1332
       "   Xresnet50_subarachnoid_mean_max  Xresnet50_subdural_mean_max  \\\n",
1333
       "0                         0.150154                     0.099021   \n",
1334
       "1                         0.006184                     0.003424   \n",
1335
       "2                         0.004683                     0.005613   \n",
1336
       "3                         0.004229                     0.002354   \n",
1337
       "4                         0.010892                     0.015900   \n",
1338
       "\n",
1339
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max  \\\n",
1340
       "0                                           0.857974         \n",
1341
       "1                                           0.027332         \n",
1342
       "2                                           0.018091         \n",
1343
       "3                                           0.021156         \n",
1344
       "4                                           0.042269         \n",
1345
       "\n",
1346
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max  \\\n",
1347
       "0                                           0.001780              \n",
1348
       "1                                           0.000609              \n",
1349
       "2                                           0.002842              \n",
1350
       "3                                           0.000476              \n",
1351
       "4                                           0.001678              \n",
1352
       "\n",
1353
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max  \\\n",
1354
       "0                                           0.361130                      \n",
1355
       "1                                           0.003878                      \n",
1356
       "2                                           0.012398                      \n",
1357
       "3                                           0.005249                      \n",
1358
       "4                                           0.012257                      \n",
1359
       "\n",
1360
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max  \\\n",
1361
       "0                                           0.789858                      \n",
1362
       "1                                           0.008006                      \n",
1363
       "2                                           0.009452                      \n",
1364
       "3                                           0.028012                      \n",
1365
       "4                                           0.029033                      \n",
1366
       "\n",
1367
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max  \\\n",
1368
       "0                                           0.168123                  \n",
1369
       "1                                           0.009463                  \n",
1370
       "2                                           0.009165                  \n",
1371
       "3                                           0.004112                  \n",
1372
       "4                                           0.014108                  \n",
1373
       "\n",
1374
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max  \n",
1375
       "0                                           0.073204             \n",
1376
       "1                                           0.006090             \n",
1377
       "2                                           0.005672             \n",
1378
       "3                                           0.020228             \n",
1379
       "4                                           0.011063             \n",
1380
       "\n",
1381
       "[5 rows x 311 columns]"
1382
      ]
1383
     },
1384
     "execution_count": 16,
1385
     "metadata": {},
1386
     "output_type": "execute_result"
1387
    }
1388
   ],
1389
   "source": [
1390
    "#now add maximum value for each merge_col by study\n",
1391
    "group_df = merged_df[merge_cols+['study']].groupby('study').agg('max')\n",
1392
    "merged_df = pd.merge(merged_df, group_df, how='left', on='study', suffixes=('','_max'))\n",
1393
    "merged_df.head()"
1394
   ]
1395
  },
1396
  {
1397
   "cell_type": "code",
1398
   "execution_count": 17,
1399
   "metadata": {},
1400
   "outputs": [
1401
    {
1402
     "data": {
1403
      "text/html": [
1404
       "<div>\n",
1405
       "<style scoped>\n",
1406
       "    .dataframe tbody tr th:only-of-type {\n",
1407
       "        vertical-align: middle;\n",
1408
       "    }\n",
1409
       "\n",
1410
       "    .dataframe tbody tr th {\n",
1411
       "        vertical-align: top;\n",
1412
       "    }\n",
1413
       "\n",
1414
       "    .dataframe thead th {\n",
1415
       "        text-align: right;\n",
1416
       "    }\n",
1417
       "</style>\n",
1418
       "<table border=\"1\" class=\"dataframe\">\n",
1419
       "  <thead>\n",
1420
       "    <tr style=\"text-align: right;\">\n",
1421
       "      <th></th>\n",
1422
       "      <th>fn</th>\n",
1423
       "      <th>Xdensenet121_any_mean</th>\n",
1424
       "      <th>Xdensenet121_epidural_mean</th>\n",
1425
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
1426
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
1427
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
1428
       "      <th>Xdensenet121_subdural_mean</th>\n",
1429
       "      <th>Xdensenet121_any_std</th>\n",
1430
       "      <th>Xdensenet121_epidural_std</th>\n",
1431
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
1432
       "      <th>...</th>\n",
1433
       "      <th>Xresnet50_intraparenchymal_mean_max</th>\n",
1434
       "      <th>Xresnet50_intraventricular_mean_max</th>\n",
1435
       "      <th>Xresnet50_subarachnoid_mean_max</th>\n",
1436
       "      <th>Xresnet50_subdural_mean_max</th>\n",
1437
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n",
1438
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n",
1439
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n",
1440
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n",
1441
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n",
1442
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n",
1443
       "    </tr>\n",
1444
       "  </thead>\n",
1445
       "  <tbody>\n",
1446
       "    <tr>\n",
1447
       "      <th>0</th>\n",
1448
       "      <td>ID_0000950d7</td>\n",
1449
       "      <td>0.000216</td>\n",
1450
       "      <td>0.000009</td>\n",
1451
       "      <td>0.000040</td>\n",
1452
       "      <td>0.000017</td>\n",
1453
       "      <td>0.000131</td>\n",
1454
       "      <td>0.000070</td>\n",
1455
       "      <td>0.000077</td>\n",
1456
       "      <td>2.602864e-06</td>\n",
1457
       "      <td>0.000013</td>\n",
1458
       "      <td>...</td>\n",
1459
       "      <td>0.486492</td>\n",
1460
       "      <td>0.905775</td>\n",
1461
       "      <td>0.150154</td>\n",
1462
       "      <td>0.099021</td>\n",
1463
       "      <td>0.857974</td>\n",
1464
       "      <td>0.001780</td>\n",
1465
       "      <td>0.361130</td>\n",
1466
       "      <td>0.789858</td>\n",
1467
       "      <td>0.168123</td>\n",
1468
       "      <td>0.073204</td>\n",
1469
       "    </tr>\n",
1470
       "    <tr>\n",
1471
       "      <th>1</th>\n",
1472
       "      <td>ID_0000aee4b</td>\n",
1473
       "      <td>0.000652</td>\n",
1474
       "      <td>0.000132</td>\n",
1475
       "      <td>0.000049</td>\n",
1476
       "      <td>0.000030</td>\n",
1477
       "      <td>0.000237</td>\n",
1478
       "      <td>0.000415</td>\n",
1479
       "      <td>0.000478</td>\n",
1480
       "      <td>7.363618e-05</td>\n",
1481
       "      <td>0.000018</td>\n",
1482
       "      <td>...</td>\n",
1483
       "      <td>0.002535</td>\n",
1484
       "      <td>0.002878</td>\n",
1485
       "      <td>0.006184</td>\n",
1486
       "      <td>0.003424</td>\n",
1487
       "      <td>0.027332</td>\n",
1488
       "      <td>0.000609</td>\n",
1489
       "      <td>0.003878</td>\n",
1490
       "      <td>0.008006</td>\n",
1491
       "      <td>0.009463</td>\n",
1492
       "      <td>0.006090</td>\n",
1493
       "    </tr>\n",
1494
       "    <tr>\n",
1495
       "      <th>2</th>\n",
1496
       "      <td>ID_0001de0e8</td>\n",
1497
       "      <td>0.000875</td>\n",
1498
       "      <td>0.000079</td>\n",
1499
       "      <td>0.000283</td>\n",
1500
       "      <td>0.000013</td>\n",
1501
       "      <td>0.000218</td>\n",
1502
       "      <td>0.000636</td>\n",
1503
       "      <td>0.001155</td>\n",
1504
       "      <td>8.438517e-05</td>\n",
1505
       "      <td>0.000151</td>\n",
1506
       "      <td>...</td>\n",
1507
       "      <td>0.002166</td>\n",
1508
       "      <td>0.003913</td>\n",
1509
       "      <td>0.004683</td>\n",
1510
       "      <td>0.005613</td>\n",
1511
       "      <td>0.018091</td>\n",
1512
       "      <td>0.002842</td>\n",
1513
       "      <td>0.012398</td>\n",
1514
       "      <td>0.009452</td>\n",
1515
       "      <td>0.009165</td>\n",
1516
       "      <td>0.005672</td>\n",
1517
       "    </tr>\n",
1518
       "    <tr>\n",
1519
       "      <th>3</th>\n",
1520
       "      <td>ID_0002003a8</td>\n",
1521
       "      <td>0.001583</td>\n",
1522
       "      <td>0.000008</td>\n",
1523
       "      <td>0.000745</td>\n",
1524
       "      <td>0.000176</td>\n",
1525
       "      <td>0.000233</td>\n",
1526
       "      <td>0.000478</td>\n",
1527
       "      <td>0.000657</td>\n",
1528
       "      <td>8.040458e-07</td>\n",
1529
       "      <td>0.000355</td>\n",
1530
       "      <td>...</td>\n",
1531
       "      <td>0.001896</td>\n",
1532
       "      <td>0.001544</td>\n",
1533
       "      <td>0.004229</td>\n",
1534
       "      <td>0.002354</td>\n",
1535
       "      <td>0.021156</td>\n",
1536
       "      <td>0.000476</td>\n",
1537
       "      <td>0.005249</td>\n",
1538
       "      <td>0.028012</td>\n",
1539
       "      <td>0.004112</td>\n",
1540
       "      <td>0.020228</td>\n",
1541
       "    </tr>\n",
1542
       "    <tr>\n",
1543
       "      <th>4</th>\n",
1544
       "      <td>ID_000229f2a</td>\n",
1545
       "      <td>0.000251</td>\n",
1546
       "      <td>0.000041</td>\n",
1547
       "      <td>0.000084</td>\n",
1548
       "      <td>0.000039</td>\n",
1549
       "      <td>0.000162</td>\n",
1550
       "      <td>0.000084</td>\n",
1551
       "      <td>0.000072</td>\n",
1552
       "      <td>1.584314e-05</td>\n",
1553
       "      <td>0.000014</td>\n",
1554
       "      <td>...</td>\n",
1555
       "      <td>0.011392</td>\n",
1556
       "      <td>0.059925</td>\n",
1557
       "      <td>0.010892</td>\n",
1558
       "      <td>0.015900</td>\n",
1559
       "      <td>0.042269</td>\n",
1560
       "      <td>0.001678</td>\n",
1561
       "      <td>0.012257</td>\n",
1562
       "      <td>0.029033</td>\n",
1563
       "      <td>0.014108</td>\n",
1564
       "      <td>0.011063</td>\n",
1565
       "    </tr>\n",
1566
       "  </tbody>\n",
1567
       "</table>\n",
1568
       "<p>5 rows × 311 columns</p>\n",
1569
       "</div>"
1570
      ],
1571
      "text/plain": [
1572
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
1573
       "0  ID_0000950d7               0.000216                    0.000009   \n",
1574
       "1  ID_0000aee4b               0.000652                    0.000132   \n",
1575
       "2  ID_0001de0e8               0.000875                    0.000079   \n",
1576
       "3  ID_0002003a8               0.001583                    0.000008   \n",
1577
       "4  ID_000229f2a               0.000251                    0.000041   \n",
1578
       "\n",
1579
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
1580
       "0                            0.000040                            0.000017   \n",
1581
       "1                            0.000049                            0.000030   \n",
1582
       "2                            0.000283                            0.000013   \n",
1583
       "3                            0.000745                            0.000176   \n",
1584
       "4                            0.000084                            0.000039   \n",
1585
       "\n",
1586
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
1587
       "0                        0.000131                    0.000070   \n",
1588
       "1                        0.000237                    0.000415   \n",
1589
       "2                        0.000218                    0.000636   \n",
1590
       "3                        0.000233                    0.000478   \n",
1591
       "4                        0.000162                    0.000084   \n",
1592
       "\n",
1593
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
1594
       "0              0.000077               2.602864e-06   \n",
1595
       "1              0.000478               7.363618e-05   \n",
1596
       "2              0.001155               8.438517e-05   \n",
1597
       "3              0.000657               8.040458e-07   \n",
1598
       "4              0.000072               1.584314e-05   \n",
1599
       "\n",
1600
       "   Xdensenet121_intraparenchymal_std  ...  \\\n",
1601
       "0                           0.000013  ...   \n",
1602
       "1                           0.000018  ...   \n",
1603
       "2                           0.000151  ...   \n",
1604
       "3                           0.000355  ...   \n",
1605
       "4                           0.000014  ...   \n",
1606
       "\n",
1607
       "   Xresnet50_intraparenchymal_mean_max  Xresnet50_intraventricular_mean_max  \\\n",
1608
       "0                             0.486492                             0.905775   \n",
1609
       "1                             0.002535                             0.002878   \n",
1610
       "2                             0.002166                             0.003913   \n",
1611
       "3                             0.001896                             0.001544   \n",
1612
       "4                             0.011392                             0.059925   \n",
1613
       "\n",
1614
       "   Xresnet50_subarachnoid_mean_max  Xresnet50_subdural_mean_max  \\\n",
1615
       "0                         0.150154                     0.099021   \n",
1616
       "1                         0.006184                     0.003424   \n",
1617
       "2                         0.004683                     0.005613   \n",
1618
       "3                         0.004229                     0.002354   \n",
1619
       "4                         0.010892                     0.015900   \n",
1620
       "\n",
1621
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max  \\\n",
1622
       "0                                           0.857974         \n",
1623
       "1                                           0.027332         \n",
1624
       "2                                           0.018091         \n",
1625
       "3                                           0.021156         \n",
1626
       "4                                           0.042269         \n",
1627
       "\n",
1628
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max  \\\n",
1629
       "0                                           0.001780              \n",
1630
       "1                                           0.000609              \n",
1631
       "2                                           0.002842              \n",
1632
       "3                                           0.000476              \n",
1633
       "4                                           0.001678              \n",
1634
       "\n",
1635
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max  \\\n",
1636
       "0                                           0.361130                      \n",
1637
       "1                                           0.003878                      \n",
1638
       "2                                           0.012398                      \n",
1639
       "3                                           0.005249                      \n",
1640
       "4                                           0.012257                      \n",
1641
       "\n",
1642
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max  \\\n",
1643
       "0                                           0.789858                      \n",
1644
       "1                                           0.008006                      \n",
1645
       "2                                           0.009452                      \n",
1646
       "3                                           0.028012                      \n",
1647
       "4                                           0.029033                      \n",
1648
       "\n",
1649
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max  \\\n",
1650
       "0                                           0.168123                  \n",
1651
       "1                                           0.009463                  \n",
1652
       "2                                           0.009165                  \n",
1653
       "3                                           0.004112                  \n",
1654
       "4                                           0.014108                  \n",
1655
       "\n",
1656
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max  \n",
1657
       "0                                           0.073204             \n",
1658
       "1                                           0.006090             \n",
1659
       "2                                           0.005672             \n",
1660
       "3                                           0.020228             \n",
1661
       "4                                           0.011063             \n",
1662
       "\n",
1663
       "[5 rows x 311 columns]"
1664
      ]
1665
     },
1666
     "execution_count": 17,
1667
     "metadata": {},
1668
     "output_type": "execute_result"
1669
    }
1670
   ],
1671
   "source": [
1672
    "#manage NANs created by merging\n",
1673
    "merged_cols = [c for c in merged_df.columns if c.endswith('1')]\n",
1674
    "\n",
1675
    "for c in merged_cols:\n",
1676
    "    merged_df[c].fillna(merged_df[c.replace('-1', '').replace('+1', '')], inplace=True)\n",
1677
    "    \n",
1678
    "merged_df.head()"
1679
   ]
1680
  },
1681
  {
1682
   "cell_type": "code",
1683
   "execution_count": 18,
1684
   "metadata": {},
1685
   "outputs": [
1686
    {
1687
     "data": {
1688
      "text/plain": [
1689
       "2.0     40785\n",
1690
       "0.0     40527\n",
1691
       "3.0     40439\n",
1692
       "1.0     40068\n",
1693
       "5.0     39983\n",
1694
       "4.0     39953\n",
1695
       "11.0    39882\n",
1696
       "6.0     39779\n",
1697
       "9.0     39644\n",
1698
       "7.0     39625\n",
1699
       "10.0    39378\n",
1700
       "8.0     39360\n",
1701
       "16.0    39355\n",
1702
       "13.0    39301\n",
1703
       "12.0    39183\n",
1704
       "17.0    39136\n",
1705
       "15.0    38904\n",
1706
       "14.0    38781\n",
1707
       "18.0    38719\n",
1708
       "Name: fold, dtype: int64"
1709
      ]
1710
     },
1711
     "execution_count": 18,
1712
     "metadata": {},
1713
     "output_type": "execute_result"
1714
    }
1715
   ],
1716
   "source": [
1717
    "#add fold for training\n",
1718
    "merged_df['fold'] = merged_df.study.apply(lambda s: study_to_data[s]['fold'])\n",
1719
    "merged_df.fold.value_counts()"
1720
   ]
1721
  },
1722
  {
1723
   "cell_type": "markdown",
1724
   "metadata": {},
1725
   "source": [
1726
    "# Prepare test data frame"
1727
   ]
1728
  },
1729
  {
1730
   "cell_type": "code",
1731
   "execution_count": 19,
1732
   "metadata": {},
1733
   "outputs": [
1734
    {
1735
     "data": {
1736
      "text/plain": [
1737
       "['Xdensenet121_any_mean',\n",
1738
       " 'Xdensenet121_epidural_mean',\n",
1739
       " 'Xdensenet121_intraparenchymal_mean',\n",
1740
       " 'Xdensenet121_intraventricular_mean',\n",
1741
       " 'Xdensenet121_subarachnoid_mean',\n",
1742
       " 'Xdensenet121_subdural_mean',\n",
1743
       " 'Xdensenet121-53_train_cpu_window_uint8_any_mean',\n",
1744
       " 'Xdensenet121-53_train_cpu_window_uint8_epidural_mean',\n",
1745
       " 'Xdensenet121-53_train_cpu_window_uint8_intraparenchymal_mean',\n",
1746
       " 'Xdensenet121-53_train_cpu_window_uint8_intraventricular_mean',\n",
1747
       " 'Xdensenet121-53_train_cpu_window_uint8_subarachnoid_mean',\n",
1748
       " 'Xdensenet121-53_train_cpu_window_uint8_subdural_mean',\n",
1749
       " 'Xresnet101_any_mean',\n",
1750
       " 'Xresnet101_epidural_mean',\n",
1751
       " 'Xresnet101_intraparenchymal_mean',\n",
1752
       " 'Xresnet101_intraventricular_mean',\n",
1753
       " 'Xresnet101_subarachnoid_mean',\n",
1754
       " 'Xresnet101_subdural_mean',\n",
1755
       " 'Xresnet101-53_train_cpu_window_uint8_any_mean',\n",
1756
       " 'Xresnet101-53_train_cpu_window_uint8_epidural_mean',\n",
1757
       " 'Xresnet101-53_train_cpu_window_uint8_intraparenchymal_mean',\n",
1758
       " 'Xresnet101-53_train_cpu_window_uint8_intraventricular_mean',\n",
1759
       " 'Xresnet101-53_train_cpu_window_uint8_subarachnoid_mean',\n",
1760
       " 'Xresnet101-53_train_cpu_window_uint8_subdural_mean',\n",
1761
       " 'Xresnet18_any_mean',\n",
1762
       " 'Xresnet18_epidural_mean',\n",
1763
       " 'Xresnet18_intraparenchymal_mean',\n",
1764
       " 'Xresnet18_intraventricular_mean',\n",
1765
       " 'Xresnet18_subarachnoid_mean',\n",
1766
       " 'Xresnet18_subdural_mean',\n",
1767
       " 'Xresnet18-53_train_cpu_window_uint8_any_mean',\n",
1768
       " 'Xresnet18-53_train_cpu_window_uint8_epidural_mean',\n",
1769
       " 'Xresnet18-53_train_cpu_window_uint8_intraparenchymal_mean',\n",
1770
       " 'Xresnet18-53_train_cpu_window_uint8_intraventricular_mean',\n",
1771
       " 'Xresnet18-53_train_cpu_window_uint8_subarachnoid_mean',\n",
1772
       " 'Xresnet18-53_train_cpu_window_uint8_subdural_mean',\n",
1773
       " 'Xresnet34_any_mean',\n",
1774
       " 'Xresnet34_epidural_mean',\n",
1775
       " 'Xresnet34_intraparenchymal_mean',\n",
1776
       " 'Xresnet34_intraventricular_mean',\n",
1777
       " 'Xresnet34_subarachnoid_mean',\n",
1778
       " 'Xresnet34_subdural_mean',\n",
1779
       " 'Xresnet34-53_train_cpu_window_uint8_any_mean',\n",
1780
       " 'Xresnet34-53_train_cpu_window_uint8_epidural_mean',\n",
1781
       " 'Xresnet34-53_train_cpu_window_uint8_intraparenchymal_mean',\n",
1782
       " 'Xresnet34-53_train_cpu_window_uint8_intraventricular_mean',\n",
1783
       " 'Xresnet34-53_train_cpu_window_uint8_subarachnoid_mean',\n",
1784
       " 'Xresnet34-53_train_cpu_window_uint8_subdural_mean',\n",
1785
       " 'Xresnet50_any_mean',\n",
1786
       " 'Xresnet50_epidural_mean',\n",
1787
       " 'Xresnet50_intraparenchymal_mean',\n",
1788
       " 'Xresnet50_intraventricular_mean',\n",
1789
       " 'Xresnet50_subarachnoid_mean',\n",
1790
       " 'Xresnet50_subdural_mean',\n",
1791
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean',\n",
1792
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean',\n",
1793
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean',\n",
1794
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean',\n",
1795
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean',\n",
1796
       " 'Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean']"
1797
      ]
1798
     },
1799
     "execution_count": 19,
1800
     "metadata": {},
1801
     "output_type": "execute_result"
1802
    }
1803
   ],
1804
   "source": [
1805
    "merge_cols"
1806
   ]
1807
  },
1808
  {
1809
   "cell_type": "code",
1810
   "execution_count": 20,
1811
   "metadata": {},
1812
   "outputs": [
1813
    {
1814
     "data": {
1815
      "text/html": [
1816
       "<div>\n",
1817
       "<style scoped>\n",
1818
       "    .dataframe tbody tr th:only-of-type {\n",
1819
       "        vertical-align: middle;\n",
1820
       "    }\n",
1821
       "\n",
1822
       "    .dataframe tbody tr th {\n",
1823
       "        vertical-align: top;\n",
1824
       "    }\n",
1825
       "\n",
1826
       "    .dataframe thead th {\n",
1827
       "        text-align: right;\n",
1828
       "    }\n",
1829
       "</style>\n",
1830
       "<table border=\"1\" class=\"dataframe\">\n",
1831
       "  <thead>\n",
1832
       "    <tr style=\"text-align: right;\">\n",
1833
       "      <th></th>\n",
1834
       "      <th>fn</th>\n",
1835
       "      <th>Xdensenet121_any_mean</th>\n",
1836
       "      <th>Xdensenet121_epidural_mean</th>\n",
1837
       "      <th>Xdensenet121_intraparenchymal_mean</th>\n",
1838
       "      <th>Xdensenet121_intraventricular_mean</th>\n",
1839
       "      <th>Xdensenet121_subarachnoid_mean</th>\n",
1840
       "      <th>Xdensenet121_subdural_mean</th>\n",
1841
       "      <th>Xdensenet121_any_std</th>\n",
1842
       "      <th>Xdensenet121_epidural_std</th>\n",
1843
       "      <th>Xdensenet121_intraparenchymal_std</th>\n",
1844
       "      <th>...</th>\n",
1845
       "      <th>Xresnet50_intraparenchymal_mean_max</th>\n",
1846
       "      <th>Xresnet50_intraventricular_mean_max</th>\n",
1847
       "      <th>Xresnet50_subarachnoid_mean_max</th>\n",
1848
       "      <th>Xresnet50_subdural_mean_max</th>\n",
1849
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max</th>\n",
1850
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max</th>\n",
1851
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max</th>\n",
1852
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max</th>\n",
1853
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max</th>\n",
1854
       "      <th>Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max</th>\n",
1855
       "    </tr>\n",
1856
       "  </thead>\n",
1857
       "  <tbody>\n",
1858
       "    <tr>\n",
1859
       "      <th>0</th>\n",
1860
       "      <td>ID_0fbf6a978</td>\n",
1861
       "      <td>0.652952</td>\n",
1862
       "      <td>0.064774</td>\n",
1863
       "      <td>0.077681</td>\n",
1864
       "      <td>0.005225</td>\n",
1865
       "      <td>0.292178</td>\n",
1866
       "      <td>0.338067</td>\n",
1867
       "      <td>0.096585</td>\n",
1868
       "      <td>3.203979e-02</td>\n",
1869
       "      <td>0.054162</td>\n",
1870
       "      <td>...</td>\n",
1871
       "      <td>0.996345</td>\n",
1872
       "      <td>0.973147</td>\n",
1873
       "      <td>0.959216</td>\n",
1874
       "      <td>0.376672</td>\n",
1875
       "      <td>0.998088</td>\n",
1876
       "      <td>0.032759</td>\n",
1877
       "      <td>0.990556</td>\n",
1878
       "      <td>0.993277</td>\n",
1879
       "      <td>0.982379</td>\n",
1880
       "      <td>0.296742</td>\n",
1881
       "    </tr>\n",
1882
       "    <tr>\n",
1883
       "      <th>1</th>\n",
1884
       "      <td>ID_d62ec3412</td>\n",
1885
       "      <td>0.000902</td>\n",
1886
       "      <td>0.000007</td>\n",
1887
       "      <td>0.000197</td>\n",
1888
       "      <td>0.000157</td>\n",
1889
       "      <td>0.000337</td>\n",
1890
       "      <td>0.000279</td>\n",
1891
       "      <td>0.000446</td>\n",
1892
       "      <td>3.052288e-06</td>\n",
1893
       "      <td>0.000050</td>\n",
1894
       "      <td>...</td>\n",
1895
       "      <td>0.005606</td>\n",
1896
       "      <td>0.011685</td>\n",
1897
       "      <td>0.056988</td>\n",
1898
       "      <td>0.012356</td>\n",
1899
       "      <td>0.180219</td>\n",
1900
       "      <td>0.004658</td>\n",
1901
       "      <td>0.034183</td>\n",
1902
       "      <td>0.070213</td>\n",
1903
       "      <td>0.048766</td>\n",
1904
       "      <td>0.028650</td>\n",
1905
       "    </tr>\n",
1906
       "    <tr>\n",
1907
       "      <th>2</th>\n",
1908
       "      <td>ID_cb544194b</td>\n",
1909
       "      <td>0.013207</td>\n",
1910
       "      <td>0.000106</td>\n",
1911
       "      <td>0.000226</td>\n",
1912
       "      <td>0.000060</td>\n",
1913
       "      <td>0.003247</td>\n",
1914
       "      <td>0.008092</td>\n",
1915
       "      <td>0.005803</td>\n",
1916
       "      <td>3.079419e-05</td>\n",
1917
       "      <td>0.000056</td>\n",
1918
       "      <td>...</td>\n",
1919
       "      <td>0.003033</td>\n",
1920
       "      <td>0.001944</td>\n",
1921
       "      <td>0.181010</td>\n",
1922
       "      <td>0.168275</td>\n",
1923
       "      <td>0.316041</td>\n",
1924
       "      <td>0.002888</td>\n",
1925
       "      <td>0.028160</td>\n",
1926
       "      <td>0.006408</td>\n",
1927
       "      <td>0.157353</td>\n",
1928
       "      <td>0.208944</td>\n",
1929
       "    </tr>\n",
1930
       "    <tr>\n",
1931
       "      <th>3</th>\n",
1932
       "      <td>ID_0d62513ec</td>\n",
1933
       "      <td>0.004513</td>\n",
1934
       "      <td>0.000018</td>\n",
1935
       "      <td>0.000599</td>\n",
1936
       "      <td>0.000379</td>\n",
1937
       "      <td>0.001197</td>\n",
1938
       "      <td>0.002964</td>\n",
1939
       "      <td>0.001034</td>\n",
1940
       "      <td>5.030724e-06</td>\n",
1941
       "      <td>0.000253</td>\n",
1942
       "      <td>...</td>\n",
1943
       "      <td>0.001040</td>\n",
1944
       "      <td>0.001171</td>\n",
1945
       "      <td>0.003586</td>\n",
1946
       "      <td>0.014528</td>\n",
1947
       "      <td>0.013856</td>\n",
1948
       "      <td>0.000814</td>\n",
1949
       "      <td>0.003383</td>\n",
1950
       "      <td>0.003476</td>\n",
1951
       "      <td>0.002704</td>\n",
1952
       "      <td>0.016037</td>\n",
1953
       "    </tr>\n",
1954
       "    <tr>\n",
1955
       "      <th>4</th>\n",
1956
       "      <td>ID_fc45b2151</td>\n",
1957
       "      <td>0.000032</td>\n",
1958
       "      <td>0.000001</td>\n",
1959
       "      <td>0.000014</td>\n",
1960
       "      <td>0.000009</td>\n",
1961
       "      <td>0.000016</td>\n",
1962
       "      <td>0.000031</td>\n",
1963
       "      <td>0.000014</td>\n",
1964
       "      <td>3.315683e-07</td>\n",
1965
       "      <td>0.000004</td>\n",
1966
       "      <td>...</td>\n",
1967
       "      <td>0.001387</td>\n",
1968
       "      <td>0.001326</td>\n",
1969
       "      <td>0.004180</td>\n",
1970
       "      <td>0.003761</td>\n",
1971
       "      <td>0.019404</td>\n",
1972
       "      <td>0.000497</td>\n",
1973
       "      <td>0.003189</td>\n",
1974
       "      <td>0.000700</td>\n",
1975
       "      <td>0.010232</td>\n",
1976
       "      <td>0.004891</td>\n",
1977
       "    </tr>\n",
1978
       "  </tbody>\n",
1979
       "</table>\n",
1980
       "<p>5 rows × 305 columns</p>\n",
1981
       "</div>"
1982
      ],
1983
      "text/plain": [
1984
       "             fn  Xdensenet121_any_mean  Xdensenet121_epidural_mean  \\\n",
1985
       "0  ID_0fbf6a978               0.652952                    0.064774   \n",
1986
       "1  ID_d62ec3412               0.000902                    0.000007   \n",
1987
       "2  ID_cb544194b               0.013207                    0.000106   \n",
1988
       "3  ID_0d62513ec               0.004513                    0.000018   \n",
1989
       "4  ID_fc45b2151               0.000032                    0.000001   \n",
1990
       "\n",
1991
       "   Xdensenet121_intraparenchymal_mean  Xdensenet121_intraventricular_mean  \\\n",
1992
       "0                            0.077681                            0.005225   \n",
1993
       "1                            0.000197                            0.000157   \n",
1994
       "2                            0.000226                            0.000060   \n",
1995
       "3                            0.000599                            0.000379   \n",
1996
       "4                            0.000014                            0.000009   \n",
1997
       "\n",
1998
       "   Xdensenet121_subarachnoid_mean  Xdensenet121_subdural_mean  \\\n",
1999
       "0                        0.292178                    0.338067   \n",
2000
       "1                        0.000337                    0.000279   \n",
2001
       "2                        0.003247                    0.008092   \n",
2002
       "3                        0.001197                    0.002964   \n",
2003
       "4                        0.000016                    0.000031   \n",
2004
       "\n",
2005
       "   Xdensenet121_any_std  Xdensenet121_epidural_std  \\\n",
2006
       "0              0.096585               3.203979e-02   \n",
2007
       "1              0.000446               3.052288e-06   \n",
2008
       "2              0.005803               3.079419e-05   \n",
2009
       "3              0.001034               5.030724e-06   \n",
2010
       "4              0.000014               3.315683e-07   \n",
2011
       "\n",
2012
       "   Xdensenet121_intraparenchymal_std  ...  \\\n",
2013
       "0                           0.054162  ...   \n",
2014
       "1                           0.000050  ...   \n",
2015
       "2                           0.000056  ...   \n",
2016
       "3                           0.000253  ...   \n",
2017
       "4                           0.000004  ...   \n",
2018
       "\n",
2019
       "   Xresnet50_intraparenchymal_mean_max  Xresnet50_intraventricular_mean_max  \\\n",
2020
       "0                             0.996345                             0.973147   \n",
2021
       "1                             0.005606                             0.011685   \n",
2022
       "2                             0.003033                             0.001944   \n",
2023
       "3                             0.001040                             0.001171   \n",
2024
       "4                             0.001387                             0.001326   \n",
2025
       "\n",
2026
       "   Xresnet50_subarachnoid_mean_max  Xresnet50_subdural_mean_max  \\\n",
2027
       "0                         0.959216                     0.376672   \n",
2028
       "1                         0.056988                     0.012356   \n",
2029
       "2                         0.181010                     0.168275   \n",
2030
       "3                         0.003586                     0.014528   \n",
2031
       "4                         0.004180                     0.003761   \n",
2032
       "\n",
2033
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_any_mean_max  \\\n",
2034
       "0                                           0.998088         \n",
2035
       "1                                           0.180219         \n",
2036
       "2                                           0.316041         \n",
2037
       "3                                           0.013856         \n",
2038
       "4                                           0.019404         \n",
2039
       "\n",
2040
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_epidural_mean_max  \\\n",
2041
       "0                                           0.032759              \n",
2042
       "1                                           0.004658              \n",
2043
       "2                                           0.002888              \n",
2044
       "3                                           0.000814              \n",
2045
       "4                                           0.000497              \n",
2046
       "\n",
2047
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraparenchymal_mean_max  \\\n",
2048
       "0                                           0.990556                      \n",
2049
       "1                                           0.034183                      \n",
2050
       "2                                           0.028160                      \n",
2051
       "3                                           0.003383                      \n",
2052
       "4                                           0.003189                      \n",
2053
       "\n",
2054
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_intraventricular_mean_max  \\\n",
2055
       "0                                           0.993277                      \n",
2056
       "1                                           0.070213                      \n",
2057
       "2                                           0.006408                      \n",
2058
       "3                                           0.003476                      \n",
2059
       "4                                           0.000700                      \n",
2060
       "\n",
2061
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subarachnoid_mean_max  \\\n",
2062
       "0                                           0.982379                  \n",
2063
       "1                                           0.048766                  \n",
2064
       "2                                           0.157353                  \n",
2065
       "3                                           0.002704                  \n",
2066
       "4                                           0.010232                  \n",
2067
       "\n",
2068
       "   Xresnext50_32x4d-53_train_cpu_window_uint8_subdural_mean_max  \n",
2069
       "0                                           0.296742             \n",
2070
       "1                                           0.028650             \n",
2071
       "2                                           0.208944             \n",
2072
       "3                                           0.016037             \n",
2073
       "4                                           0.004891             \n",
2074
       "\n",
2075
       "[5 rows x 305 columns]"
2076
      ]
2077
     },
2078
     "execution_count": 20,
2079
     "metadata": {},
2080
     "output_type": "execute_result"
2081
    }
2082
   ],
2083
   "source": [
2084
    "#fill and create test dataframe\n",
2085
    "test_dfs = []\n",
2086
    "\n",
2087
    "for i in range(len(test_folds_dfs)):\n",
2088
    "    current_test_fold = test_folds_dfs[i]\n",
2089
    "    test_df = current_test_fold[0]\n",
2090
    "    for arch_df in current_test_fold[1:]:\n",
2091
    "        test_df = test_df.merge(arch_df,on='fn')\n",
2092
    "    test_dfs.append(test_df)\n",
2093
    "\n",
2094
    "for i in range(len(test_dfs)):\n",
2095
    "    #add study and z position to dataframe to join\n",
2096
    "    test_dfs[i]['study'] = test_dfs[i].fn.apply(lambda fn: fn_to_study_ix[fn][0] )\n",
2097
    "    test_dfs[i]['z'] = test_dfs[i].fn.apply(lambda fn: int(fn_to_study_ix[fn][1]) )\n",
2098
    "    \n",
2099
    "    #now join top and bottom\n",
2100
    "    test_dfs[i]['z+'] = test_dfs[i].z+1\n",
2101
    "    test_dfs[i]['z-'] = test_dfs[i].z-1\n",
2102
    "    \n",
2103
    "    #only merge means to avoid too many columns\n",
2104
    "    merge_cols = [c for c in tta_df.columns if 'mean' in c] \n",
2105
    "    test_dfs[i] = pd.merge(test_dfs[i], test_dfs[i][merge_cols+ ['study','z+']], how='left', left_on=['study', 'z'], right_on=['study','z+'], suffixes=('','+1'))\n",
2106
    "    test_dfs[i] = pd.merge(test_dfs[i], test_dfs[i][merge_cols+ ['study','z-']], how='left', left_on=['study', 'z'], right_on=['study','z-'], suffixes=('','-1'))\n",
2107
    "    test_dfs[i].drop(['z++1','z--1'], axis=1, inplace=True) #after merge these columns are not needed\n",
2108
    "    \n",
2109
    "    #now add maximum value for each merge_col by study\n",
2110
    "    group_df = test_dfs[i][merge_cols+['study']].groupby('study').agg('max')\n",
2111
    "    test_dfs[i] = pd.merge(test_dfs[i], group_df, how='left', on='study', suffixes=('','_max'))\n",
2112
    "    \n",
2113
    "    #manage NANs created by merging\n",
2114
    "    merged_cols = [c for c in test_dfs[i].columns if c.endswith('1')]\n",
2115
    "\n",
2116
    "    for c in merged_cols:\n",
2117
    "        test_dfs[i][c].fillna(test_dfs[i][c.replace('-1', '').replace('+1', '')], inplace=True)\n",
2118
    "\n",
2119
    "test_dfs[0].head()"
2120
   ]
2121
  },
2122
  {
2123
   "cell_type": "markdown",
2124
   "metadata": {},
2125
   "source": [
2126
    "# Train XG Boost"
2127
   ]
2128
  },
2129
  {
2130
   "cell_type": "code",
2131
   "execution_count": 21,
2132
   "metadata": {
2133
    "scrolled": true
2134
   },
2135
   "outputs": [
2136
    {
2137
     "data": {
2138
      "text/plain": [
2139
       "(633568, 119234)"
2140
      ]
2141
     },
2142
     "execution_count": 21,
2143
     "metadata": {},
2144
     "output_type": "execute_result"
2145
    }
2146
   ],
2147
   "source": [
2148
    "folds = [1,5,12] #three random folds\n",
2149
    "\n",
2150
    "train_df = merged_df.query('fold not in @folds')\n",
2151
    "val_df = merged_df.query('fold in @folds')\n",
2152
    "\n",
2153
    "len(train_df),len(val_df)\n"
2154
   ]
2155
  },
2156
  {
2157
   "cell_type": "code",
2158
   "execution_count": 22,
2159
   "metadata": {},
2160
   "outputs": [
2161
    {
2162
     "name": "stdout",
2163
     "output_type": "stream",
2164
     "text": [
2165
      "any Xresnet34_any_mean 0.10142146307769834\n",
2166
      "epidural Xresnet34_epidural_mean 0.012571424002310823\n",
2167
      "intraparenchymal Xresnet34_intraparenchymal_mean 0.04222755602983461\n",
2168
      "intraventricular Xresnet34_intraventricular_mean 0.025140569354671405\n",
2169
      "subarachnoid Xresnet34_subarachnoid_mean 0.06708897203821126\n",
2170
      "subdural Xresnet34_subdural_mean 0.08416194895275723\n"
2171
     ]
2172
    }
2173
   ],
2174
   "source": [
2175
    "#first check log loss for current model predictions\n",
2176
    "from sklearn.metrics import log_loss\n",
2177
    "\n",
2178
    "resnet34_vars = [c for c in merged_df.columns if c.startswith('Xresnet34') and c.endswith('mean')]\n",
2179
    "y_true = val_df[base_classes]\n",
2180
    "y_pred = val_df[resnet34_vars]\n",
2181
    "\n",
2182
    "for tc,pc in zip(y_true.columns,y_pred.columns):\n",
2183
    "    loss = log_loss( y_true[tc], y_pred[pc] )\n",
2184
    "    print(tc,pc,loss)\n"
2185
   ]
2186
  },
2187
  {
2188
   "cell_type": "code",
2189
   "execution_count": 23,
2190
   "metadata": {},
2191
   "outputs": [],
2192
   "source": [
2193
    "import xgboost as xgb\n",
2194
    "import os\n",
2195
    "from sklearn.multioutput import MultiOutputRegressor\n",
2196
    "#select only variables from deep learning model\n",
2197
    "model_vars = [c  for c in merged_df.columns if c.startswith('X')]\n",
2198
    "model_vars.append('z')"
2199
   ]
2200
  },
2201
  {
2202
   "cell_type": "code",
2203
   "execution_count": 24,
2204
   "metadata": {},
2205
   "outputs": [],
2206
   "source": [
2207
    "x_train = train_df[model_vars]\n",
2208
    "y_train = train_df[base_classes]"
2209
   ]
2210
  },
2211
  {
2212
   "cell_type": "code",
2213
   "execution_count": 25,
2214
   "metadata": {},
2215
   "outputs": [
2216
    {
2217
     "name": "stdout",
2218
     "output_type": "stream",
2219
     "text": [
2220
      "Training xgboost\n",
2221
      "Done training\n"
2222
     ]
2223
    }
2224
   ],
2225
   "source": [
2226
    "xgb_clf = MultiOutputRegressor(xgb.XGBRegressor(objective='binary:logistic',tree_method='gpu_hist',\n",
2227
    "                                            n_estimators=60, reg_lambda=14.0005, \n",
2228
    "                                            max_depth=5,learning_rate=0.1188,gamma=0.0, reg_alpha=0.2043,\n",
2229
    "                                            min_child_weight=0.0,max_delta_step=0.0,subsample=1.0,colsample_bytree=1.0,\n",
2230
    "                                            colsample_bylevel=1.0,silent=0,nthread=-1,\n",
2231
    "                                            scale_pos_weight=1.0,base_score=0.05,seed=1337,missing=None,))\n",
2232
    "print('Training xgboost')\n",
2233
    "xgb_clf.fit(x_train, y_train) \n",
2234
    "\n",
2235
    "#save trained xgb model\n",
2236
    "pickle.dump(xgb_clf, open('data/xgb_%s.pickle'%experiment_name, 'wb'))\n",
2237
    "\n",
2238
    "print('Done training')"
2239
   ]
2240
  },
2241
  {
2242
   "cell_type": "code",
2243
   "execution_count": 26,
2244
   "metadata": {},
2245
   "outputs": [],
2246
   "source": [
2247
    "from catboost import CatBoostClassifier"
2248
   ]
2249
  },
2250
  {
2251
   "cell_type": "code",
2252
   "execution_count": 27,
2253
   "metadata": {},
2254
   "outputs": [
2255
    {
2256
     "name": "stderr",
2257
     "output_type": "stream",
2258
     "text": [
2259
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
2260
     ]
2261
    },
2262
    {
2263
     "name": "stdout",
2264
     "output_type": "stream",
2265
     "text": [
2266
      "0:\tlearn: 0.6300112\ttotal: 14.2ms\tremaining: 7.09s\n",
2267
      "1:\tlearn: 0.5741290\ttotal: 26.4ms\tremaining: 6.57s\n",
2268
      "2:\tlearn: 0.5230950\ttotal: 38.3ms\tremaining: 6.34s\n",
2269
      "3:\tlearn: 0.4800382\ttotal: 50.3ms\tremaining: 6.24s\n",
2270
      "4:\tlearn: 0.4403254\ttotal: 62.3ms\tremaining: 6.17s\n",
2271
      "5:\tlearn: 0.4049130\ttotal: 74.4ms\tremaining: 6.12s\n",
2272
      "6:\tlearn: 0.3740459\ttotal: 86.5ms\tremaining: 6.09s\n",
2273
      "7:\tlearn: 0.3459914\ttotal: 98.3ms\tremaining: 6.05s\n",
2274
      "8:\tlearn: 0.3212827\ttotal: 111ms\tremaining: 6.04s\n",
2275
      "9:\tlearn: 0.2979507\ttotal: 121ms\tremaining: 5.93s\n",
2276
      "10:\tlearn: 0.2788469\ttotal: 131ms\tremaining: 5.82s\n",
2277
      "11:\tlearn: 0.2622651\ttotal: 141ms\tremaining: 5.74s\n",
2278
      "12:\tlearn: 0.2476561\ttotal: 151ms\tremaining: 5.65s\n",
2279
      "13:\tlearn: 0.2341966\ttotal: 161ms\tremaining: 5.59s\n",
2280
      "14:\tlearn: 0.2213328\ttotal: 171ms\tremaining: 5.53s\n",
2281
      "15:\tlearn: 0.2089498\ttotal: 181ms\tremaining: 5.47s\n",
2282
      "16:\tlearn: 0.1993485\ttotal: 191ms\tremaining: 5.42s\n",
2283
      "17:\tlearn: 0.1911051\ttotal: 201ms\tremaining: 5.38s\n",
2284
      "18:\tlearn: 0.1830265\ttotal: 211ms\tremaining: 5.35s\n",
2285
      "19:\tlearn: 0.1755564\ttotal: 221ms\tremaining: 5.31s\n",
2286
      "20:\tlearn: 0.1699449\ttotal: 231ms\tremaining: 5.28s\n",
2287
      "21:\tlearn: 0.1640489\ttotal: 242ms\tremaining: 5.25s\n",
2288
      "22:\tlearn: 0.1592242\ttotal: 252ms\tremaining: 5.22s\n",
2289
      "23:\tlearn: 0.1546858\ttotal: 262ms\tremaining: 5.2s\n",
2290
      "24:\tlearn: 0.1499386\ttotal: 273ms\tremaining: 5.19s\n",
2291
      "25:\tlearn: 0.1456647\ttotal: 284ms\tremaining: 5.17s\n",
2292
      "26:\tlearn: 0.1420225\ttotal: 294ms\tremaining: 5.15s\n",
2293
      "27:\tlearn: 0.1391272\ttotal: 305ms\tremaining: 5.13s\n",
2294
      "28:\tlearn: 0.1355032\ttotal: 315ms\tremaining: 5.11s\n",
2295
      "29:\tlearn: 0.1329247\ttotal: 324ms\tremaining: 5.07s\n",
2296
      "30:\tlearn: 0.1306117\ttotal: 333ms\tremaining: 5.04s\n",
2297
      "31:\tlearn: 0.1285685\ttotal: 342ms\tremaining: 5s\n",
2298
      "32:\tlearn: 0.1260248\ttotal: 351ms\tremaining: 4.97s\n",
2299
      "33:\tlearn: 0.1236927\ttotal: 361ms\tremaining: 4.95s\n",
2300
      "34:\tlearn: 0.1213834\ttotal: 370ms\tremaining: 4.92s\n",
2301
      "35:\tlearn: 0.1199382\ttotal: 379ms\tremaining: 4.89s\n",
2302
      "36:\tlearn: 0.1184845\ttotal: 389ms\tremaining: 4.86s\n",
2303
      "37:\tlearn: 0.1169902\ttotal: 398ms\tremaining: 4.84s\n",
2304
      "38:\tlearn: 0.1161344\ttotal: 407ms\tremaining: 4.82s\n",
2305
      "39:\tlearn: 0.1149421\ttotal: 417ms\tremaining: 4.79s\n",
2306
      "40:\tlearn: 0.1138034\ttotal: 426ms\tremaining: 4.77s\n",
2307
      "41:\tlearn: 0.1125137\ttotal: 435ms\tremaining: 4.75s\n",
2308
      "42:\tlearn: 0.1112134\ttotal: 445ms\tremaining: 4.73s\n",
2309
      "43:\tlearn: 0.1104542\ttotal: 455ms\tremaining: 4.72s\n",
2310
      "44:\tlearn: 0.1092666\ttotal: 465ms\tremaining: 4.7s\n",
2311
      "45:\tlearn: 0.1084544\ttotal: 474ms\tremaining: 4.67s\n",
2312
      "46:\tlearn: 0.1076119\ttotal: 483ms\tremaining: 4.65s\n",
2313
      "47:\tlearn: 0.1069453\ttotal: 493ms\tremaining: 4.64s\n",
2314
      "48:\tlearn: 0.1061312\ttotal: 502ms\tremaining: 4.62s\n",
2315
      "49:\tlearn: 0.1055290\ttotal: 512ms\tremaining: 4.6s\n",
2316
      "50:\tlearn: 0.1048533\ttotal: 521ms\tremaining: 4.59s\n",
2317
      "51:\tlearn: 0.1044990\ttotal: 530ms\tremaining: 4.57s\n",
2318
      "52:\tlearn: 0.1040365\ttotal: 539ms\tremaining: 4.55s\n",
2319
      "53:\tlearn: 0.1036207\ttotal: 548ms\tremaining: 4.53s\n",
2320
      "54:\tlearn: 0.1032693\ttotal: 558ms\tremaining: 4.51s\n",
2321
      "55:\tlearn: 0.1030260\ttotal: 567ms\tremaining: 4.5s\n",
2322
      "56:\tlearn: 0.1024502\ttotal: 577ms\tremaining: 4.48s\n",
2323
      "57:\tlearn: 0.1020441\ttotal: 586ms\tremaining: 4.47s\n",
2324
      "58:\tlearn: 0.1017107\ttotal: 595ms\tremaining: 4.45s\n",
2325
      "59:\tlearn: 0.1014103\ttotal: 605ms\tremaining: 4.43s\n",
2326
      "60:\tlearn: 0.1011275\ttotal: 614ms\tremaining: 4.42s\n",
2327
      "61:\tlearn: 0.1008895\ttotal: 623ms\tremaining: 4.4s\n",
2328
      "62:\tlearn: 0.1004416\ttotal: 633ms\tremaining: 4.39s\n",
2329
      "63:\tlearn: 0.1000993\ttotal: 643ms\tremaining: 4.38s\n",
2330
      "64:\tlearn: 0.0998388\ttotal: 652ms\tremaining: 4.36s\n",
2331
      "65:\tlearn: 0.0995690\ttotal: 661ms\tremaining: 4.34s\n",
2332
      "66:\tlearn: 0.0994369\ttotal: 670ms\tremaining: 4.33s\n",
2333
      "67:\tlearn: 0.0993174\ttotal: 679ms\tremaining: 4.32s\n",
2334
      "68:\tlearn: 0.0991101\ttotal: 689ms\tremaining: 4.3s\n",
2335
      "69:\tlearn: 0.0989078\ttotal: 698ms\tremaining: 4.29s\n",
2336
      "70:\tlearn: 0.0988200\ttotal: 708ms\tremaining: 4.28s\n",
2337
      "71:\tlearn: 0.0986636\ttotal: 718ms\tremaining: 4.27s\n",
2338
      "72:\tlearn: 0.0984328\ttotal: 727ms\tremaining: 4.25s\n",
2339
      "73:\tlearn: 0.0982657\ttotal: 737ms\tremaining: 4.24s\n",
2340
      "74:\tlearn: 0.0980886\ttotal: 746ms\tremaining: 4.23s\n",
2341
      "75:\tlearn: 0.0979807\ttotal: 756ms\tremaining: 4.21s\n",
2342
      "76:\tlearn: 0.0978737\ttotal: 765ms\tremaining: 4.2s\n",
2343
      "77:\tlearn: 0.0977060\ttotal: 775ms\tremaining: 4.19s\n",
2344
      "78:\tlearn: 0.0974788\ttotal: 784ms\tremaining: 4.18s\n",
2345
      "79:\tlearn: 0.0973238\ttotal: 793ms\tremaining: 4.16s\n",
2346
      "80:\tlearn: 0.0971318\ttotal: 802ms\tremaining: 4.15s\n",
2347
      "81:\tlearn: 0.0969733\ttotal: 812ms\tremaining: 4.14s\n",
2348
      "82:\tlearn: 0.0968933\ttotal: 821ms\tremaining: 4.13s\n",
2349
      "83:\tlearn: 0.0968379\ttotal: 831ms\tremaining: 4.11s\n",
2350
      "84:\tlearn: 0.0967174\ttotal: 841ms\tremaining: 4.1s\n",
2351
      "85:\tlearn: 0.0966029\ttotal: 850ms\tremaining: 4.09s\n",
2352
      "86:\tlearn: 0.0965067\ttotal: 860ms\tremaining: 4.08s\n",
2353
      "87:\tlearn: 0.0963891\ttotal: 869ms\tremaining: 4.07s\n",
2354
      "88:\tlearn: 0.0962795\ttotal: 879ms\tremaining: 4.06s\n",
2355
      "89:\tlearn: 0.0962401\ttotal: 888ms\tremaining: 4.04s\n",
2356
      "90:\tlearn: 0.0961455\ttotal: 897ms\tremaining: 4.03s\n",
2357
      "91:\tlearn: 0.0960883\ttotal: 907ms\tremaining: 4.02s\n",
2358
      "92:\tlearn: 0.0960120\ttotal: 916ms\tremaining: 4.01s\n",
2359
      "93:\tlearn: 0.0959163\ttotal: 926ms\tremaining: 4s\n",
2360
      "94:\tlearn: 0.0958372\ttotal: 935ms\tremaining: 3.99s\n",
2361
      "95:\tlearn: 0.0957638\ttotal: 944ms\tremaining: 3.97s\n",
2362
      "96:\tlearn: 0.0957313\ttotal: 953ms\tremaining: 3.96s\n",
2363
      "97:\tlearn: 0.0956490\ttotal: 962ms\tremaining: 3.95s\n",
2364
      "98:\tlearn: 0.0956129\ttotal: 971ms\tremaining: 3.93s\n",
2365
      "99:\tlearn: 0.0955379\ttotal: 981ms\tremaining: 3.92s\n",
2366
      "100:\tlearn: 0.0954983\ttotal: 990ms\tremaining: 3.91s\n",
2367
      "101:\tlearn: 0.0954296\ttotal: 1000ms\tremaining: 3.9s\n",
2368
      "102:\tlearn: 0.0953629\ttotal: 1.01s\tremaining: 3.89s\n",
2369
      "103:\tlearn: 0.0953287\ttotal: 1.02s\tremaining: 3.88s\n",
2370
      "104:\tlearn: 0.0952725\ttotal: 1.03s\tremaining: 3.87s\n",
2371
      "105:\tlearn: 0.0952146\ttotal: 1.04s\tremaining: 3.85s\n",
2372
      "106:\tlearn: 0.0951494\ttotal: 1.05s\tremaining: 3.84s\n",
2373
      "107:\tlearn: 0.0950849\ttotal: 1.05s\tremaining: 3.83s\n",
2374
      "108:\tlearn: 0.0950191\ttotal: 1.06s\tremaining: 3.82s\n",
2375
      "109:\tlearn: 0.0949847\ttotal: 1.07s\tremaining: 3.81s\n",
2376
      "110:\tlearn: 0.0949598\ttotal: 1.08s\tremaining: 3.8s\n",
2377
      "111:\tlearn: 0.0949287\ttotal: 1.09s\tremaining: 3.79s\n",
2378
      "112:\tlearn: 0.0948765\ttotal: 1.1s\tremaining: 3.77s\n",
2379
      "113:\tlearn: 0.0948421\ttotal: 1.11s\tremaining: 3.77s\n",
2380
      "114:\tlearn: 0.0948193\ttotal: 1.12s\tremaining: 3.75s\n",
2381
      "115:\tlearn: 0.0947775\ttotal: 1.13s\tremaining: 3.74s\n",
2382
      "116:\tlearn: 0.0947377\ttotal: 1.14s\tremaining: 3.73s\n",
2383
      "117:\tlearn: 0.0947034\ttotal: 1.15s\tremaining: 3.72s\n",
2384
      "118:\tlearn: 0.0946827\ttotal: 1.16s\tremaining: 3.71s\n",
2385
      "119:\tlearn: 0.0946670\ttotal: 1.17s\tremaining: 3.7s\n",
2386
      "120:\tlearn: 0.0945899\ttotal: 1.18s\tremaining: 3.69s\n",
2387
      "121:\tlearn: 0.0945644\ttotal: 1.19s\tremaining: 3.68s\n",
2388
      "122:\tlearn: 0.0945393\ttotal: 1.2s\tremaining: 3.67s\n",
2389
      "123:\tlearn: 0.0945250\ttotal: 1.2s\tremaining: 3.65s\n",
2390
      "124:\tlearn: 0.0944740\ttotal: 1.21s\tremaining: 3.64s\n",
2391
      "125:\tlearn: 0.0944444\ttotal: 1.22s\tremaining: 3.63s\n",
2392
      "126:\tlearn: 0.0944015\ttotal: 1.23s\tremaining: 3.62s\n",
2393
      "127:\tlearn: 0.0943836\ttotal: 1.24s\tremaining: 3.61s\n",
2394
      "128:\tlearn: 0.0943628\ttotal: 1.25s\tremaining: 3.6s\n",
2395
      "129:\tlearn: 0.0943235\ttotal: 1.26s\tremaining: 3.59s\n",
2396
      "130:\tlearn: 0.0942970\ttotal: 1.27s\tremaining: 3.58s\n",
2397
      "131:\tlearn: 0.0942677\ttotal: 1.28s\tremaining: 3.57s\n",
2398
      "132:\tlearn: 0.0942458\ttotal: 1.29s\tremaining: 3.56s\n",
2399
      "133:\tlearn: 0.0942096\ttotal: 1.3s\tremaining: 3.55s\n",
2400
      "134:\tlearn: 0.0941956\ttotal: 1.31s\tremaining: 3.54s\n",
2401
      "135:\tlearn: 0.0941755\ttotal: 1.32s\tremaining: 3.53s\n",
2402
      "136:\tlearn: 0.0941279\ttotal: 1.33s\tremaining: 3.52s\n",
2403
      "137:\tlearn: 0.0941018\ttotal: 1.34s\tremaining: 3.51s\n",
2404
      "138:\tlearn: 0.0940813\ttotal: 1.35s\tremaining: 3.5s\n",
2405
      "139:\tlearn: 0.0940571\ttotal: 1.36s\tremaining: 3.49s\n",
2406
      "140:\tlearn: 0.0940259\ttotal: 1.36s\tremaining: 3.48s\n",
2407
      "141:\tlearn: 0.0940047\ttotal: 1.37s\tremaining: 3.46s\n",
2408
      "142:\tlearn: 0.0939843\ttotal: 1.38s\tremaining: 3.45s\n",
2409
      "143:\tlearn: 0.0939435\ttotal: 1.39s\tremaining: 3.44s\n",
2410
      "144:\tlearn: 0.0939285\ttotal: 1.4s\tremaining: 3.43s\n",
2411
      "145:\tlearn: 0.0939070\ttotal: 1.41s\tremaining: 3.42s\n",
2412
      "146:\tlearn: 0.0938900\ttotal: 1.42s\tremaining: 3.41s\n",
2413
      "147:\tlearn: 0.0938695\ttotal: 1.43s\tremaining: 3.4s\n",
2414
      "148:\tlearn: 0.0938554\ttotal: 1.44s\tremaining: 3.39s\n",
2415
      "149:\tlearn: 0.0938196\ttotal: 1.45s\tremaining: 3.38s\n",
2416
      "150:\tlearn: 0.0938047\ttotal: 1.46s\tremaining: 3.37s\n",
2417
      "151:\tlearn: 0.0937761\ttotal: 1.47s\tremaining: 3.36s\n",
2418
      "152:\tlearn: 0.0937590\ttotal: 1.48s\tremaining: 3.35s\n",
2419
      "153:\tlearn: 0.0937412\ttotal: 1.49s\tremaining: 3.34s\n",
2420
      "154:\tlearn: 0.0937275\ttotal: 1.5s\tremaining: 3.33s\n",
2421
      "155:\tlearn: 0.0937024\ttotal: 1.51s\tremaining: 3.32s\n",
2422
      "156:\tlearn: 0.0936852\ttotal: 1.52s\tremaining: 3.31s\n",
2423
      "157:\tlearn: 0.0936676\ttotal: 1.52s\tremaining: 3.3s\n",
2424
      "158:\tlearn: 0.0936547\ttotal: 1.53s\tremaining: 3.29s\n",
2425
      "159:\tlearn: 0.0936431\ttotal: 1.54s\tremaining: 3.28s\n",
2426
      "160:\tlearn: 0.0936291\ttotal: 1.55s\tremaining: 3.27s\n",
2427
      "161:\tlearn: 0.0936203\ttotal: 1.56s\tremaining: 3.26s\n",
2428
      "162:\tlearn: 0.0936116\ttotal: 1.57s\tremaining: 3.25s\n",
2429
      "163:\tlearn: 0.0936000\ttotal: 1.58s\tremaining: 3.24s\n",
2430
      "164:\tlearn: 0.0935866\ttotal: 1.59s\tremaining: 3.23s\n",
2431
      "165:\tlearn: 0.0935625\ttotal: 1.6s\tremaining: 3.22s\n",
2432
      "166:\tlearn: 0.0935365\ttotal: 1.61s\tremaining: 3.21s\n",
2433
      "167:\tlearn: 0.0935277\ttotal: 1.62s\tremaining: 3.2s\n",
2434
      "168:\tlearn: 0.0935130\ttotal: 1.63s\tremaining: 3.19s\n",
2435
      "169:\tlearn: 0.0934925\ttotal: 1.64s\tremaining: 3.18s\n",
2436
      "170:\tlearn: 0.0934811\ttotal: 1.65s\tremaining: 3.17s\n",
2437
      "171:\tlearn: 0.0934672\ttotal: 1.66s\tremaining: 3.16s\n"
2438
     ]
2439
    },
2440
    {
2441
     "name": "stdout",
2442
     "output_type": "stream",
2443
     "text": [
2444
      "172:\tlearn: 0.0934468\ttotal: 1.67s\tremaining: 3.15s\n",
2445
      "173:\tlearn: 0.0934345\ttotal: 1.67s\tremaining: 3.14s\n",
2446
      "174:\tlearn: 0.0934145\ttotal: 1.68s\tremaining: 3.13s\n",
2447
      "175:\tlearn: 0.0933990\ttotal: 1.69s\tremaining: 3.12s\n",
2448
      "176:\tlearn: 0.0933845\ttotal: 1.7s\tremaining: 3.11s\n",
2449
      "177:\tlearn: 0.0933601\ttotal: 1.71s\tremaining: 3.1s\n",
2450
      "178:\tlearn: 0.0933383\ttotal: 1.72s\tremaining: 3.09s\n",
2451
      "179:\tlearn: 0.0933203\ttotal: 1.73s\tremaining: 3.08s\n",
2452
      "180:\tlearn: 0.0933110\ttotal: 1.74s\tremaining: 3.07s\n",
2453
      "181:\tlearn: 0.0932970\ttotal: 1.75s\tremaining: 3.06s\n",
2454
      "182:\tlearn: 0.0932868\ttotal: 1.76s\tremaining: 3.05s\n",
2455
      "183:\tlearn: 0.0932782\ttotal: 1.77s\tremaining: 3.04s\n",
2456
      "184:\tlearn: 0.0932692\ttotal: 1.78s\tremaining: 3.02s\n",
2457
      "185:\tlearn: 0.0932546\ttotal: 1.79s\tremaining: 3.02s\n",
2458
      "186:\tlearn: 0.0932453\ttotal: 1.8s\tremaining: 3.01s\n",
2459
      "187:\tlearn: 0.0932303\ttotal: 1.8s\tremaining: 3s\n",
2460
      "188:\tlearn: 0.0932159\ttotal: 1.81s\tremaining: 2.99s\n",
2461
      "189:\tlearn: 0.0932028\ttotal: 1.82s\tremaining: 2.98s\n",
2462
      "190:\tlearn: 0.0931912\ttotal: 1.83s\tremaining: 2.97s\n",
2463
      "191:\tlearn: 0.0931771\ttotal: 1.84s\tremaining: 2.96s\n",
2464
      "192:\tlearn: 0.0931634\ttotal: 1.85s\tremaining: 2.95s\n",
2465
      "193:\tlearn: 0.0931568\ttotal: 1.86s\tremaining: 2.94s\n",
2466
      "194:\tlearn: 0.0931457\ttotal: 1.87s\tremaining: 2.93s\n",
2467
      "195:\tlearn: 0.0931376\ttotal: 1.88s\tremaining: 2.92s\n",
2468
      "196:\tlearn: 0.0931241\ttotal: 1.89s\tremaining: 2.91s\n",
2469
      "197:\tlearn: 0.0931123\ttotal: 1.9s\tremaining: 2.9s\n",
2470
      "198:\tlearn: 0.0930869\ttotal: 1.91s\tremaining: 2.89s\n",
2471
      "199:\tlearn: 0.0930772\ttotal: 1.92s\tremaining: 2.88s\n",
2472
      "200:\tlearn: 0.0930540\ttotal: 1.93s\tremaining: 2.87s\n",
2473
      "201:\tlearn: 0.0930342\ttotal: 1.94s\tremaining: 2.86s\n",
2474
      "202:\tlearn: 0.0930191\ttotal: 1.95s\tremaining: 2.85s\n",
2475
      "203:\tlearn: 0.0930077\ttotal: 1.96s\tremaining: 2.84s\n",
2476
      "204:\tlearn: 0.0929947\ttotal: 1.97s\tremaining: 2.83s\n",
2477
      "205:\tlearn: 0.0929805\ttotal: 1.97s\tremaining: 2.82s\n",
2478
      "206:\tlearn: 0.0929658\ttotal: 1.98s\tremaining: 2.81s\n",
2479
      "207:\tlearn: 0.0929549\ttotal: 1.99s\tremaining: 2.8s\n",
2480
      "208:\tlearn: 0.0929388\ttotal: 2s\tremaining: 2.79s\n",
2481
      "209:\tlearn: 0.0929296\ttotal: 2.01s\tremaining: 2.78s\n",
2482
      "210:\tlearn: 0.0929163\ttotal: 2.02s\tremaining: 2.77s\n",
2483
      "211:\tlearn: 0.0928999\ttotal: 2.03s\tremaining: 2.76s\n",
2484
      "212:\tlearn: 0.0928833\ttotal: 2.04s\tremaining: 2.75s\n",
2485
      "213:\tlearn: 0.0928729\ttotal: 2.05s\tremaining: 2.74s\n",
2486
      "214:\tlearn: 0.0928594\ttotal: 2.06s\tremaining: 2.73s\n",
2487
      "215:\tlearn: 0.0928526\ttotal: 2.07s\tremaining: 2.72s\n",
2488
      "216:\tlearn: 0.0928466\ttotal: 2.08s\tremaining: 2.71s\n",
2489
      "217:\tlearn: 0.0928334\ttotal: 2.09s\tremaining: 2.7s\n",
2490
      "218:\tlearn: 0.0928170\ttotal: 2.1s\tremaining: 2.69s\n",
2491
      "219:\tlearn: 0.0927946\ttotal: 2.1s\tremaining: 2.68s\n",
2492
      "220:\tlearn: 0.0927841\ttotal: 2.11s\tremaining: 2.67s\n",
2493
      "221:\tlearn: 0.0927606\ttotal: 2.12s\tremaining: 2.66s\n",
2494
      "222:\tlearn: 0.0927474\ttotal: 2.13s\tremaining: 2.65s\n",
2495
      "223:\tlearn: 0.0927350\ttotal: 2.14s\tremaining: 2.64s\n",
2496
      "224:\tlearn: 0.0927256\ttotal: 2.15s\tremaining: 2.63s\n",
2497
      "225:\tlearn: 0.0927178\ttotal: 2.16s\tremaining: 2.62s\n",
2498
      "226:\tlearn: 0.0927107\ttotal: 2.17s\tremaining: 2.61s\n",
2499
      "227:\tlearn: 0.0926953\ttotal: 2.18s\tremaining: 2.6s\n",
2500
      "228:\tlearn: 0.0926875\ttotal: 2.19s\tremaining: 2.59s\n",
2501
      "229:\tlearn: 0.0926792\ttotal: 2.2s\tremaining: 2.58s\n",
2502
      "230:\tlearn: 0.0926650\ttotal: 2.21s\tremaining: 2.57s\n",
2503
      "231:\tlearn: 0.0926508\ttotal: 2.22s\tremaining: 2.56s\n",
2504
      "232:\tlearn: 0.0926445\ttotal: 2.23s\tremaining: 2.55s\n",
2505
      "233:\tlearn: 0.0926321\ttotal: 2.24s\tremaining: 2.54s\n",
2506
      "234:\tlearn: 0.0926194\ttotal: 2.25s\tremaining: 2.53s\n",
2507
      "235:\tlearn: 0.0926083\ttotal: 2.25s\tremaining: 2.52s\n",
2508
      "236:\tlearn: 0.0925886\ttotal: 2.26s\tremaining: 2.51s\n",
2509
      "237:\tlearn: 0.0925818\ttotal: 2.27s\tremaining: 2.5s\n",
2510
      "238:\tlearn: 0.0925714\ttotal: 2.28s\tremaining: 2.49s\n",
2511
      "239:\tlearn: 0.0925585\ttotal: 2.29s\tremaining: 2.48s\n",
2512
      "240:\tlearn: 0.0925490\ttotal: 2.3s\tremaining: 2.47s\n",
2513
      "241:\tlearn: 0.0925285\ttotal: 2.31s\tremaining: 2.46s\n",
2514
      "242:\tlearn: 0.0925133\ttotal: 2.32s\tremaining: 2.45s\n",
2515
      "243:\tlearn: 0.0925030\ttotal: 2.33s\tremaining: 2.44s\n",
2516
      "244:\tlearn: 0.0924863\ttotal: 2.34s\tremaining: 2.43s\n",
2517
      "245:\tlearn: 0.0924781\ttotal: 2.35s\tremaining: 2.42s\n",
2518
      "246:\tlearn: 0.0924630\ttotal: 2.36s\tremaining: 2.41s\n",
2519
      "247:\tlearn: 0.0924481\ttotal: 2.37s\tremaining: 2.4s\n",
2520
      "248:\tlearn: 0.0924371\ttotal: 2.38s\tremaining: 2.39s\n",
2521
      "249:\tlearn: 0.0924301\ttotal: 2.38s\tremaining: 2.38s\n",
2522
      "250:\tlearn: 0.0924087\ttotal: 2.39s\tremaining: 2.38s\n",
2523
      "251:\tlearn: 0.0923900\ttotal: 2.4s\tremaining: 2.37s\n",
2524
      "252:\tlearn: 0.0923752\ttotal: 2.41s\tremaining: 2.36s\n",
2525
      "253:\tlearn: 0.0923634\ttotal: 2.42s\tremaining: 2.35s\n",
2526
      "254:\tlearn: 0.0923540\ttotal: 2.43s\tremaining: 2.34s\n",
2527
      "255:\tlearn: 0.0923452\ttotal: 2.44s\tremaining: 2.33s\n",
2528
      "256:\tlearn: 0.0923294\ttotal: 2.45s\tremaining: 2.32s\n",
2529
      "257:\tlearn: 0.0923185\ttotal: 2.46s\tremaining: 2.31s\n",
2530
      "258:\tlearn: 0.0923100\ttotal: 2.47s\tremaining: 2.3s\n",
2531
      "259:\tlearn: 0.0922951\ttotal: 2.48s\tremaining: 2.29s\n",
2532
      "260:\tlearn: 0.0922860\ttotal: 2.49s\tremaining: 2.28s\n",
2533
      "261:\tlearn: 0.0922766\ttotal: 2.5s\tremaining: 2.27s\n",
2534
      "262:\tlearn: 0.0922660\ttotal: 2.51s\tremaining: 2.26s\n",
2535
      "263:\tlearn: 0.0922539\ttotal: 2.52s\tremaining: 2.25s\n",
2536
      "264:\tlearn: 0.0922464\ttotal: 2.52s\tremaining: 2.24s\n",
2537
      "265:\tlearn: 0.0922426\ttotal: 2.53s\tremaining: 2.23s\n",
2538
      "266:\tlearn: 0.0922223\ttotal: 2.54s\tremaining: 2.22s\n",
2539
      "267:\tlearn: 0.0922038\ttotal: 2.55s\tremaining: 2.21s\n",
2540
      "268:\tlearn: 0.0921958\ttotal: 2.56s\tremaining: 2.2s\n",
2541
      "269:\tlearn: 0.0921801\ttotal: 2.57s\tremaining: 2.19s\n",
2542
      "270:\tlearn: 0.0921706\ttotal: 2.58s\tremaining: 2.18s\n",
2543
      "271:\tlearn: 0.0921602\ttotal: 2.59s\tremaining: 2.17s\n",
2544
      "272:\tlearn: 0.0921513\ttotal: 2.6s\tremaining: 2.16s\n",
2545
      "273:\tlearn: 0.0921387\ttotal: 2.61s\tremaining: 2.15s\n",
2546
      "274:\tlearn: 0.0921271\ttotal: 2.62s\tremaining: 2.14s\n",
2547
      "275:\tlearn: 0.0921144\ttotal: 2.63s\tremaining: 2.13s\n",
2548
      "276:\tlearn: 0.0920966\ttotal: 2.64s\tremaining: 2.12s\n",
2549
      "277:\tlearn: 0.0920806\ttotal: 2.65s\tremaining: 2.11s\n",
2550
      "278:\tlearn: 0.0920678\ttotal: 2.66s\tremaining: 2.1s\n",
2551
      "279:\tlearn: 0.0920608\ttotal: 2.67s\tremaining: 2.09s\n",
2552
      "280:\tlearn: 0.0920570\ttotal: 2.67s\tremaining: 2.08s\n",
2553
      "281:\tlearn: 0.0920428\ttotal: 2.68s\tremaining: 2.08s\n",
2554
      "282:\tlearn: 0.0920333\ttotal: 2.69s\tremaining: 2.06s\n",
2555
      "283:\tlearn: 0.0920171\ttotal: 2.7s\tremaining: 2.06s\n",
2556
      "284:\tlearn: 0.0920029\ttotal: 2.71s\tremaining: 2.05s\n",
2557
      "285:\tlearn: 0.0919891\ttotal: 2.72s\tremaining: 2.04s\n",
2558
      "286:\tlearn: 0.0919823\ttotal: 2.73s\tremaining: 2.03s\n",
2559
      "287:\tlearn: 0.0919673\ttotal: 2.74s\tremaining: 2.02s\n",
2560
      "288:\tlearn: 0.0919612\ttotal: 2.75s\tremaining: 2.01s\n",
2561
      "289:\tlearn: 0.0919544\ttotal: 2.76s\tremaining: 2s\n",
2562
      "290:\tlearn: 0.0919475\ttotal: 2.77s\tremaining: 1.99s\n",
2563
      "291:\tlearn: 0.0919417\ttotal: 2.78s\tremaining: 1.98s\n",
2564
      "292:\tlearn: 0.0919280\ttotal: 2.79s\tremaining: 1.97s\n",
2565
      "293:\tlearn: 0.0919168\ttotal: 2.79s\tremaining: 1.96s\n",
2566
      "294:\tlearn: 0.0919058\ttotal: 2.8s\tremaining: 1.95s\n",
2567
      "295:\tlearn: 0.0918868\ttotal: 2.81s\tremaining: 1.94s\n",
2568
      "296:\tlearn: 0.0918784\ttotal: 2.82s\tremaining: 1.93s\n",
2569
      "297:\tlearn: 0.0918701\ttotal: 2.83s\tremaining: 1.92s\n",
2570
      "298:\tlearn: 0.0918570\ttotal: 2.84s\tremaining: 1.91s\n",
2571
      "299:\tlearn: 0.0918417\ttotal: 2.85s\tremaining: 1.9s\n",
2572
      "300:\tlearn: 0.0918252\ttotal: 2.86s\tremaining: 1.89s\n",
2573
      "301:\tlearn: 0.0918034\ttotal: 2.87s\tremaining: 1.88s\n",
2574
      "302:\tlearn: 0.0917880\ttotal: 2.88s\tremaining: 1.87s\n",
2575
      "303:\tlearn: 0.0917783\ttotal: 2.89s\tremaining: 1.86s\n",
2576
      "304:\tlearn: 0.0917628\ttotal: 2.9s\tremaining: 1.85s\n",
2577
      "305:\tlearn: 0.0917497\ttotal: 2.91s\tremaining: 1.84s\n",
2578
      "306:\tlearn: 0.0917291\ttotal: 2.92s\tremaining: 1.83s\n",
2579
      "307:\tlearn: 0.0917202\ttotal: 2.93s\tremaining: 1.82s\n",
2580
      "308:\tlearn: 0.0917129\ttotal: 2.94s\tremaining: 1.81s\n",
2581
      "309:\tlearn: 0.0917084\ttotal: 2.94s\tremaining: 1.8s\n",
2582
      "310:\tlearn: 0.0916967\ttotal: 2.95s\tremaining: 1.79s\n",
2583
      "311:\tlearn: 0.0916868\ttotal: 2.96s\tremaining: 1.78s\n",
2584
      "312:\tlearn: 0.0916800\ttotal: 2.97s\tremaining: 1.78s\n",
2585
      "313:\tlearn: 0.0916725\ttotal: 2.98s\tremaining: 1.77s\n",
2586
      "314:\tlearn: 0.0916608\ttotal: 2.99s\tremaining: 1.76s\n",
2587
      "315:\tlearn: 0.0916427\ttotal: 3s\tremaining: 1.75s\n",
2588
      "316:\tlearn: 0.0916359\ttotal: 3.01s\tremaining: 1.74s\n",
2589
      "317:\tlearn: 0.0916253\ttotal: 3.02s\tremaining: 1.73s\n",
2590
      "318:\tlearn: 0.0916145\ttotal: 3.03s\tremaining: 1.72s\n",
2591
      "319:\tlearn: 0.0916020\ttotal: 3.04s\tremaining: 1.71s\n",
2592
      "320:\tlearn: 0.0915869\ttotal: 3.05s\tremaining: 1.7s\n",
2593
      "321:\tlearn: 0.0915773\ttotal: 3.06s\tremaining: 1.69s\n",
2594
      "322:\tlearn: 0.0915699\ttotal: 3.07s\tremaining: 1.68s\n",
2595
      "323:\tlearn: 0.0915608\ttotal: 3.08s\tremaining: 1.67s\n",
2596
      "324:\tlearn: 0.0915489\ttotal: 3.09s\tremaining: 1.66s\n",
2597
      "325:\tlearn: 0.0915378\ttotal: 3.1s\tremaining: 1.65s\n",
2598
      "326:\tlearn: 0.0915265\ttotal: 3.1s\tremaining: 1.64s\n",
2599
      "327:\tlearn: 0.0915081\ttotal: 3.11s\tremaining: 1.63s\n",
2600
      "328:\tlearn: 0.0915004\ttotal: 3.12s\tremaining: 1.62s\n",
2601
      "329:\tlearn: 0.0914841\ttotal: 3.13s\tremaining: 1.61s\n",
2602
      "330:\tlearn: 0.0914726\ttotal: 3.14s\tremaining: 1.6s\n",
2603
      "331:\tlearn: 0.0914665\ttotal: 3.15s\tremaining: 1.59s\n",
2604
      "332:\tlearn: 0.0914569\ttotal: 3.16s\tremaining: 1.58s\n",
2605
      "333:\tlearn: 0.0914473\ttotal: 3.17s\tremaining: 1.58s\n",
2606
      "334:\tlearn: 0.0914425\ttotal: 3.18s\tremaining: 1.57s\n",
2607
      "335:\tlearn: 0.0914281\ttotal: 3.19s\tremaining: 1.56s\n",
2608
      "336:\tlearn: 0.0914202\ttotal: 3.2s\tremaining: 1.55s\n",
2609
      "337:\tlearn: 0.0914085\ttotal: 3.21s\tremaining: 1.54s\n",
2610
      "338:\tlearn: 0.0914035\ttotal: 3.22s\tremaining: 1.53s\n",
2611
      "339:\tlearn: 0.0913941\ttotal: 3.23s\tremaining: 1.52s\n",
2612
      "340:\tlearn: 0.0913853\ttotal: 3.24s\tremaining: 1.51s\n",
2613
      "341:\tlearn: 0.0913765\ttotal: 3.25s\tremaining: 1.5s\n",
2614
      "342:\tlearn: 0.0913731\ttotal: 3.25s\tremaining: 1.49s\n",
2615
      "343:\tlearn: 0.0913658\ttotal: 3.26s\tremaining: 1.48s\n",
2616
      "344:\tlearn: 0.0913589\ttotal: 3.27s\tremaining: 1.47s\n",
2617
      "345:\tlearn: 0.0913451\ttotal: 3.28s\tremaining: 1.46s\n",
2618
      "346:\tlearn: 0.0913348\ttotal: 3.29s\tremaining: 1.45s\n",
2619
      "347:\tlearn: 0.0913207\ttotal: 3.3s\tremaining: 1.44s\n"
2620
     ]
2621
    },
2622
    {
2623
     "name": "stdout",
2624
     "output_type": "stream",
2625
     "text": [
2626
      "348:\tlearn: 0.0913087\ttotal: 3.31s\tremaining: 1.43s\n",
2627
      "349:\tlearn: 0.0912978\ttotal: 3.32s\tremaining: 1.42s\n",
2628
      "350:\tlearn: 0.0912920\ttotal: 3.33s\tremaining: 1.41s\n",
2629
      "351:\tlearn: 0.0912756\ttotal: 3.34s\tremaining: 1.4s\n",
2630
      "352:\tlearn: 0.0912644\ttotal: 3.35s\tremaining: 1.39s\n",
2631
      "353:\tlearn: 0.0912562\ttotal: 3.36s\tremaining: 1.38s\n",
2632
      "354:\tlearn: 0.0912447\ttotal: 3.37s\tremaining: 1.38s\n",
2633
      "355:\tlearn: 0.0912348\ttotal: 3.38s\tremaining: 1.37s\n",
2634
      "356:\tlearn: 0.0912289\ttotal: 3.39s\tremaining: 1.36s\n",
2635
      "357:\tlearn: 0.0912219\ttotal: 3.4s\tremaining: 1.35s\n",
2636
      "358:\tlearn: 0.0912160\ttotal: 3.4s\tremaining: 1.34s\n",
2637
      "359:\tlearn: 0.0912070\ttotal: 3.41s\tremaining: 1.33s\n",
2638
      "360:\tlearn: 0.0911920\ttotal: 3.42s\tremaining: 1.32s\n",
2639
      "361:\tlearn: 0.0911824\ttotal: 3.43s\tremaining: 1.31s\n",
2640
      "362:\tlearn: 0.0911693\ttotal: 3.44s\tremaining: 1.3s\n",
2641
      "363:\tlearn: 0.0911595\ttotal: 3.45s\tremaining: 1.29s\n",
2642
      "364:\tlearn: 0.0911541\ttotal: 3.46s\tremaining: 1.28s\n",
2643
      "365:\tlearn: 0.0911481\ttotal: 3.47s\tremaining: 1.27s\n",
2644
      "366:\tlearn: 0.0911380\ttotal: 3.48s\tremaining: 1.26s\n",
2645
      "367:\tlearn: 0.0911258\ttotal: 3.49s\tremaining: 1.25s\n",
2646
      "368:\tlearn: 0.0911066\ttotal: 3.5s\tremaining: 1.24s\n",
2647
      "369:\tlearn: 0.0910961\ttotal: 3.51s\tremaining: 1.23s\n",
2648
      "370:\tlearn: 0.0910849\ttotal: 3.52s\tremaining: 1.22s\n",
2649
      "371:\tlearn: 0.0910755\ttotal: 3.52s\tremaining: 1.21s\n",
2650
      "372:\tlearn: 0.0910592\ttotal: 3.53s\tremaining: 1.2s\n",
2651
      "373:\tlearn: 0.0910500\ttotal: 3.54s\tremaining: 1.19s\n",
2652
      "374:\tlearn: 0.0910452\ttotal: 3.55s\tremaining: 1.18s\n",
2653
      "375:\tlearn: 0.0910393\ttotal: 3.56s\tremaining: 1.17s\n",
2654
      "376:\tlearn: 0.0910267\ttotal: 3.57s\tremaining: 1.17s\n",
2655
      "377:\tlearn: 0.0910145\ttotal: 3.58s\tremaining: 1.16s\n",
2656
      "378:\tlearn: 0.0910013\ttotal: 3.59s\tremaining: 1.15s\n",
2657
      "379:\tlearn: 0.0909896\ttotal: 3.6s\tremaining: 1.14s\n",
2658
      "380:\tlearn: 0.0909831\ttotal: 3.61s\tremaining: 1.13s\n",
2659
      "381:\tlearn: 0.0909788\ttotal: 3.62s\tremaining: 1.12s\n",
2660
      "382:\tlearn: 0.0909657\ttotal: 3.63s\tremaining: 1.11s\n",
2661
      "383:\tlearn: 0.0909558\ttotal: 3.64s\tremaining: 1.1s\n",
2662
      "384:\tlearn: 0.0909487\ttotal: 3.65s\tremaining: 1.09s\n",
2663
      "385:\tlearn: 0.0909341\ttotal: 3.65s\tremaining: 1.08s\n",
2664
      "386:\tlearn: 0.0909256\ttotal: 3.67s\tremaining: 1.07s\n",
2665
      "387:\tlearn: 0.0909218\ttotal: 3.67s\tremaining: 1.06s\n",
2666
      "388:\tlearn: 0.0909145\ttotal: 3.68s\tremaining: 1.05s\n",
2667
      "389:\tlearn: 0.0909050\ttotal: 3.69s\tremaining: 1.04s\n",
2668
      "390:\tlearn: 0.0908981\ttotal: 3.7s\tremaining: 1.03s\n",
2669
      "391:\tlearn: 0.0908925\ttotal: 3.71s\tremaining: 1.02s\n",
2670
      "392:\tlearn: 0.0908879\ttotal: 3.72s\tremaining: 1.01s\n",
2671
      "393:\tlearn: 0.0908783\ttotal: 3.73s\tremaining: 1s\n",
2672
      "394:\tlearn: 0.0908748\ttotal: 3.74s\tremaining: 994ms\n",
2673
      "395:\tlearn: 0.0908687\ttotal: 3.75s\tremaining: 985ms\n",
2674
      "396:\tlearn: 0.0908620\ttotal: 3.76s\tremaining: 975ms\n",
2675
      "397:\tlearn: 0.0908472\ttotal: 3.77s\tremaining: 966ms\n",
2676
      "398:\tlearn: 0.0908421\ttotal: 3.78s\tremaining: 956ms\n",
2677
      "399:\tlearn: 0.0908364\ttotal: 3.79s\tremaining: 947ms\n",
2678
      "400:\tlearn: 0.0908307\ttotal: 3.8s\tremaining: 937ms\n",
2679
      "401:\tlearn: 0.0908262\ttotal: 3.81s\tremaining: 928ms\n",
2680
      "402:\tlearn: 0.0908105\ttotal: 3.81s\tremaining: 918ms\n",
2681
      "403:\tlearn: 0.0908012\ttotal: 3.82s\tremaining: 909ms\n",
2682
      "404:\tlearn: 0.0907890\ttotal: 3.83s\tremaining: 899ms\n",
2683
      "405:\tlearn: 0.0907689\ttotal: 3.84s\tremaining: 890ms\n",
2684
      "406:\tlearn: 0.0907546\ttotal: 3.85s\tremaining: 880ms\n",
2685
      "407:\tlearn: 0.0907495\ttotal: 3.86s\tremaining: 871ms\n",
2686
      "408:\tlearn: 0.0907369\ttotal: 3.87s\tremaining: 861ms\n",
2687
      "409:\tlearn: 0.0907325\ttotal: 3.88s\tremaining: 852ms\n",
2688
      "410:\tlearn: 0.0907199\ttotal: 3.89s\tremaining: 842ms\n",
2689
      "411:\tlearn: 0.0907097\ttotal: 3.9s\tremaining: 833ms\n",
2690
      "412:\tlearn: 0.0907060\ttotal: 3.91s\tremaining: 823ms\n",
2691
      "413:\tlearn: 0.0906952\ttotal: 3.92s\tremaining: 814ms\n",
2692
      "414:\tlearn: 0.0906899\ttotal: 3.93s\tremaining: 804ms\n",
2693
      "415:\tlearn: 0.0906826\ttotal: 3.94s\tremaining: 795ms\n",
2694
      "416:\tlearn: 0.0906728\ttotal: 3.94s\tremaining: 785ms\n",
2695
      "417:\tlearn: 0.0906648\ttotal: 3.95s\tremaining: 776ms\n",
2696
      "418:\tlearn: 0.0906596\ttotal: 3.96s\tremaining: 766ms\n",
2697
      "419:\tlearn: 0.0906452\ttotal: 3.97s\tremaining: 757ms\n",
2698
      "420:\tlearn: 0.0906351\ttotal: 3.98s\tremaining: 747ms\n",
2699
      "421:\tlearn: 0.0906262\ttotal: 3.99s\tremaining: 738ms\n",
2700
      "422:\tlearn: 0.0906111\ttotal: 4s\tremaining: 728ms\n",
2701
      "423:\tlearn: 0.0906065\ttotal: 4.01s\tremaining: 719ms\n",
2702
      "424:\tlearn: 0.0905956\ttotal: 4.02s\tremaining: 709ms\n",
2703
      "425:\tlearn: 0.0905896\ttotal: 4.03s\tremaining: 700ms\n",
2704
      "426:\tlearn: 0.0905837\ttotal: 4.04s\tremaining: 690ms\n",
2705
      "427:\tlearn: 0.0905778\ttotal: 4.05s\tremaining: 681ms\n",
2706
      "428:\tlearn: 0.0905641\ttotal: 4.06s\tremaining: 671ms\n",
2707
      "429:\tlearn: 0.0905560\ttotal: 4.07s\tremaining: 662ms\n",
2708
      "430:\tlearn: 0.0905439\ttotal: 4.08s\tremaining: 652ms\n",
2709
      "431:\tlearn: 0.0905265\ttotal: 4.08s\tremaining: 643ms\n",
2710
      "432:\tlearn: 0.0905093\ttotal: 4.09s\tremaining: 634ms\n",
2711
      "433:\tlearn: 0.0905056\ttotal: 4.1s\tremaining: 624ms\n",
2712
      "434:\tlearn: 0.0904968\ttotal: 4.11s\tremaining: 615ms\n",
2713
      "435:\tlearn: 0.0904918\ttotal: 4.12s\tremaining: 605ms\n",
2714
      "436:\tlearn: 0.0904782\ttotal: 4.13s\tremaining: 596ms\n",
2715
      "437:\tlearn: 0.0904650\ttotal: 4.14s\tremaining: 586ms\n",
2716
      "438:\tlearn: 0.0904520\ttotal: 4.15s\tremaining: 577ms\n",
2717
      "439:\tlearn: 0.0904388\ttotal: 4.16s\tremaining: 567ms\n",
2718
      "440:\tlearn: 0.0904249\ttotal: 4.17s\tremaining: 558ms\n",
2719
      "441:\tlearn: 0.0904196\ttotal: 4.18s\tremaining: 548ms\n",
2720
      "442:\tlearn: 0.0904124\ttotal: 4.19s\tremaining: 539ms\n",
2721
      "443:\tlearn: 0.0904014\ttotal: 4.2s\tremaining: 529ms\n",
2722
      "444:\tlearn: 0.0903851\ttotal: 4.21s\tremaining: 520ms\n",
2723
      "445:\tlearn: 0.0903786\ttotal: 4.21s\tremaining: 510ms\n",
2724
      "446:\tlearn: 0.0903740\ttotal: 4.22s\tremaining: 501ms\n",
2725
      "447:\tlearn: 0.0903587\ttotal: 4.23s\tremaining: 491ms\n",
2726
      "448:\tlearn: 0.0903461\ttotal: 4.24s\tremaining: 482ms\n",
2727
      "449:\tlearn: 0.0903364\ttotal: 4.25s\tremaining: 472ms\n",
2728
      "450:\tlearn: 0.0903315\ttotal: 4.26s\tremaining: 463ms\n",
2729
      "451:\tlearn: 0.0903254\ttotal: 4.27s\tremaining: 454ms\n",
2730
      "452:\tlearn: 0.0903187\ttotal: 4.28s\tremaining: 444ms\n",
2731
      "453:\tlearn: 0.0903098\ttotal: 4.29s\tremaining: 435ms\n",
2732
      "454:\tlearn: 0.0903034\ttotal: 4.3s\tremaining: 425ms\n",
2733
      "455:\tlearn: 0.0902943\ttotal: 4.31s\tremaining: 416ms\n",
2734
      "456:\tlearn: 0.0902880\ttotal: 4.32s\tremaining: 406ms\n",
2735
      "457:\tlearn: 0.0902839\ttotal: 4.33s\tremaining: 397ms\n",
2736
      "458:\tlearn: 0.0902773\ttotal: 4.34s\tremaining: 387ms\n",
2737
      "459:\tlearn: 0.0902665\ttotal: 4.34s\tremaining: 378ms\n",
2738
      "460:\tlearn: 0.0902596\ttotal: 4.36s\tremaining: 368ms\n",
2739
      "461:\tlearn: 0.0902556\ttotal: 4.36s\tremaining: 359ms\n",
2740
      "462:\tlearn: 0.0902502\ttotal: 4.37s\tremaining: 349ms\n",
2741
      "463:\tlearn: 0.0902458\ttotal: 4.38s\tremaining: 340ms\n",
2742
      "464:\tlearn: 0.0902413\ttotal: 4.39s\tremaining: 331ms\n",
2743
      "465:\tlearn: 0.0902311\ttotal: 4.4s\tremaining: 321ms\n",
2744
      "466:\tlearn: 0.0902198\ttotal: 4.41s\tremaining: 312ms\n",
2745
      "467:\tlearn: 0.0902098\ttotal: 4.42s\tremaining: 302ms\n",
2746
      "468:\tlearn: 0.0902016\ttotal: 4.43s\tremaining: 293ms\n",
2747
      "469:\tlearn: 0.0901831\ttotal: 4.44s\tremaining: 283ms\n",
2748
      "470:\tlearn: 0.0901764\ttotal: 4.45s\tremaining: 274ms\n",
2749
      "471:\tlearn: 0.0901688\ttotal: 4.46s\tremaining: 264ms\n",
2750
      "472:\tlearn: 0.0901635\ttotal: 4.47s\tremaining: 255ms\n",
2751
      "473:\tlearn: 0.0901541\ttotal: 4.47s\tremaining: 246ms\n",
2752
      "474:\tlearn: 0.0901461\ttotal: 4.49s\tremaining: 236ms\n",
2753
      "475:\tlearn: 0.0901386\ttotal: 4.49s\tremaining: 227ms\n",
2754
      "476:\tlearn: 0.0901324\ttotal: 4.5s\tremaining: 217ms\n",
2755
      "477:\tlearn: 0.0901269\ttotal: 4.51s\tremaining: 208ms\n",
2756
      "478:\tlearn: 0.0901183\ttotal: 4.52s\tremaining: 198ms\n",
2757
      "479:\tlearn: 0.0901111\ttotal: 4.53s\tremaining: 189ms\n",
2758
      "480:\tlearn: 0.0901017\ttotal: 4.54s\tremaining: 179ms\n",
2759
      "481:\tlearn: 0.0900939\ttotal: 4.55s\tremaining: 170ms\n",
2760
      "482:\tlearn: 0.0900876\ttotal: 4.56s\tremaining: 160ms\n",
2761
      "483:\tlearn: 0.0900802\ttotal: 4.57s\tremaining: 151ms\n",
2762
      "484:\tlearn: 0.0900718\ttotal: 4.58s\tremaining: 142ms\n",
2763
      "485:\tlearn: 0.0900682\ttotal: 4.59s\tremaining: 132ms\n",
2764
      "486:\tlearn: 0.0900608\ttotal: 4.6s\tremaining: 123ms\n",
2765
      "487:\tlearn: 0.0900561\ttotal: 4.61s\tremaining: 113ms\n",
2766
      "488:\tlearn: 0.0900452\ttotal: 4.62s\tremaining: 104ms\n",
2767
      "489:\tlearn: 0.0900373\ttotal: 4.63s\tremaining: 94.4ms\n",
2768
      "490:\tlearn: 0.0900252\ttotal: 4.63s\tremaining: 85ms\n",
2769
      "491:\tlearn: 0.0900145\ttotal: 4.64s\tremaining: 75.5ms\n",
2770
      "492:\tlearn: 0.0900041\ttotal: 4.65s\tremaining: 66.1ms\n",
2771
      "493:\tlearn: 0.0899984\ttotal: 4.66s\tremaining: 56.6ms\n",
2772
      "494:\tlearn: 0.0899915\ttotal: 4.67s\tremaining: 47.2ms\n",
2773
      "495:\tlearn: 0.0899834\ttotal: 4.68s\tremaining: 37.8ms\n",
2774
      "496:\tlearn: 0.0899760\ttotal: 4.69s\tremaining: 28.3ms\n",
2775
      "497:\tlearn: 0.0899698\ttotal: 4.7s\tremaining: 18.9ms\n",
2776
      "498:\tlearn: 0.0899580\ttotal: 4.71s\tremaining: 9.44ms\n",
2777
      "499:\tlearn: 0.0899515\ttotal: 4.72s\tremaining: 0us\n"
2778
     ]
2779
    },
2780
    {
2781
     "name": "stderr",
2782
     "output_type": "stream",
2783
     "text": [
2784
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
2785
     ]
2786
    },
2787
    {
2788
     "name": "stdout",
2789
     "output_type": "stream",
2790
     "text": [
2791
      "0:\tlearn: 0.5965772\ttotal: 13.1ms\tremaining: 6.56s\n",
2792
      "1:\tlearn: 0.5142973\ttotal: 24.5ms\tremaining: 6.11s\n",
2793
      "2:\tlearn: 0.4387375\ttotal: 35.3ms\tremaining: 5.84s\n",
2794
      "3:\tlearn: 0.3714045\ttotal: 45.5ms\tremaining: 5.64s\n",
2795
      "4:\tlearn: 0.3138431\ttotal: 55.3ms\tremaining: 5.47s\n",
2796
      "5:\tlearn: 0.2661446\ttotal: 65.4ms\tremaining: 5.38s\n",
2797
      "6:\tlearn: 0.2261139\ttotal: 75.8ms\tremaining: 5.34s\n",
2798
      "7:\tlearn: 0.1931082\ttotal: 85.9ms\tremaining: 5.28s\n",
2799
      "8:\tlearn: 0.1658817\ttotal: 96.2ms\tremaining: 5.25s\n",
2800
      "9:\tlearn: 0.1431357\ttotal: 107ms\tremaining: 5.23s\n",
2801
      "10:\tlearn: 0.1247113\ttotal: 117ms\tremaining: 5.19s\n",
2802
      "11:\tlearn: 0.1092862\ttotal: 127ms\tremaining: 5.17s\n",
2803
      "12:\tlearn: 0.0967858\ttotal: 137ms\tremaining: 5.14s\n",
2804
      "13:\tlearn: 0.0859732\ttotal: 147ms\tremaining: 5.11s\n",
2805
      "14:\tlearn: 0.0768869\ttotal: 157ms\tremaining: 5.08s\n",
2806
      "15:\tlearn: 0.0690225\ttotal: 167ms\tremaining: 5.05s\n",
2807
      "16:\tlearn: 0.0623332\ttotal: 177ms\tremaining: 5.03s\n",
2808
      "17:\tlearn: 0.0568060\ttotal: 187ms\tremaining: 5s\n",
2809
      "18:\tlearn: 0.0520948\ttotal: 197ms\tremaining: 4.99s\n",
2810
      "19:\tlearn: 0.0479619\ttotal: 207ms\tremaining: 4.97s\n",
2811
      "20:\tlearn: 0.0443993\ttotal: 217ms\tremaining: 4.95s\n",
2812
      "21:\tlearn: 0.0412075\ttotal: 227ms\tremaining: 4.93s\n",
2813
      "22:\tlearn: 0.0383108\ttotal: 238ms\tremaining: 4.93s\n",
2814
      "23:\tlearn: 0.0357585\ttotal: 248ms\tremaining: 4.93s\n",
2815
      "24:\tlearn: 0.0333889\ttotal: 259ms\tremaining: 4.92s\n",
2816
      "25:\tlearn: 0.0317587\ttotal: 269ms\tremaining: 4.9s\n",
2817
      "26:\tlearn: 0.0299149\ttotal: 279ms\tremaining: 4.88s\n",
2818
      "27:\tlearn: 0.0285869\ttotal: 289ms\tremaining: 4.87s\n",
2819
      "28:\tlearn: 0.0273259\ttotal: 299ms\tremaining: 4.85s\n",
2820
      "29:\tlearn: 0.0261462\ttotal: 308ms\tremaining: 4.83s\n",
2821
      "30:\tlearn: 0.0251609\ttotal: 318ms\tremaining: 4.81s\n",
2822
      "31:\tlearn: 0.0241793\ttotal: 328ms\tremaining: 4.8s\n",
2823
      "32:\tlearn: 0.0232748\ttotal: 338ms\tremaining: 4.79s\n",
2824
      "33:\tlearn: 0.0226227\ttotal: 347ms\tremaining: 4.76s\n",
2825
      "34:\tlearn: 0.0219224\ttotal: 356ms\tremaining: 4.74s\n",
2826
      "35:\tlearn: 0.0213849\ttotal: 366ms\tremaining: 4.71s\n",
2827
      "36:\tlearn: 0.0208571\ttotal: 375ms\tremaining: 4.69s\n",
2828
      "37:\tlearn: 0.0204173\ttotal: 384ms\tremaining: 4.67s\n",
2829
      "38:\tlearn: 0.0198892\ttotal: 394ms\tremaining: 4.66s\n",
2830
      "39:\tlearn: 0.0194294\ttotal: 404ms\tremaining: 4.65s\n",
2831
      "40:\tlearn: 0.0190587\ttotal: 414ms\tremaining: 4.63s\n",
2832
      "41:\tlearn: 0.0187579\ttotal: 423ms\tremaining: 4.61s\n",
2833
      "42:\tlearn: 0.0184165\ttotal: 433ms\tremaining: 4.6s\n",
2834
      "43:\tlearn: 0.0181767\ttotal: 442ms\tremaining: 4.58s\n",
2835
      "44:\tlearn: 0.0178781\ttotal: 451ms\tremaining: 4.56s\n",
2836
      "45:\tlearn: 0.0175983\ttotal: 461ms\tremaining: 4.55s\n",
2837
      "46:\tlearn: 0.0173603\ttotal: 470ms\tremaining: 4.53s\n",
2838
      "47:\tlearn: 0.0171686\ttotal: 480ms\tremaining: 4.52s\n",
2839
      "48:\tlearn: 0.0170170\ttotal: 489ms\tremaining: 4.5s\n",
2840
      "49:\tlearn: 0.0168135\ttotal: 498ms\tremaining: 4.48s\n",
2841
      "50:\tlearn: 0.0166397\ttotal: 508ms\tremaining: 4.47s\n",
2842
      "51:\tlearn: 0.0164622\ttotal: 517ms\tremaining: 4.46s\n",
2843
      "52:\tlearn: 0.0162877\ttotal: 526ms\tremaining: 4.44s\n",
2844
      "53:\tlearn: 0.0160909\ttotal: 536ms\tremaining: 4.43s\n",
2845
      "54:\tlearn: 0.0159541\ttotal: 546ms\tremaining: 4.42s\n",
2846
      "55:\tlearn: 0.0158254\ttotal: 555ms\tremaining: 4.4s\n",
2847
      "56:\tlearn: 0.0157155\ttotal: 565ms\tremaining: 4.39s\n",
2848
      "57:\tlearn: 0.0156448\ttotal: 574ms\tremaining: 4.37s\n",
2849
      "58:\tlearn: 0.0155310\ttotal: 583ms\tremaining: 4.36s\n",
2850
      "59:\tlearn: 0.0154302\ttotal: 593ms\tremaining: 4.35s\n",
2851
      "60:\tlearn: 0.0153376\ttotal: 602ms\tremaining: 4.33s\n",
2852
      "61:\tlearn: 0.0152438\ttotal: 611ms\tremaining: 4.32s\n",
2853
      "62:\tlearn: 0.0151754\ttotal: 620ms\tremaining: 4.3s\n",
2854
      "63:\tlearn: 0.0150915\ttotal: 630ms\tremaining: 4.29s\n",
2855
      "64:\tlearn: 0.0150292\ttotal: 639ms\tremaining: 4.28s\n",
2856
      "65:\tlearn: 0.0149785\ttotal: 648ms\tremaining: 4.26s\n",
2857
      "66:\tlearn: 0.0149257\ttotal: 658ms\tremaining: 4.25s\n",
2858
      "67:\tlearn: 0.0148712\ttotal: 667ms\tremaining: 4.24s\n",
2859
      "68:\tlearn: 0.0148061\ttotal: 677ms\tremaining: 4.23s\n",
2860
      "69:\tlearn: 0.0147465\ttotal: 686ms\tremaining: 4.21s\n",
2861
      "70:\tlearn: 0.0146895\ttotal: 696ms\tremaining: 4.2s\n",
2862
      "71:\tlearn: 0.0146388\ttotal: 705ms\tremaining: 4.19s\n",
2863
      "72:\tlearn: 0.0145921\ttotal: 714ms\tremaining: 4.18s\n",
2864
      "73:\tlearn: 0.0145434\ttotal: 724ms\tremaining: 4.17s\n",
2865
      "74:\tlearn: 0.0144994\ttotal: 733ms\tremaining: 4.15s\n",
2866
      "75:\tlearn: 0.0144550\ttotal: 743ms\tremaining: 4.14s\n",
2867
      "76:\tlearn: 0.0144263\ttotal: 753ms\tremaining: 4.13s\n",
2868
      "77:\tlearn: 0.0143896\ttotal: 762ms\tremaining: 4.12s\n",
2869
      "78:\tlearn: 0.0143429\ttotal: 771ms\tremaining: 4.11s\n",
2870
      "79:\tlearn: 0.0143055\ttotal: 781ms\tremaining: 4.1s\n",
2871
      "80:\tlearn: 0.0142731\ttotal: 791ms\tremaining: 4.09s\n",
2872
      "81:\tlearn: 0.0142350\ttotal: 800ms\tremaining: 4.08s\n",
2873
      "82:\tlearn: 0.0141981\ttotal: 809ms\tremaining: 4.06s\n",
2874
      "83:\tlearn: 0.0141657\ttotal: 819ms\tremaining: 4.05s\n",
2875
      "84:\tlearn: 0.0141463\ttotal: 828ms\tremaining: 4.04s\n",
2876
      "85:\tlearn: 0.0141300\ttotal: 837ms\tremaining: 4.03s\n",
2877
      "86:\tlearn: 0.0140994\ttotal: 847ms\tremaining: 4.02s\n",
2878
      "87:\tlearn: 0.0140573\ttotal: 857ms\tremaining: 4.01s\n",
2879
      "88:\tlearn: 0.0140215\ttotal: 866ms\tremaining: 4s\n",
2880
      "89:\tlearn: 0.0140053\ttotal: 875ms\tremaining: 3.98s\n",
2881
      "90:\tlearn: 0.0139662\ttotal: 884ms\tremaining: 3.97s\n",
2882
      "91:\tlearn: 0.0139375\ttotal: 894ms\tremaining: 3.96s\n",
2883
      "92:\tlearn: 0.0139127\ttotal: 903ms\tremaining: 3.95s\n",
2884
      "93:\tlearn: 0.0138904\ttotal: 913ms\tremaining: 3.94s\n",
2885
      "94:\tlearn: 0.0138608\ttotal: 922ms\tremaining: 3.93s\n",
2886
      "95:\tlearn: 0.0138388\ttotal: 931ms\tremaining: 3.92s\n",
2887
      "96:\tlearn: 0.0138078\ttotal: 940ms\tremaining: 3.91s\n",
2888
      "97:\tlearn: 0.0137758\ttotal: 949ms\tremaining: 3.89s\n",
2889
      "98:\tlearn: 0.0137451\ttotal: 959ms\tremaining: 3.88s\n",
2890
      "99:\tlearn: 0.0137177\ttotal: 968ms\tremaining: 3.87s\n",
2891
      "100:\tlearn: 0.0136927\ttotal: 978ms\tremaining: 3.86s\n",
2892
      "101:\tlearn: 0.0136756\ttotal: 987ms\tremaining: 3.85s\n",
2893
      "102:\tlearn: 0.0136456\ttotal: 996ms\tremaining: 3.84s\n",
2894
      "103:\tlearn: 0.0136270\ttotal: 1s\tremaining: 3.83s\n",
2895
      "104:\tlearn: 0.0136037\ttotal: 1.01s\tremaining: 3.82s\n",
2896
      "105:\tlearn: 0.0135869\ttotal: 1.02s\tremaining: 3.8s\n",
2897
      "106:\tlearn: 0.0135691\ttotal: 1.03s\tremaining: 3.79s\n",
2898
      "107:\tlearn: 0.0135570\ttotal: 1.04s\tremaining: 3.78s\n",
2899
      "108:\tlearn: 0.0135481\ttotal: 1.05s\tremaining: 3.77s\n",
2900
      "109:\tlearn: 0.0135260\ttotal: 1.06s\tremaining: 3.75s\n",
2901
      "110:\tlearn: 0.0135097\ttotal: 1.07s\tremaining: 3.74s\n",
2902
      "111:\tlearn: 0.0134961\ttotal: 1.07s\tremaining: 3.73s\n",
2903
      "112:\tlearn: 0.0134733\ttotal: 1.08s\tremaining: 3.71s\n",
2904
      "113:\tlearn: 0.0134476\ttotal: 1.09s\tremaining: 3.7s\n",
2905
      "114:\tlearn: 0.0134318\ttotal: 1.1s\tremaining: 3.69s\n",
2906
      "115:\tlearn: 0.0134124\ttotal: 1.11s\tremaining: 3.68s\n",
2907
      "116:\tlearn: 0.0133959\ttotal: 1.12s\tremaining: 3.67s\n",
2908
      "117:\tlearn: 0.0133843\ttotal: 1.13s\tremaining: 3.66s\n",
2909
      "118:\tlearn: 0.0133595\ttotal: 1.14s\tremaining: 3.65s\n",
2910
      "119:\tlearn: 0.0133408\ttotal: 1.15s\tremaining: 3.64s\n",
2911
      "120:\tlearn: 0.0133284\ttotal: 1.16s\tremaining: 3.63s\n",
2912
      "121:\tlearn: 0.0133155\ttotal: 1.17s\tremaining: 3.62s\n",
2913
      "122:\tlearn: 0.0132979\ttotal: 1.18s\tremaining: 3.61s\n",
2914
      "123:\tlearn: 0.0132908\ttotal: 1.19s\tremaining: 3.6s\n",
2915
      "124:\tlearn: 0.0132810\ttotal: 1.2s\tremaining: 3.58s\n",
2916
      "125:\tlearn: 0.0132659\ttotal: 1.2s\tremaining: 3.57s\n",
2917
      "126:\tlearn: 0.0132569\ttotal: 1.21s\tremaining: 3.56s\n",
2918
      "127:\tlearn: 0.0132474\ttotal: 1.22s\tremaining: 3.55s\n",
2919
      "128:\tlearn: 0.0132321\ttotal: 1.23s\tremaining: 3.54s\n",
2920
      "129:\tlearn: 0.0132161\ttotal: 1.24s\tremaining: 3.53s\n",
2921
      "130:\tlearn: 0.0132086\ttotal: 1.25s\tremaining: 3.52s\n",
2922
      "131:\tlearn: 0.0131822\ttotal: 1.26s\tremaining: 3.51s\n",
2923
      "132:\tlearn: 0.0131685\ttotal: 1.27s\tremaining: 3.5s\n",
2924
      "133:\tlearn: 0.0131553\ttotal: 1.28s\tremaining: 3.49s\n",
2925
      "134:\tlearn: 0.0131413\ttotal: 1.29s\tremaining: 3.48s\n",
2926
      "135:\tlearn: 0.0131353\ttotal: 1.29s\tremaining: 3.47s\n",
2927
      "136:\tlearn: 0.0131189\ttotal: 1.3s\tremaining: 3.46s\n",
2928
      "137:\tlearn: 0.0131034\ttotal: 1.31s\tremaining: 3.44s\n",
2929
      "138:\tlearn: 0.0130901\ttotal: 1.32s\tremaining: 3.44s\n",
2930
      "139:\tlearn: 0.0130807\ttotal: 1.33s\tremaining: 3.42s\n",
2931
      "140:\tlearn: 0.0130620\ttotal: 1.34s\tremaining: 3.42s\n",
2932
      "141:\tlearn: 0.0130411\ttotal: 1.35s\tremaining: 3.4s\n",
2933
      "142:\tlearn: 0.0130236\ttotal: 1.36s\tremaining: 3.4s\n",
2934
      "143:\tlearn: 0.0130095\ttotal: 1.37s\tremaining: 3.39s\n",
2935
      "144:\tlearn: 0.0129955\ttotal: 1.38s\tremaining: 3.38s\n",
2936
      "145:\tlearn: 0.0129820\ttotal: 1.39s\tremaining: 3.37s\n",
2937
      "146:\tlearn: 0.0129708\ttotal: 1.4s\tremaining: 3.36s\n",
2938
      "147:\tlearn: 0.0129582\ttotal: 1.41s\tremaining: 3.35s\n",
2939
      "148:\tlearn: 0.0129492\ttotal: 1.42s\tremaining: 3.34s\n",
2940
      "149:\tlearn: 0.0129391\ttotal: 1.43s\tremaining: 3.33s\n",
2941
      "150:\tlearn: 0.0129246\ttotal: 1.44s\tremaining: 3.32s\n",
2942
      "151:\tlearn: 0.0129129\ttotal: 1.45s\tremaining: 3.31s\n",
2943
      "152:\tlearn: 0.0128975\ttotal: 1.45s\tremaining: 3.3s\n",
2944
      "153:\tlearn: 0.0128863\ttotal: 1.46s\tremaining: 3.29s\n",
2945
      "154:\tlearn: 0.0128776\ttotal: 1.47s\tremaining: 3.28s\n",
2946
      "155:\tlearn: 0.0128592\ttotal: 1.48s\tremaining: 3.27s\n",
2947
      "156:\tlearn: 0.0128519\ttotal: 1.49s\tremaining: 3.26s\n",
2948
      "157:\tlearn: 0.0128371\ttotal: 1.5s\tremaining: 3.25s\n",
2949
      "158:\tlearn: 0.0128200\ttotal: 1.51s\tremaining: 3.24s\n",
2950
      "159:\tlearn: 0.0128064\ttotal: 1.52s\tremaining: 3.23s\n",
2951
      "160:\tlearn: 0.0127982\ttotal: 1.53s\tremaining: 3.22s\n",
2952
      "161:\tlearn: 0.0127883\ttotal: 1.54s\tremaining: 3.21s\n",
2953
      "162:\tlearn: 0.0127743\ttotal: 1.55s\tremaining: 3.2s\n",
2954
      "163:\tlearn: 0.0127599\ttotal: 1.56s\tremaining: 3.19s\n",
2955
      "164:\tlearn: 0.0127507\ttotal: 1.57s\tremaining: 3.19s\n",
2956
      "165:\tlearn: 0.0127391\ttotal: 1.58s\tremaining: 3.18s\n",
2957
      "166:\tlearn: 0.0127299\ttotal: 1.59s\tremaining: 3.17s\n",
2958
      "167:\tlearn: 0.0127207\ttotal: 1.6s\tremaining: 3.16s\n",
2959
      "168:\tlearn: 0.0127126\ttotal: 1.61s\tremaining: 3.15s\n",
2960
      "169:\tlearn: 0.0127018\ttotal: 1.62s\tremaining: 3.14s\n",
2961
      "170:\tlearn: 0.0126898\ttotal: 1.63s\tremaining: 3.13s\n",
2962
      "171:\tlearn: 0.0126790\ttotal: 1.63s\tremaining: 3.12s\n",
2963
      "172:\tlearn: 0.0126711\ttotal: 1.64s\tremaining: 3.11s\n",
2964
      "173:\tlearn: 0.0126584\ttotal: 1.65s\tremaining: 3.1s\n"
2965
     ]
2966
    },
2967
    {
2968
     "name": "stdout",
2969
     "output_type": "stream",
2970
     "text": [
2971
      "174:\tlearn: 0.0126423\ttotal: 1.66s\tremaining: 3.09s\n",
2972
      "175:\tlearn: 0.0126366\ttotal: 1.67s\tremaining: 3.08s\n",
2973
      "176:\tlearn: 0.0126281\ttotal: 1.68s\tremaining: 3.07s\n",
2974
      "177:\tlearn: 0.0126216\ttotal: 1.69s\tremaining: 3.06s\n",
2975
      "178:\tlearn: 0.0125998\ttotal: 1.7s\tremaining: 3.05s\n",
2976
      "179:\tlearn: 0.0125890\ttotal: 1.71s\tremaining: 3.04s\n",
2977
      "180:\tlearn: 0.0125807\ttotal: 1.72s\tremaining: 3.03s\n",
2978
      "181:\tlearn: 0.0125723\ttotal: 1.73s\tremaining: 3.02s\n",
2979
      "182:\tlearn: 0.0125649\ttotal: 1.74s\tremaining: 3.01s\n",
2980
      "183:\tlearn: 0.0125561\ttotal: 1.74s\tremaining: 3s\n",
2981
      "184:\tlearn: 0.0125445\ttotal: 1.75s\tremaining: 2.99s\n",
2982
      "185:\tlearn: 0.0125369\ttotal: 1.76s\tremaining: 2.98s\n",
2983
      "186:\tlearn: 0.0125233\ttotal: 1.77s\tremaining: 2.97s\n",
2984
      "187:\tlearn: 0.0125077\ttotal: 1.78s\tremaining: 2.96s\n",
2985
      "188:\tlearn: 0.0125039\ttotal: 1.79s\tremaining: 2.95s\n",
2986
      "189:\tlearn: 0.0124927\ttotal: 1.8s\tremaining: 2.94s\n",
2987
      "190:\tlearn: 0.0124829\ttotal: 1.81s\tremaining: 2.93s\n",
2988
      "191:\tlearn: 0.0124743\ttotal: 1.82s\tremaining: 2.92s\n",
2989
      "192:\tlearn: 0.0124617\ttotal: 1.83s\tremaining: 2.91s\n",
2990
      "193:\tlearn: 0.0124530\ttotal: 1.84s\tremaining: 2.9s\n",
2991
      "194:\tlearn: 0.0124451\ttotal: 1.84s\tremaining: 2.89s\n",
2992
      "195:\tlearn: 0.0124306\ttotal: 1.85s\tremaining: 2.88s\n",
2993
      "196:\tlearn: 0.0124154\ttotal: 1.86s\tremaining: 2.87s\n",
2994
      "197:\tlearn: 0.0124099\ttotal: 1.87s\tremaining: 2.86s\n",
2995
      "198:\tlearn: 0.0123974\ttotal: 1.88s\tremaining: 2.85s\n",
2996
      "199:\tlearn: 0.0123882\ttotal: 1.89s\tremaining: 2.84s\n",
2997
      "200:\tlearn: 0.0123814\ttotal: 1.9s\tremaining: 2.83s\n",
2998
      "201:\tlearn: 0.0123719\ttotal: 1.91s\tremaining: 2.82s\n",
2999
      "202:\tlearn: 0.0123656\ttotal: 1.92s\tremaining: 2.81s\n",
3000
      "203:\tlearn: 0.0123620\ttotal: 1.93s\tremaining: 2.8s\n",
3001
      "204:\tlearn: 0.0123546\ttotal: 1.94s\tremaining: 2.79s\n",
3002
      "205:\tlearn: 0.0123435\ttotal: 1.95s\tremaining: 2.78s\n",
3003
      "206:\tlearn: 0.0123318\ttotal: 1.96s\tremaining: 2.77s\n",
3004
      "207:\tlearn: 0.0123209\ttotal: 1.97s\tremaining: 2.76s\n",
3005
      "208:\tlearn: 0.0123161\ttotal: 1.98s\tremaining: 2.75s\n",
3006
      "209:\tlearn: 0.0123084\ttotal: 1.99s\tremaining: 2.74s\n",
3007
      "210:\tlearn: 0.0122996\ttotal: 1.99s\tremaining: 2.73s\n",
3008
      "211:\tlearn: 0.0122904\ttotal: 2s\tremaining: 2.72s\n",
3009
      "212:\tlearn: 0.0122820\ttotal: 2.01s\tremaining: 2.71s\n",
3010
      "213:\tlearn: 0.0122738\ttotal: 2.02s\tremaining: 2.7s\n",
3011
      "214:\tlearn: 0.0122651\ttotal: 2.03s\tremaining: 2.69s\n",
3012
      "215:\tlearn: 0.0122557\ttotal: 2.04s\tremaining: 2.68s\n",
3013
      "216:\tlearn: 0.0122481\ttotal: 2.05s\tremaining: 2.67s\n",
3014
      "217:\tlearn: 0.0122392\ttotal: 2.06s\tremaining: 2.66s\n",
3015
      "218:\tlearn: 0.0122262\ttotal: 2.07s\tremaining: 2.65s\n",
3016
      "219:\tlearn: 0.0122164\ttotal: 2.08s\tremaining: 2.64s\n",
3017
      "220:\tlearn: 0.0122135\ttotal: 2.08s\tremaining: 2.63s\n",
3018
      "221:\tlearn: 0.0122059\ttotal: 2.09s\tremaining: 2.62s\n",
3019
      "222:\tlearn: 0.0121936\ttotal: 2.1s\tremaining: 2.61s\n",
3020
      "223:\tlearn: 0.0121886\ttotal: 2.11s\tremaining: 2.6s\n",
3021
      "224:\tlearn: 0.0121780\ttotal: 2.12s\tremaining: 2.59s\n",
3022
      "225:\tlearn: 0.0121693\ttotal: 2.13s\tremaining: 2.58s\n",
3023
      "226:\tlearn: 0.0121622\ttotal: 2.14s\tremaining: 2.57s\n",
3024
      "227:\tlearn: 0.0121561\ttotal: 2.15s\tremaining: 2.56s\n",
3025
      "228:\tlearn: 0.0121384\ttotal: 2.16s\tremaining: 2.55s\n",
3026
      "229:\tlearn: 0.0121291\ttotal: 2.17s\tremaining: 2.54s\n",
3027
      "230:\tlearn: 0.0121174\ttotal: 2.17s\tremaining: 2.53s\n",
3028
      "231:\tlearn: 0.0121077\ttotal: 2.18s\tremaining: 2.52s\n",
3029
      "232:\tlearn: 0.0120947\ttotal: 2.19s\tremaining: 2.51s\n",
3030
      "233:\tlearn: 0.0120900\ttotal: 2.2s\tremaining: 2.5s\n",
3031
      "234:\tlearn: 0.0120816\ttotal: 2.21s\tremaining: 2.5s\n",
3032
      "235:\tlearn: 0.0120758\ttotal: 2.22s\tremaining: 2.49s\n",
3033
      "236:\tlearn: 0.0120655\ttotal: 2.23s\tremaining: 2.48s\n",
3034
      "237:\tlearn: 0.0120541\ttotal: 2.24s\tremaining: 2.47s\n",
3035
      "238:\tlearn: 0.0120443\ttotal: 2.25s\tremaining: 2.46s\n",
3036
      "239:\tlearn: 0.0120366\ttotal: 2.26s\tremaining: 2.45s\n",
3037
      "240:\tlearn: 0.0120320\ttotal: 2.27s\tremaining: 2.44s\n",
3038
      "241:\tlearn: 0.0120217\ttotal: 2.28s\tremaining: 2.43s\n",
3039
      "242:\tlearn: 0.0120190\ttotal: 2.29s\tremaining: 2.42s\n",
3040
      "243:\tlearn: 0.0120070\ttotal: 2.3s\tremaining: 2.41s\n",
3041
      "244:\tlearn: 0.0119958\ttotal: 2.31s\tremaining: 2.4s\n",
3042
      "245:\tlearn: 0.0119852\ttotal: 2.31s\tremaining: 2.39s\n",
3043
      "246:\tlearn: 0.0119729\ttotal: 2.32s\tremaining: 2.38s\n",
3044
      "247:\tlearn: 0.0119674\ttotal: 2.33s\tremaining: 2.37s\n",
3045
      "248:\tlearn: 0.0119607\ttotal: 2.34s\tremaining: 2.36s\n",
3046
      "249:\tlearn: 0.0119537\ttotal: 2.35s\tremaining: 2.35s\n",
3047
      "250:\tlearn: 0.0119482\ttotal: 2.36s\tremaining: 2.34s\n",
3048
      "251:\tlearn: 0.0119362\ttotal: 2.37s\tremaining: 2.33s\n",
3049
      "252:\tlearn: 0.0119249\ttotal: 2.38s\tremaining: 2.32s\n",
3050
      "253:\tlearn: 0.0119179\ttotal: 2.39s\tremaining: 2.31s\n",
3051
      "254:\tlearn: 0.0119098\ttotal: 2.4s\tremaining: 2.3s\n",
3052
      "255:\tlearn: 0.0118992\ttotal: 2.41s\tremaining: 2.29s\n",
3053
      "256:\tlearn: 0.0118884\ttotal: 2.42s\tremaining: 2.28s\n",
3054
      "257:\tlearn: 0.0118818\ttotal: 2.42s\tremaining: 2.27s\n",
3055
      "258:\tlearn: 0.0118727\ttotal: 2.43s\tremaining: 2.26s\n",
3056
      "259:\tlearn: 0.0118614\ttotal: 2.44s\tremaining: 2.25s\n",
3057
      "260:\tlearn: 0.0118577\ttotal: 2.45s\tremaining: 2.25s\n",
3058
      "261:\tlearn: 0.0118469\ttotal: 2.46s\tremaining: 2.23s\n",
3059
      "262:\tlearn: 0.0118392\ttotal: 2.47s\tremaining: 2.23s\n",
3060
      "263:\tlearn: 0.0118278\ttotal: 2.48s\tremaining: 2.22s\n",
3061
      "264:\tlearn: 0.0118204\ttotal: 2.49s\tremaining: 2.21s\n",
3062
      "265:\tlearn: 0.0118146\ttotal: 2.5s\tremaining: 2.2s\n",
3063
      "266:\tlearn: 0.0118034\ttotal: 2.51s\tremaining: 2.19s\n",
3064
      "267:\tlearn: 0.0117963\ttotal: 2.52s\tremaining: 2.18s\n",
3065
      "268:\tlearn: 0.0117895\ttotal: 2.52s\tremaining: 2.17s\n",
3066
      "269:\tlearn: 0.0117755\ttotal: 2.53s\tremaining: 2.16s\n",
3067
      "270:\tlearn: 0.0117672\ttotal: 2.54s\tremaining: 2.15s\n",
3068
      "271:\tlearn: 0.0117531\ttotal: 2.55s\tremaining: 2.14s\n",
3069
      "272:\tlearn: 0.0117468\ttotal: 2.56s\tremaining: 2.13s\n",
3070
      "273:\tlearn: 0.0117403\ttotal: 2.57s\tremaining: 2.12s\n",
3071
      "274:\tlearn: 0.0117344\ttotal: 2.58s\tremaining: 2.11s\n",
3072
      "275:\tlearn: 0.0117277\ttotal: 2.59s\tremaining: 2.1s\n",
3073
      "276:\tlearn: 0.0117162\ttotal: 2.6s\tremaining: 2.09s\n",
3074
      "277:\tlearn: 0.0117028\ttotal: 2.6s\tremaining: 2.08s\n",
3075
      "278:\tlearn: 0.0116903\ttotal: 2.62s\tremaining: 2.07s\n",
3076
      "279:\tlearn: 0.0116828\ttotal: 2.63s\tremaining: 2.06s\n",
3077
      "280:\tlearn: 0.0116731\ttotal: 2.63s\tremaining: 2.05s\n",
3078
      "281:\tlearn: 0.0116637\ttotal: 2.64s\tremaining: 2.04s\n",
3079
      "282:\tlearn: 0.0116567\ttotal: 2.65s\tremaining: 2.03s\n",
3080
      "283:\tlearn: 0.0116506\ttotal: 2.66s\tremaining: 2.02s\n",
3081
      "284:\tlearn: 0.0116466\ttotal: 2.67s\tremaining: 2.02s\n",
3082
      "285:\tlearn: 0.0116382\ttotal: 2.68s\tremaining: 2s\n",
3083
      "286:\tlearn: 0.0116337\ttotal: 2.69s\tremaining: 2s\n",
3084
      "287:\tlearn: 0.0116288\ttotal: 2.7s\tremaining: 1.99s\n",
3085
      "288:\tlearn: 0.0116232\ttotal: 2.71s\tremaining: 1.98s\n",
3086
      "289:\tlearn: 0.0116165\ttotal: 2.72s\tremaining: 1.97s\n",
3087
      "290:\tlearn: 0.0116071\ttotal: 2.73s\tremaining: 1.96s\n",
3088
      "291:\tlearn: 0.0115974\ttotal: 2.73s\tremaining: 1.95s\n",
3089
      "292:\tlearn: 0.0115942\ttotal: 2.75s\tremaining: 1.94s\n",
3090
      "293:\tlearn: 0.0115828\ttotal: 2.75s\tremaining: 1.93s\n",
3091
      "294:\tlearn: 0.0115723\ttotal: 2.76s\tremaining: 1.92s\n",
3092
      "295:\tlearn: 0.0115690\ttotal: 2.77s\tremaining: 1.91s\n",
3093
      "296:\tlearn: 0.0115626\ttotal: 2.78s\tremaining: 1.9s\n",
3094
      "297:\tlearn: 0.0115584\ttotal: 2.79s\tremaining: 1.89s\n",
3095
      "298:\tlearn: 0.0115506\ttotal: 2.8s\tremaining: 1.88s\n",
3096
      "299:\tlearn: 0.0115420\ttotal: 2.81s\tremaining: 1.87s\n",
3097
      "300:\tlearn: 0.0115390\ttotal: 2.82s\tremaining: 1.86s\n",
3098
      "301:\tlearn: 0.0115303\ttotal: 2.83s\tremaining: 1.85s\n",
3099
      "302:\tlearn: 0.0115272\ttotal: 2.84s\tremaining: 1.84s\n",
3100
      "303:\tlearn: 0.0115138\ttotal: 2.85s\tremaining: 1.84s\n",
3101
      "304:\tlearn: 0.0115086\ttotal: 2.86s\tremaining: 1.83s\n",
3102
      "305:\tlearn: 0.0115042\ttotal: 2.87s\tremaining: 1.82s\n",
3103
      "306:\tlearn: 0.0114939\ttotal: 2.88s\tremaining: 1.81s\n",
3104
      "307:\tlearn: 0.0114909\ttotal: 2.88s\tremaining: 1.8s\n",
3105
      "308:\tlearn: 0.0114819\ttotal: 2.89s\tremaining: 1.79s\n",
3106
      "309:\tlearn: 0.0114772\ttotal: 2.9s\tremaining: 1.78s\n",
3107
      "310:\tlearn: 0.0114667\ttotal: 2.91s\tremaining: 1.77s\n",
3108
      "311:\tlearn: 0.0114544\ttotal: 2.92s\tremaining: 1.76s\n",
3109
      "312:\tlearn: 0.0114475\ttotal: 2.93s\tremaining: 1.75s\n",
3110
      "313:\tlearn: 0.0114403\ttotal: 2.94s\tremaining: 1.74s\n",
3111
      "314:\tlearn: 0.0114356\ttotal: 2.95s\tremaining: 1.73s\n",
3112
      "315:\tlearn: 0.0114314\ttotal: 2.96s\tremaining: 1.72s\n",
3113
      "316:\tlearn: 0.0114253\ttotal: 2.97s\tremaining: 1.71s\n",
3114
      "317:\tlearn: 0.0114139\ttotal: 2.98s\tremaining: 1.7s\n",
3115
      "318:\tlearn: 0.0114077\ttotal: 2.99s\tremaining: 1.69s\n",
3116
      "319:\tlearn: 0.0114005\ttotal: 3s\tremaining: 1.69s\n",
3117
      "320:\tlearn: 0.0113929\ttotal: 3s\tremaining: 1.68s\n",
3118
      "321:\tlearn: 0.0113866\ttotal: 3.01s\tremaining: 1.67s\n",
3119
      "322:\tlearn: 0.0113804\ttotal: 3.02s\tremaining: 1.66s\n",
3120
      "323:\tlearn: 0.0113726\ttotal: 3.03s\tremaining: 1.65s\n",
3121
      "324:\tlearn: 0.0113700\ttotal: 3.04s\tremaining: 1.64s\n",
3122
      "325:\tlearn: 0.0113649\ttotal: 3.05s\tremaining: 1.63s\n",
3123
      "326:\tlearn: 0.0113573\ttotal: 3.06s\tremaining: 1.62s\n",
3124
      "327:\tlearn: 0.0113498\ttotal: 3.07s\tremaining: 1.61s\n",
3125
      "328:\tlearn: 0.0113408\ttotal: 3.08s\tremaining: 1.6s\n",
3126
      "329:\tlearn: 0.0113345\ttotal: 3.09s\tremaining: 1.59s\n",
3127
      "330:\tlearn: 0.0113246\ttotal: 3.1s\tremaining: 1.58s\n",
3128
      "331:\tlearn: 0.0113138\ttotal: 3.11s\tremaining: 1.57s\n",
3129
      "332:\tlearn: 0.0113066\ttotal: 3.12s\tremaining: 1.56s\n",
3130
      "333:\tlearn: 0.0112963\ttotal: 3.13s\tremaining: 1.55s\n",
3131
      "334:\tlearn: 0.0112925\ttotal: 3.13s\tremaining: 1.54s\n",
3132
      "335:\tlearn: 0.0112851\ttotal: 3.15s\tremaining: 1.53s\n",
3133
      "336:\tlearn: 0.0112796\ttotal: 3.15s\tremaining: 1.53s\n",
3134
      "337:\tlearn: 0.0112764\ttotal: 3.16s\tremaining: 1.52s\n",
3135
      "338:\tlearn: 0.0112723\ttotal: 3.17s\tremaining: 1.51s\n",
3136
      "339:\tlearn: 0.0112666\ttotal: 3.18s\tremaining: 1.5s\n",
3137
      "340:\tlearn: 0.0112622\ttotal: 3.19s\tremaining: 1.49s\n",
3138
      "341:\tlearn: 0.0112553\ttotal: 3.2s\tremaining: 1.48s\n",
3139
      "342:\tlearn: 0.0112445\ttotal: 3.21s\tremaining: 1.47s\n",
3140
      "343:\tlearn: 0.0112428\ttotal: 3.22s\tremaining: 1.46s\n",
3141
      "344:\tlearn: 0.0112396\ttotal: 3.23s\tremaining: 1.45s\n",
3142
      "345:\tlearn: 0.0112336\ttotal: 3.24s\tremaining: 1.44s\n",
3143
      "346:\tlearn: 0.0112252\ttotal: 3.25s\tremaining: 1.43s\n",
3144
      "347:\tlearn: 0.0112193\ttotal: 3.26s\tremaining: 1.42s\n",
3145
      "348:\tlearn: 0.0112107\ttotal: 3.27s\tremaining: 1.41s\n",
3146
      "349:\tlearn: 0.0112027\ttotal: 3.28s\tremaining: 1.41s\n"
3147
     ]
3148
    },
3149
    {
3150
     "name": "stdout",
3151
     "output_type": "stream",
3152
     "text": [
3153
      "350:\tlearn: 0.0111983\ttotal: 3.29s\tremaining: 1.4s\n",
3154
      "351:\tlearn: 0.0111919\ttotal: 3.3s\tremaining: 1.39s\n",
3155
      "352:\tlearn: 0.0111895\ttotal: 3.31s\tremaining: 1.38s\n",
3156
      "353:\tlearn: 0.0111851\ttotal: 3.31s\tremaining: 1.37s\n",
3157
      "354:\tlearn: 0.0111784\ttotal: 3.32s\tremaining: 1.36s\n",
3158
      "355:\tlearn: 0.0111717\ttotal: 3.33s\tremaining: 1.35s\n",
3159
      "356:\tlearn: 0.0111675\ttotal: 3.34s\tremaining: 1.34s\n",
3160
      "357:\tlearn: 0.0111586\ttotal: 3.35s\tremaining: 1.33s\n",
3161
      "358:\tlearn: 0.0111552\ttotal: 3.36s\tremaining: 1.32s\n",
3162
      "359:\tlearn: 0.0111468\ttotal: 3.37s\tremaining: 1.31s\n",
3163
      "360:\tlearn: 0.0111381\ttotal: 3.38s\tremaining: 1.3s\n",
3164
      "361:\tlearn: 0.0111309\ttotal: 3.39s\tremaining: 1.29s\n",
3165
      "362:\tlearn: 0.0111291\ttotal: 3.4s\tremaining: 1.28s\n",
3166
      "363:\tlearn: 0.0111266\ttotal: 3.41s\tremaining: 1.27s\n",
3167
      "364:\tlearn: 0.0111196\ttotal: 3.42s\tremaining: 1.26s\n",
3168
      "365:\tlearn: 0.0111127\ttotal: 3.43s\tremaining: 1.25s\n",
3169
      "366:\tlearn: 0.0111050\ttotal: 3.44s\tremaining: 1.25s\n",
3170
      "367:\tlearn: 0.0110998\ttotal: 3.45s\tremaining: 1.24s\n",
3171
      "368:\tlearn: 0.0110953\ttotal: 3.46s\tremaining: 1.23s\n",
3172
      "369:\tlearn: 0.0110907\ttotal: 3.46s\tremaining: 1.22s\n",
3173
      "370:\tlearn: 0.0110814\ttotal: 3.47s\tremaining: 1.21s\n",
3174
      "371:\tlearn: 0.0110738\ttotal: 3.48s\tremaining: 1.2s\n",
3175
      "372:\tlearn: 0.0110682\ttotal: 3.49s\tremaining: 1.19s\n",
3176
      "373:\tlearn: 0.0110566\ttotal: 3.5s\tremaining: 1.18s\n",
3177
      "374:\tlearn: 0.0110439\ttotal: 3.51s\tremaining: 1.17s\n",
3178
      "375:\tlearn: 0.0110337\ttotal: 3.52s\tremaining: 1.16s\n",
3179
      "376:\tlearn: 0.0110286\ttotal: 3.53s\tremaining: 1.15s\n",
3180
      "377:\tlearn: 0.0110253\ttotal: 3.54s\tremaining: 1.14s\n",
3181
      "378:\tlearn: 0.0110186\ttotal: 3.55s\tremaining: 1.13s\n",
3182
      "379:\tlearn: 0.0110175\ttotal: 3.56s\tremaining: 1.12s\n",
3183
      "380:\tlearn: 0.0110141\ttotal: 3.57s\tremaining: 1.11s\n",
3184
      "381:\tlearn: 0.0110061\ttotal: 3.58s\tremaining: 1.1s\n",
3185
      "382:\tlearn: 0.0110010\ttotal: 3.58s\tremaining: 1.09s\n",
3186
      "383:\tlearn: 0.0109918\ttotal: 3.59s\tremaining: 1.08s\n",
3187
      "384:\tlearn: 0.0109837\ttotal: 3.6s\tremaining: 1.08s\n",
3188
      "385:\tlearn: 0.0109738\ttotal: 3.61s\tremaining: 1.07s\n",
3189
      "386:\tlearn: 0.0109721\ttotal: 3.62s\tremaining: 1.06s\n",
3190
      "387:\tlearn: 0.0109681\ttotal: 3.63s\tremaining: 1.05s\n",
3191
      "388:\tlearn: 0.0109635\ttotal: 3.64s\tremaining: 1.04s\n",
3192
      "389:\tlearn: 0.0109580\ttotal: 3.65s\tremaining: 1.03s\n",
3193
      "390:\tlearn: 0.0109510\ttotal: 3.66s\tremaining: 1.02s\n",
3194
      "391:\tlearn: 0.0109421\ttotal: 3.67s\tremaining: 1.01s\n",
3195
      "392:\tlearn: 0.0109358\ttotal: 3.68s\tremaining: 1s\n",
3196
      "393:\tlearn: 0.0109299\ttotal: 3.69s\tremaining: 992ms\n",
3197
      "394:\tlearn: 0.0109267\ttotal: 3.69s\tremaining: 982ms\n",
3198
      "395:\tlearn: 0.0109226\ttotal: 3.7s\tremaining: 973ms\n",
3199
      "396:\tlearn: 0.0109187\ttotal: 3.71s\tremaining: 964ms\n",
3200
      "397:\tlearn: 0.0109106\ttotal: 3.73s\tremaining: 955ms\n",
3201
      "398:\tlearn: 0.0109029\ttotal: 3.74s\tremaining: 946ms\n",
3202
      "399:\tlearn: 0.0108979\ttotal: 3.75s\tremaining: 936ms\n",
3203
      "400:\tlearn: 0.0108946\ttotal: 3.75s\tremaining: 927ms\n",
3204
      "401:\tlearn: 0.0108883\ttotal: 3.76s\tremaining: 918ms\n",
3205
      "402:\tlearn: 0.0108846\ttotal: 3.77s\tremaining: 908ms\n",
3206
      "403:\tlearn: 0.0108754\ttotal: 3.78s\tremaining: 899ms\n",
3207
      "404:\tlearn: 0.0108667\ttotal: 3.79s\tremaining: 889ms\n",
3208
      "405:\tlearn: 0.0108604\ttotal: 3.8s\tremaining: 880ms\n",
3209
      "406:\tlearn: 0.0108514\ttotal: 3.81s\tremaining: 871ms\n",
3210
      "407:\tlearn: 0.0108443\ttotal: 3.82s\tremaining: 861ms\n",
3211
      "408:\tlearn: 0.0108413\ttotal: 3.83s\tremaining: 852ms\n",
3212
      "409:\tlearn: 0.0108350\ttotal: 3.84s\tremaining: 842ms\n",
3213
      "410:\tlearn: 0.0108288\ttotal: 3.85s\tremaining: 833ms\n",
3214
      "411:\tlearn: 0.0108205\ttotal: 3.85s\tremaining: 823ms\n",
3215
      "412:\tlearn: 0.0108095\ttotal: 3.86s\tremaining: 814ms\n",
3216
      "413:\tlearn: 0.0108045\ttotal: 3.87s\tremaining: 805ms\n",
3217
      "414:\tlearn: 0.0108013\ttotal: 3.88s\tremaining: 795ms\n",
3218
      "415:\tlearn: 0.0107993\ttotal: 3.89s\tremaining: 786ms\n",
3219
      "416:\tlearn: 0.0107959\ttotal: 3.9s\tremaining: 777ms\n",
3220
      "417:\tlearn: 0.0107893\ttotal: 3.91s\tremaining: 767ms\n",
3221
      "418:\tlearn: 0.0107880\ttotal: 3.92s\tremaining: 758ms\n",
3222
      "419:\tlearn: 0.0107851\ttotal: 3.93s\tremaining: 748ms\n",
3223
      "420:\tlearn: 0.0107739\ttotal: 3.94s\tremaining: 739ms\n",
3224
      "421:\tlearn: 0.0107627\ttotal: 3.95s\tremaining: 730ms\n",
3225
      "422:\tlearn: 0.0107565\ttotal: 3.96s\tremaining: 720ms\n",
3226
      "423:\tlearn: 0.0107485\ttotal: 3.97s\tremaining: 711ms\n",
3227
      "424:\tlearn: 0.0107402\ttotal: 3.98s\tremaining: 702ms\n",
3228
      "425:\tlearn: 0.0107376\ttotal: 3.98s\tremaining: 692ms\n",
3229
      "426:\tlearn: 0.0107318\ttotal: 3.99s\tremaining: 683ms\n",
3230
      "427:\tlearn: 0.0107296\ttotal: 4s\tremaining: 673ms\n",
3231
      "428:\tlearn: 0.0107206\ttotal: 4.01s\tremaining: 664ms\n",
3232
      "429:\tlearn: 0.0107143\ttotal: 4.02s\tremaining: 655ms\n",
3233
      "430:\tlearn: 0.0107059\ttotal: 4.03s\tremaining: 645ms\n",
3234
      "431:\tlearn: 0.0107019\ttotal: 4.04s\tremaining: 636ms\n",
3235
      "432:\tlearn: 0.0106964\ttotal: 4.05s\tremaining: 627ms\n",
3236
      "433:\tlearn: 0.0106857\ttotal: 4.06s\tremaining: 617ms\n",
3237
      "434:\tlearn: 0.0106817\ttotal: 4.07s\tremaining: 608ms\n",
3238
      "435:\tlearn: 0.0106781\ttotal: 4.08s\tremaining: 599ms\n",
3239
      "436:\tlearn: 0.0106680\ttotal: 4.09s\tremaining: 589ms\n",
3240
      "437:\tlearn: 0.0106662\ttotal: 4.09s\tremaining: 580ms\n",
3241
      "438:\tlearn: 0.0106552\ttotal: 4.1s\tremaining: 570ms\n",
3242
      "439:\tlearn: 0.0106520\ttotal: 4.11s\tremaining: 561ms\n",
3243
      "440:\tlearn: 0.0106470\ttotal: 4.12s\tremaining: 551ms\n",
3244
      "441:\tlearn: 0.0106385\ttotal: 4.13s\tremaining: 542ms\n",
3245
      "442:\tlearn: 0.0106361\ttotal: 4.14s\tremaining: 533ms\n",
3246
      "443:\tlearn: 0.0106268\ttotal: 4.15s\tremaining: 523ms\n",
3247
      "444:\tlearn: 0.0106193\ttotal: 4.16s\tremaining: 514ms\n",
3248
      "445:\tlearn: 0.0106181\ttotal: 4.17s\tremaining: 505ms\n",
3249
      "446:\tlearn: 0.0106146\ttotal: 4.18s\tremaining: 495ms\n",
3250
      "447:\tlearn: 0.0106090\ttotal: 4.19s\tremaining: 486ms\n",
3251
      "448:\tlearn: 0.0106059\ttotal: 4.2s\tremaining: 477ms\n",
3252
      "449:\tlearn: 0.0106021\ttotal: 4.21s\tremaining: 467ms\n",
3253
      "450:\tlearn: 0.0105967\ttotal: 4.21s\tremaining: 458ms\n",
3254
      "451:\tlearn: 0.0105905\ttotal: 4.22s\tremaining: 449ms\n",
3255
      "452:\tlearn: 0.0105857\ttotal: 4.23s\tremaining: 439ms\n",
3256
      "453:\tlearn: 0.0105801\ttotal: 4.24s\tremaining: 430ms\n",
3257
      "454:\tlearn: 0.0105771\ttotal: 4.25s\tremaining: 420ms\n",
3258
      "455:\tlearn: 0.0105722\ttotal: 4.26s\tremaining: 411ms\n",
3259
      "456:\tlearn: 0.0105674\ttotal: 4.27s\tremaining: 402ms\n",
3260
      "457:\tlearn: 0.0105669\ttotal: 4.28s\tremaining: 392ms\n",
3261
      "458:\tlearn: 0.0105579\ttotal: 4.29s\tremaining: 383ms\n",
3262
      "459:\tlearn: 0.0105501\ttotal: 4.3s\tremaining: 374ms\n",
3263
      "460:\tlearn: 0.0105423\ttotal: 4.31s\tremaining: 364ms\n",
3264
      "461:\tlearn: 0.0105394\ttotal: 4.32s\tremaining: 355ms\n",
3265
      "462:\tlearn: 0.0105319\ttotal: 4.33s\tremaining: 346ms\n",
3266
      "463:\tlearn: 0.0105220\ttotal: 4.33s\tremaining: 336ms\n",
3267
      "464:\tlearn: 0.0105198\ttotal: 4.34s\tremaining: 327ms\n",
3268
      "465:\tlearn: 0.0105149\ttotal: 4.35s\tremaining: 318ms\n",
3269
      "466:\tlearn: 0.0105090\ttotal: 4.36s\tremaining: 308ms\n",
3270
      "467:\tlearn: 0.0105049\ttotal: 4.37s\tremaining: 299ms\n",
3271
      "468:\tlearn: 0.0105026\ttotal: 4.38s\tremaining: 290ms\n",
3272
      "469:\tlearn: 0.0104989\ttotal: 4.39s\tremaining: 280ms\n",
3273
      "470:\tlearn: 0.0104975\ttotal: 4.4s\tremaining: 271ms\n",
3274
      "471:\tlearn: 0.0104883\ttotal: 4.41s\tremaining: 262ms\n",
3275
      "472:\tlearn: 0.0104823\ttotal: 4.42s\tremaining: 252ms\n",
3276
      "473:\tlearn: 0.0104704\ttotal: 4.43s\tremaining: 243ms\n",
3277
      "474:\tlearn: 0.0104675\ttotal: 4.44s\tremaining: 233ms\n",
3278
      "475:\tlearn: 0.0104592\ttotal: 4.45s\tremaining: 224ms\n",
3279
      "476:\tlearn: 0.0104510\ttotal: 4.45s\tremaining: 215ms\n",
3280
      "477:\tlearn: 0.0104453\ttotal: 4.46s\tremaining: 205ms\n",
3281
      "478:\tlearn: 0.0104369\ttotal: 4.47s\tremaining: 196ms\n",
3282
      "479:\tlearn: 0.0104321\ttotal: 4.48s\tremaining: 187ms\n",
3283
      "480:\tlearn: 0.0104302\ttotal: 4.49s\tremaining: 177ms\n",
3284
      "481:\tlearn: 0.0104263\ttotal: 4.5s\tremaining: 168ms\n",
3285
      "482:\tlearn: 0.0104221\ttotal: 4.51s\tremaining: 159ms\n",
3286
      "483:\tlearn: 0.0104117\ttotal: 4.52s\tremaining: 149ms\n",
3287
      "484:\tlearn: 0.0104063\ttotal: 4.53s\tremaining: 140ms\n",
3288
      "485:\tlearn: 0.0104012\ttotal: 4.54s\tremaining: 131ms\n",
3289
      "486:\tlearn: 0.0103961\ttotal: 4.54s\tremaining: 121ms\n",
3290
      "487:\tlearn: 0.0103887\ttotal: 4.55s\tremaining: 112ms\n",
3291
      "488:\tlearn: 0.0103808\ttotal: 4.56s\tremaining: 103ms\n",
3292
      "489:\tlearn: 0.0103732\ttotal: 4.57s\tremaining: 93.3ms\n",
3293
      "490:\tlearn: 0.0103687\ttotal: 4.58s\tremaining: 84ms\n",
3294
      "491:\tlearn: 0.0103655\ttotal: 4.59s\tremaining: 74.7ms\n",
3295
      "492:\tlearn: 0.0103565\ttotal: 4.6s\tremaining: 65.3ms\n",
3296
      "493:\tlearn: 0.0103532\ttotal: 4.61s\tremaining: 56ms\n",
3297
      "494:\tlearn: 0.0103472\ttotal: 4.62s\tremaining: 46.7ms\n",
3298
      "495:\tlearn: 0.0103409\ttotal: 4.63s\tremaining: 37.3ms\n",
3299
      "496:\tlearn: 0.0103375\ttotal: 4.64s\tremaining: 28ms\n",
3300
      "497:\tlearn: 0.0103352\ttotal: 4.65s\tremaining: 18.7ms\n",
3301
      "498:\tlearn: 0.0103330\ttotal: 4.66s\tremaining: 9.33ms\n",
3302
      "499:\tlearn: 0.0103305\ttotal: 4.67s\tremaining: 0us\n"
3303
     ]
3304
    },
3305
    {
3306
     "name": "stderr",
3307
     "output_type": "stream",
3308
     "text": [
3309
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
3310
     ]
3311
    },
3312
    {
3313
     "name": "stdout",
3314
     "output_type": "stream",
3315
     "text": [
3316
      "0:\tlearn: 0.6124470\ttotal: 11.2ms\tremaining: 5.58s\n",
3317
      "1:\tlearn: 0.5409320\ttotal: 21.1ms\tremaining: 5.26s\n",
3318
      "2:\tlearn: 0.4787689\ttotal: 30.8ms\tremaining: 5.09s\n",
3319
      "3:\tlearn: 0.4274331\ttotal: 43ms\tremaining: 5.34s\n",
3320
      "4:\tlearn: 0.3791450\ttotal: 54.6ms\tremaining: 5.41s\n",
3321
      "5:\tlearn: 0.3359890\ttotal: 64.7ms\tremaining: 5.33s\n",
3322
      "6:\tlearn: 0.3008023\ttotal: 75.1ms\tremaining: 5.29s\n",
3323
      "7:\tlearn: 0.2689132\ttotal: 84.7ms\tremaining: 5.21s\n",
3324
      "8:\tlearn: 0.2440483\ttotal: 94.1ms\tremaining: 5.13s\n",
3325
      "9:\tlearn: 0.2205727\ttotal: 104ms\tremaining: 5.08s\n",
3326
      "10:\tlearn: 0.2000718\ttotal: 114ms\tremaining: 5.05s\n",
3327
      "11:\tlearn: 0.1831024\ttotal: 124ms\tremaining: 5.02s\n",
3328
      "12:\tlearn: 0.1677551\ttotal: 134ms\tremaining: 5s\n",
3329
      "13:\tlearn: 0.1544559\ttotal: 143ms\tremaining: 4.98s\n",
3330
      "14:\tlearn: 0.1434839\ttotal: 153ms\tremaining: 4.95s\n",
3331
      "15:\tlearn: 0.1331783\ttotal: 163ms\tremaining: 4.93s\n",
3332
      "16:\tlearn: 0.1241078\ttotal: 173ms\tremaining: 4.92s\n",
3333
      "17:\tlearn: 0.1162277\ttotal: 184ms\tremaining: 4.92s\n",
3334
      "18:\tlearn: 0.1083743\ttotal: 194ms\tremaining: 4.92s\n",
3335
      "19:\tlearn: 0.1018804\ttotal: 205ms\tremaining: 4.91s\n",
3336
      "20:\tlearn: 0.0961041\ttotal: 215ms\tremaining: 4.91s\n",
3337
      "21:\tlearn: 0.0903131\ttotal: 225ms\tremaining: 4.9s\n",
3338
      "22:\tlearn: 0.0853630\ttotal: 236ms\tremaining: 4.89s\n",
3339
      "23:\tlearn: 0.0816944\ttotal: 246ms\tremaining: 4.88s\n",
3340
      "24:\tlearn: 0.0786299\ttotal: 256ms\tremaining: 4.86s\n",
3341
      "25:\tlearn: 0.0750125\ttotal: 266ms\tremaining: 4.86s\n",
3342
      "26:\tlearn: 0.0715263\ttotal: 277ms\tremaining: 4.84s\n",
3343
      "27:\tlearn: 0.0691749\ttotal: 287ms\tremaining: 4.83s\n",
3344
      "28:\tlearn: 0.0669008\ttotal: 297ms\tremaining: 4.82s\n",
3345
      "29:\tlearn: 0.0642661\ttotal: 307ms\tremaining: 4.82s\n",
3346
      "30:\tlearn: 0.0621628\ttotal: 317ms\tremaining: 4.8s\n",
3347
      "31:\tlearn: 0.0602073\ttotal: 327ms\tremaining: 4.78s\n",
3348
      "32:\tlearn: 0.0587735\ttotal: 336ms\tremaining: 4.76s\n",
3349
      "33:\tlearn: 0.0572566\ttotal: 345ms\tremaining: 4.73s\n",
3350
      "34:\tlearn: 0.0556762\ttotal: 355ms\tremaining: 4.71s\n",
3351
      "35:\tlearn: 0.0545396\ttotal: 364ms\tremaining: 4.69s\n",
3352
      "36:\tlearn: 0.0534925\ttotal: 373ms\tremaining: 4.67s\n",
3353
      "37:\tlearn: 0.0523898\ttotal: 382ms\tremaining: 4.65s\n",
3354
      "38:\tlearn: 0.0514455\ttotal: 391ms\tremaining: 4.63s\n",
3355
      "39:\tlearn: 0.0505087\ttotal: 401ms\tremaining: 4.61s\n",
3356
      "40:\tlearn: 0.0499210\ttotal: 410ms\tremaining: 4.59s\n",
3357
      "41:\tlearn: 0.0493440\ttotal: 419ms\tremaining: 4.57s\n",
3358
      "42:\tlearn: 0.0487420\ttotal: 428ms\tremaining: 4.55s\n",
3359
      "43:\tlearn: 0.0481522\ttotal: 438ms\tremaining: 4.53s\n",
3360
      "44:\tlearn: 0.0475542\ttotal: 447ms\tremaining: 4.52s\n",
3361
      "45:\tlearn: 0.0471192\ttotal: 456ms\tremaining: 4.5s\n",
3362
      "46:\tlearn: 0.0465406\ttotal: 465ms\tremaining: 4.48s\n",
3363
      "47:\tlearn: 0.0461791\ttotal: 474ms\tremaining: 4.46s\n",
3364
      "48:\tlearn: 0.0458038\ttotal: 483ms\tremaining: 4.45s\n",
3365
      "49:\tlearn: 0.0455700\ttotal: 493ms\tremaining: 4.43s\n",
3366
      "50:\tlearn: 0.0452843\ttotal: 502ms\tremaining: 4.42s\n",
3367
      "51:\tlearn: 0.0449534\ttotal: 511ms\tremaining: 4.4s\n",
3368
      "52:\tlearn: 0.0445940\ttotal: 520ms\tremaining: 4.38s\n",
3369
      "53:\tlearn: 0.0443115\ttotal: 529ms\tremaining: 4.37s\n",
3370
      "54:\tlearn: 0.0440973\ttotal: 538ms\tremaining: 4.35s\n",
3371
      "55:\tlearn: 0.0439592\ttotal: 547ms\tremaining: 4.33s\n",
3372
      "56:\tlearn: 0.0436474\ttotal: 556ms\tremaining: 4.32s\n",
3373
      "57:\tlearn: 0.0434021\ttotal: 565ms\tremaining: 4.31s\n",
3374
      "58:\tlearn: 0.0432420\ttotal: 574ms\tremaining: 4.29s\n",
3375
      "59:\tlearn: 0.0429771\ttotal: 583ms\tremaining: 4.27s\n",
3376
      "60:\tlearn: 0.0426943\ttotal: 592ms\tremaining: 4.26s\n",
3377
      "61:\tlearn: 0.0424285\ttotal: 601ms\tremaining: 4.25s\n",
3378
      "62:\tlearn: 0.0423014\ttotal: 610ms\tremaining: 4.23s\n",
3379
      "63:\tlearn: 0.0421068\ttotal: 620ms\tremaining: 4.22s\n",
3380
      "64:\tlearn: 0.0420130\ttotal: 629ms\tremaining: 4.21s\n",
3381
      "65:\tlearn: 0.0418781\ttotal: 638ms\tremaining: 4.19s\n",
3382
      "66:\tlearn: 0.0417256\ttotal: 647ms\tremaining: 4.18s\n",
3383
      "67:\tlearn: 0.0415734\ttotal: 656ms\tremaining: 4.17s\n",
3384
      "68:\tlearn: 0.0414203\ttotal: 665ms\tremaining: 4.15s\n",
3385
      "69:\tlearn: 0.0413203\ttotal: 674ms\tremaining: 4.14s\n",
3386
      "70:\tlearn: 0.0411777\ttotal: 683ms\tremaining: 4.13s\n",
3387
      "71:\tlearn: 0.0410874\ttotal: 692ms\tremaining: 4.11s\n",
3388
      "72:\tlearn: 0.0409781\ttotal: 701ms\tremaining: 4.1s\n",
3389
      "73:\tlearn: 0.0408775\ttotal: 710ms\tremaining: 4.09s\n",
3390
      "74:\tlearn: 0.0407764\ttotal: 719ms\tremaining: 4.08s\n",
3391
      "75:\tlearn: 0.0407187\ttotal: 728ms\tremaining: 4.06s\n",
3392
      "76:\tlearn: 0.0406562\ttotal: 737ms\tremaining: 4.05s\n",
3393
      "77:\tlearn: 0.0405933\ttotal: 747ms\tremaining: 4.04s\n",
3394
      "78:\tlearn: 0.0405358\ttotal: 756ms\tremaining: 4.03s\n",
3395
      "79:\tlearn: 0.0405043\ttotal: 765ms\tremaining: 4.01s\n",
3396
      "80:\tlearn: 0.0404119\ttotal: 774ms\tremaining: 4s\n",
3397
      "81:\tlearn: 0.0403277\ttotal: 783ms\tremaining: 3.99s\n",
3398
      "82:\tlearn: 0.0402645\ttotal: 792ms\tremaining: 3.98s\n",
3399
      "83:\tlearn: 0.0402296\ttotal: 801ms\tremaining: 3.97s\n",
3400
      "84:\tlearn: 0.0402056\ttotal: 811ms\tremaining: 3.96s\n",
3401
      "85:\tlearn: 0.0401758\ttotal: 820ms\tremaining: 3.95s\n",
3402
      "86:\tlearn: 0.0401580\ttotal: 829ms\tremaining: 3.93s\n",
3403
      "87:\tlearn: 0.0401032\ttotal: 838ms\tremaining: 3.92s\n",
3404
      "88:\tlearn: 0.0400647\ttotal: 847ms\tremaining: 3.91s\n",
3405
      "89:\tlearn: 0.0400404\ttotal: 856ms\tremaining: 3.9s\n",
3406
      "90:\tlearn: 0.0399832\ttotal: 866ms\tremaining: 3.89s\n",
3407
      "91:\tlearn: 0.0399465\ttotal: 875ms\tremaining: 3.88s\n",
3408
      "92:\tlearn: 0.0399285\ttotal: 884ms\tremaining: 3.87s\n",
3409
      "93:\tlearn: 0.0398984\ttotal: 893ms\tremaining: 3.86s\n",
3410
      "94:\tlearn: 0.0398768\ttotal: 902ms\tremaining: 3.85s\n",
3411
      "95:\tlearn: 0.0398252\ttotal: 911ms\tremaining: 3.83s\n",
3412
      "96:\tlearn: 0.0398156\ttotal: 920ms\tremaining: 3.82s\n",
3413
      "97:\tlearn: 0.0397592\ttotal: 929ms\tremaining: 3.81s\n",
3414
      "98:\tlearn: 0.0397442\ttotal: 938ms\tremaining: 3.8s\n",
3415
      "99:\tlearn: 0.0396990\ttotal: 947ms\tremaining: 3.79s\n",
3416
      "100:\tlearn: 0.0396556\ttotal: 957ms\tremaining: 3.78s\n",
3417
      "101:\tlearn: 0.0396000\ttotal: 966ms\tremaining: 3.77s\n",
3418
      "102:\tlearn: 0.0395412\ttotal: 975ms\tremaining: 3.76s\n",
3419
      "103:\tlearn: 0.0395161\ttotal: 984ms\tremaining: 3.75s\n",
3420
      "104:\tlearn: 0.0394866\ttotal: 994ms\tremaining: 3.74s\n",
3421
      "105:\tlearn: 0.0394567\ttotal: 1s\tremaining: 3.73s\n",
3422
      "106:\tlearn: 0.0394476\ttotal: 1.01s\tremaining: 3.71s\n",
3423
      "107:\tlearn: 0.0394389\ttotal: 1.02s\tremaining: 3.7s\n",
3424
      "108:\tlearn: 0.0394167\ttotal: 1.03s\tremaining: 3.69s\n",
3425
      "109:\tlearn: 0.0394056\ttotal: 1.04s\tremaining: 3.69s\n",
3426
      "110:\tlearn: 0.0393663\ttotal: 1.05s\tremaining: 3.68s\n",
3427
      "111:\tlearn: 0.0393332\ttotal: 1.06s\tremaining: 3.67s\n",
3428
      "112:\tlearn: 0.0393023\ttotal: 1.07s\tremaining: 3.66s\n",
3429
      "113:\tlearn: 0.0392749\ttotal: 1.08s\tremaining: 3.65s\n",
3430
      "114:\tlearn: 0.0392636\ttotal: 1.09s\tremaining: 3.64s\n",
3431
      "115:\tlearn: 0.0392436\ttotal: 1.1s\tremaining: 3.63s\n",
3432
      "116:\tlearn: 0.0392045\ttotal: 1.1s\tremaining: 3.62s\n",
3433
      "117:\tlearn: 0.0391855\ttotal: 1.11s\tremaining: 3.61s\n",
3434
      "118:\tlearn: 0.0391684\ttotal: 1.12s\tremaining: 3.6s\n",
3435
      "119:\tlearn: 0.0391561\ttotal: 1.13s\tremaining: 3.59s\n",
3436
      "120:\tlearn: 0.0391322\ttotal: 1.14s\tremaining: 3.58s\n",
3437
      "121:\tlearn: 0.0391132\ttotal: 1.15s\tremaining: 3.57s\n",
3438
      "122:\tlearn: 0.0390874\ttotal: 1.16s\tremaining: 3.56s\n",
3439
      "123:\tlearn: 0.0390757\ttotal: 1.17s\tremaining: 3.55s\n",
3440
      "124:\tlearn: 0.0390552\ttotal: 1.18s\tremaining: 3.54s\n",
3441
      "125:\tlearn: 0.0390360\ttotal: 1.19s\tremaining: 3.53s\n",
3442
      "126:\tlearn: 0.0390095\ttotal: 1.2s\tremaining: 3.52s\n",
3443
      "127:\tlearn: 0.0389921\ttotal: 1.21s\tremaining: 3.51s\n",
3444
      "128:\tlearn: 0.0389831\ttotal: 1.22s\tremaining: 3.5s\n",
3445
      "129:\tlearn: 0.0389763\ttotal: 1.23s\tremaining: 3.49s\n",
3446
      "130:\tlearn: 0.0389539\ttotal: 1.23s\tremaining: 3.48s\n",
3447
      "131:\tlearn: 0.0389476\ttotal: 1.24s\tremaining: 3.46s\n",
3448
      "132:\tlearn: 0.0389306\ttotal: 1.25s\tremaining: 3.46s\n",
3449
      "133:\tlearn: 0.0389176\ttotal: 1.26s\tremaining: 3.45s\n",
3450
      "134:\tlearn: 0.0389048\ttotal: 1.27s\tremaining: 3.44s\n",
3451
      "135:\tlearn: 0.0388888\ttotal: 1.28s\tremaining: 3.43s\n",
3452
      "136:\tlearn: 0.0388821\ttotal: 1.29s\tremaining: 3.42s\n",
3453
      "137:\tlearn: 0.0388720\ttotal: 1.3s\tremaining: 3.41s\n",
3454
      "138:\tlearn: 0.0388495\ttotal: 1.31s\tremaining: 3.4s\n",
3455
      "139:\tlearn: 0.0388427\ttotal: 1.32s\tremaining: 3.39s\n",
3456
      "140:\tlearn: 0.0388377\ttotal: 1.33s\tremaining: 3.38s\n",
3457
      "141:\tlearn: 0.0388292\ttotal: 1.33s\tremaining: 3.37s\n",
3458
      "142:\tlearn: 0.0388212\ttotal: 1.34s\tremaining: 3.36s\n",
3459
      "143:\tlearn: 0.0388111\ttotal: 1.35s\tremaining: 3.35s\n",
3460
      "144:\tlearn: 0.0387921\ttotal: 1.36s\tremaining: 3.34s\n",
3461
      "145:\tlearn: 0.0387879\ttotal: 1.37s\tremaining: 3.33s\n",
3462
      "146:\tlearn: 0.0387816\ttotal: 1.38s\tremaining: 3.31s\n",
3463
      "147:\tlearn: 0.0387697\ttotal: 1.39s\tremaining: 3.31s\n",
3464
      "148:\tlearn: 0.0387629\ttotal: 1.4s\tremaining: 3.29s\n",
3465
      "149:\tlearn: 0.0387419\ttotal: 1.41s\tremaining: 3.28s\n",
3466
      "150:\tlearn: 0.0387365\ttotal: 1.42s\tremaining: 3.27s\n",
3467
      "151:\tlearn: 0.0387254\ttotal: 1.43s\tremaining: 3.26s\n",
3468
      "152:\tlearn: 0.0386914\ttotal: 1.44s\tremaining: 3.25s\n",
3469
      "153:\tlearn: 0.0386657\ttotal: 1.44s\tremaining: 3.25s\n",
3470
      "154:\tlearn: 0.0386607\ttotal: 1.45s\tremaining: 3.23s\n",
3471
      "155:\tlearn: 0.0386519\ttotal: 1.46s\tremaining: 3.22s\n",
3472
      "156:\tlearn: 0.0386465\ttotal: 1.47s\tremaining: 3.21s\n",
3473
      "157:\tlearn: 0.0386408\ttotal: 1.48s\tremaining: 3.21s\n",
3474
      "158:\tlearn: 0.0386342\ttotal: 1.49s\tremaining: 3.19s\n",
3475
      "159:\tlearn: 0.0386258\ttotal: 1.5s\tremaining: 3.18s\n",
3476
      "160:\tlearn: 0.0386109\ttotal: 1.51s\tremaining: 3.18s\n",
3477
      "161:\tlearn: 0.0385916\ttotal: 1.52s\tremaining: 3.17s\n",
3478
      "162:\tlearn: 0.0385830\ttotal: 1.53s\tremaining: 3.16s\n",
3479
      "163:\tlearn: 0.0385777\ttotal: 1.54s\tremaining: 3.15s\n",
3480
      "164:\tlearn: 0.0385696\ttotal: 1.55s\tremaining: 3.14s\n",
3481
      "165:\tlearn: 0.0385651\ttotal: 1.55s\tremaining: 3.13s\n",
3482
      "166:\tlearn: 0.0385493\ttotal: 1.56s\tremaining: 3.12s\n",
3483
      "167:\tlearn: 0.0385458\ttotal: 1.57s\tremaining: 3.11s\n",
3484
      "168:\tlearn: 0.0385364\ttotal: 1.58s\tremaining: 3.1s\n",
3485
      "169:\tlearn: 0.0385262\ttotal: 1.59s\tremaining: 3.09s\n",
3486
      "170:\tlearn: 0.0385192\ttotal: 1.6s\tremaining: 3.08s\n",
3487
      "171:\tlearn: 0.0385148\ttotal: 1.61s\tremaining: 3.07s\n",
3488
      "172:\tlearn: 0.0385105\ttotal: 1.62s\tremaining: 3.06s\n",
3489
      "173:\tlearn: 0.0384961\ttotal: 1.63s\tremaining: 3.05s\n"
3490
     ]
3491
    },
3492
    {
3493
     "name": "stdout",
3494
     "output_type": "stream",
3495
     "text": [
3496
      "174:\tlearn: 0.0384839\ttotal: 1.64s\tremaining: 3.04s\n",
3497
      "175:\tlearn: 0.0384779\ttotal: 1.65s\tremaining: 3.03s\n",
3498
      "176:\tlearn: 0.0384706\ttotal: 1.66s\tremaining: 3.02s\n",
3499
      "177:\tlearn: 0.0384609\ttotal: 1.66s\tremaining: 3.01s\n",
3500
      "178:\tlearn: 0.0384527\ttotal: 1.67s\tremaining: 3s\n",
3501
      "179:\tlearn: 0.0384463\ttotal: 1.68s\tremaining: 2.99s\n",
3502
      "180:\tlearn: 0.0384357\ttotal: 1.69s\tremaining: 2.98s\n",
3503
      "181:\tlearn: 0.0384183\ttotal: 1.7s\tremaining: 2.97s\n",
3504
      "182:\tlearn: 0.0384071\ttotal: 1.71s\tremaining: 2.96s\n",
3505
      "183:\tlearn: 0.0383967\ttotal: 1.72s\tremaining: 2.95s\n",
3506
      "184:\tlearn: 0.0383902\ttotal: 1.73s\tremaining: 2.94s\n",
3507
      "185:\tlearn: 0.0383864\ttotal: 1.74s\tremaining: 2.93s\n",
3508
      "186:\tlearn: 0.0383730\ttotal: 1.75s\tremaining: 2.92s\n",
3509
      "187:\tlearn: 0.0383637\ttotal: 1.75s\tremaining: 2.91s\n",
3510
      "188:\tlearn: 0.0383512\ttotal: 1.76s\tremaining: 2.9s\n",
3511
      "189:\tlearn: 0.0383401\ttotal: 1.77s\tremaining: 2.89s\n",
3512
      "190:\tlearn: 0.0383351\ttotal: 1.78s\tremaining: 2.88s\n",
3513
      "191:\tlearn: 0.0383294\ttotal: 1.79s\tremaining: 2.88s\n",
3514
      "192:\tlearn: 0.0383187\ttotal: 1.8s\tremaining: 2.87s\n",
3515
      "193:\tlearn: 0.0383096\ttotal: 1.81s\tremaining: 2.86s\n",
3516
      "194:\tlearn: 0.0383051\ttotal: 1.82s\tremaining: 2.85s\n",
3517
      "195:\tlearn: 0.0383003\ttotal: 1.83s\tremaining: 2.84s\n",
3518
      "196:\tlearn: 0.0382935\ttotal: 1.84s\tremaining: 2.83s\n",
3519
      "197:\tlearn: 0.0382817\ttotal: 1.85s\tremaining: 2.82s\n",
3520
      "198:\tlearn: 0.0382736\ttotal: 1.86s\tremaining: 2.81s\n",
3521
      "199:\tlearn: 0.0382689\ttotal: 1.87s\tremaining: 2.8s\n",
3522
      "200:\tlearn: 0.0382657\ttotal: 1.88s\tremaining: 2.79s\n",
3523
      "201:\tlearn: 0.0382560\ttotal: 1.89s\tremaining: 2.78s\n",
3524
      "202:\tlearn: 0.0382498\ttotal: 1.89s\tremaining: 2.77s\n",
3525
      "203:\tlearn: 0.0382436\ttotal: 1.9s\tremaining: 2.76s\n",
3526
      "204:\tlearn: 0.0382373\ttotal: 1.91s\tremaining: 2.75s\n",
3527
      "205:\tlearn: 0.0382309\ttotal: 1.92s\tremaining: 2.74s\n",
3528
      "206:\tlearn: 0.0382259\ttotal: 1.93s\tremaining: 2.73s\n",
3529
      "207:\tlearn: 0.0382180\ttotal: 1.94s\tremaining: 2.73s\n",
3530
      "208:\tlearn: 0.0382109\ttotal: 1.95s\tremaining: 2.72s\n",
3531
      "209:\tlearn: 0.0382047\ttotal: 1.96s\tremaining: 2.71s\n",
3532
      "210:\tlearn: 0.0381980\ttotal: 1.97s\tremaining: 2.7s\n",
3533
      "211:\tlearn: 0.0381898\ttotal: 1.98s\tremaining: 2.69s\n",
3534
      "212:\tlearn: 0.0381812\ttotal: 1.99s\tremaining: 2.68s\n",
3535
      "213:\tlearn: 0.0381716\ttotal: 2s\tremaining: 2.67s\n",
3536
      "214:\tlearn: 0.0381642\ttotal: 2.01s\tremaining: 2.66s\n",
3537
      "215:\tlearn: 0.0381534\ttotal: 2.02s\tremaining: 2.65s\n",
3538
      "216:\tlearn: 0.0381457\ttotal: 2.03s\tremaining: 2.64s\n",
3539
      "217:\tlearn: 0.0381389\ttotal: 2.04s\tremaining: 2.63s\n",
3540
      "218:\tlearn: 0.0381348\ttotal: 2.05s\tremaining: 2.63s\n",
3541
      "219:\tlearn: 0.0381286\ttotal: 2.06s\tremaining: 2.62s\n",
3542
      "220:\tlearn: 0.0381234\ttotal: 2.06s\tremaining: 2.61s\n",
3543
      "221:\tlearn: 0.0381110\ttotal: 2.07s\tremaining: 2.6s\n",
3544
      "222:\tlearn: 0.0381019\ttotal: 2.08s\tremaining: 2.59s\n",
3545
      "223:\tlearn: 0.0380953\ttotal: 2.09s\tremaining: 2.58s\n",
3546
      "224:\tlearn: 0.0380913\ttotal: 2.1s\tremaining: 2.57s\n",
3547
      "225:\tlearn: 0.0380812\ttotal: 2.11s\tremaining: 2.56s\n",
3548
      "226:\tlearn: 0.0380675\ttotal: 2.12s\tremaining: 2.55s\n",
3549
      "227:\tlearn: 0.0380593\ttotal: 2.13s\tremaining: 2.54s\n",
3550
      "228:\tlearn: 0.0380507\ttotal: 2.14s\tremaining: 2.53s\n",
3551
      "229:\tlearn: 0.0380466\ttotal: 2.15s\tremaining: 2.52s\n",
3552
      "230:\tlearn: 0.0380383\ttotal: 2.16s\tremaining: 2.52s\n",
3553
      "231:\tlearn: 0.0380297\ttotal: 2.17s\tremaining: 2.5s\n",
3554
      "232:\tlearn: 0.0380217\ttotal: 2.18s\tremaining: 2.5s\n",
3555
      "233:\tlearn: 0.0380159\ttotal: 2.19s\tremaining: 2.49s\n",
3556
      "234:\tlearn: 0.0380110\ttotal: 2.2s\tremaining: 2.48s\n",
3557
      "235:\tlearn: 0.0380041\ttotal: 2.21s\tremaining: 2.47s\n",
3558
      "236:\tlearn: 0.0379973\ttotal: 2.21s\tremaining: 2.46s\n",
3559
      "237:\tlearn: 0.0379908\ttotal: 2.22s\tremaining: 2.45s\n",
3560
      "238:\tlearn: 0.0379857\ttotal: 2.23s\tremaining: 2.44s\n",
3561
      "239:\tlearn: 0.0379771\ttotal: 2.24s\tremaining: 2.43s\n",
3562
      "240:\tlearn: 0.0379671\ttotal: 2.25s\tremaining: 2.42s\n",
3563
      "241:\tlearn: 0.0379588\ttotal: 2.26s\tremaining: 2.41s\n",
3564
      "242:\tlearn: 0.0379526\ttotal: 2.27s\tremaining: 2.4s\n",
3565
      "243:\tlearn: 0.0379463\ttotal: 2.28s\tremaining: 2.39s\n",
3566
      "244:\tlearn: 0.0379417\ttotal: 2.29s\tremaining: 2.38s\n",
3567
      "245:\tlearn: 0.0379380\ttotal: 2.3s\tremaining: 2.37s\n",
3568
      "246:\tlearn: 0.0379282\ttotal: 2.31s\tremaining: 2.36s\n",
3569
      "247:\tlearn: 0.0379249\ttotal: 2.31s\tremaining: 2.35s\n",
3570
      "248:\tlearn: 0.0379127\ttotal: 2.32s\tremaining: 2.34s\n",
3571
      "249:\tlearn: 0.0379069\ttotal: 2.33s\tremaining: 2.33s\n",
3572
      "250:\tlearn: 0.0379001\ttotal: 2.34s\tremaining: 2.32s\n",
3573
      "251:\tlearn: 0.0378953\ttotal: 2.35s\tremaining: 2.31s\n",
3574
      "252:\tlearn: 0.0378763\ttotal: 2.36s\tremaining: 2.3s\n",
3575
      "253:\tlearn: 0.0378648\ttotal: 2.37s\tremaining: 2.29s\n",
3576
      "254:\tlearn: 0.0378591\ttotal: 2.38s\tremaining: 2.28s\n",
3577
      "255:\tlearn: 0.0378524\ttotal: 2.39s\tremaining: 2.27s\n",
3578
      "256:\tlearn: 0.0378456\ttotal: 2.4s\tremaining: 2.27s\n",
3579
      "257:\tlearn: 0.0378407\ttotal: 2.4s\tremaining: 2.26s\n",
3580
      "258:\tlearn: 0.0378328\ttotal: 2.41s\tremaining: 2.25s\n",
3581
      "259:\tlearn: 0.0378289\ttotal: 2.42s\tremaining: 2.24s\n",
3582
      "260:\tlearn: 0.0378247\ttotal: 2.43s\tremaining: 2.23s\n",
3583
      "261:\tlearn: 0.0378161\ttotal: 2.44s\tremaining: 2.22s\n",
3584
      "262:\tlearn: 0.0378094\ttotal: 2.45s\tremaining: 2.21s\n",
3585
      "263:\tlearn: 0.0378020\ttotal: 2.46s\tremaining: 2.2s\n",
3586
      "264:\tlearn: 0.0377969\ttotal: 2.47s\tremaining: 2.19s\n",
3587
      "265:\tlearn: 0.0377927\ttotal: 2.48s\tremaining: 2.18s\n",
3588
      "266:\tlearn: 0.0377871\ttotal: 2.49s\tremaining: 2.17s\n",
3589
      "267:\tlearn: 0.0377787\ttotal: 2.5s\tremaining: 2.16s\n",
3590
      "268:\tlearn: 0.0377750\ttotal: 2.5s\tremaining: 2.15s\n",
3591
      "269:\tlearn: 0.0377695\ttotal: 2.51s\tremaining: 2.14s\n",
3592
      "270:\tlearn: 0.0377627\ttotal: 2.52s\tremaining: 2.13s\n",
3593
      "271:\tlearn: 0.0377591\ttotal: 2.53s\tremaining: 2.12s\n",
3594
      "272:\tlearn: 0.0377522\ttotal: 2.54s\tremaining: 2.11s\n",
3595
      "273:\tlearn: 0.0377442\ttotal: 2.55s\tremaining: 2.1s\n",
3596
      "274:\tlearn: 0.0377383\ttotal: 2.56s\tremaining: 2.1s\n",
3597
      "275:\tlearn: 0.0377293\ttotal: 2.57s\tremaining: 2.09s\n",
3598
      "276:\tlearn: 0.0377225\ttotal: 2.58s\tremaining: 2.08s\n",
3599
      "277:\tlearn: 0.0377190\ttotal: 2.59s\tremaining: 2.07s\n",
3600
      "278:\tlearn: 0.0377122\ttotal: 2.6s\tremaining: 2.06s\n",
3601
      "279:\tlearn: 0.0377089\ttotal: 2.61s\tremaining: 2.05s\n",
3602
      "280:\tlearn: 0.0377035\ttotal: 2.62s\tremaining: 2.04s\n",
3603
      "281:\tlearn: 0.0376981\ttotal: 2.63s\tremaining: 2.03s\n",
3604
      "282:\tlearn: 0.0376939\ttotal: 2.64s\tremaining: 2.02s\n",
3605
      "283:\tlearn: 0.0376833\ttotal: 2.65s\tremaining: 2.01s\n",
3606
      "284:\tlearn: 0.0376800\ttotal: 2.66s\tremaining: 2.01s\n",
3607
      "285:\tlearn: 0.0376750\ttotal: 2.67s\tremaining: 2s\n",
3608
      "286:\tlearn: 0.0376725\ttotal: 2.68s\tremaining: 1.99s\n",
3609
      "287:\tlearn: 0.0376625\ttotal: 2.69s\tremaining: 1.98s\n",
3610
      "288:\tlearn: 0.0376534\ttotal: 2.7s\tremaining: 1.97s\n",
3611
      "289:\tlearn: 0.0376494\ttotal: 2.71s\tremaining: 1.96s\n",
3612
      "290:\tlearn: 0.0376442\ttotal: 2.72s\tremaining: 1.95s\n",
3613
      "291:\tlearn: 0.0376378\ttotal: 2.73s\tremaining: 1.94s\n",
3614
      "292:\tlearn: 0.0376320\ttotal: 2.73s\tremaining: 1.93s\n",
3615
      "293:\tlearn: 0.0376258\ttotal: 2.74s\tremaining: 1.92s\n",
3616
      "294:\tlearn: 0.0376219\ttotal: 2.75s\tremaining: 1.91s\n",
3617
      "295:\tlearn: 0.0376157\ttotal: 2.76s\tremaining: 1.9s\n",
3618
      "296:\tlearn: 0.0376093\ttotal: 2.77s\tremaining: 1.9s\n",
3619
      "297:\tlearn: 0.0376066\ttotal: 2.78s\tremaining: 1.89s\n",
3620
      "298:\tlearn: 0.0376005\ttotal: 2.79s\tremaining: 1.88s\n",
3621
      "299:\tlearn: 0.0375963\ttotal: 2.8s\tremaining: 1.87s\n",
3622
      "300:\tlearn: 0.0375919\ttotal: 2.81s\tremaining: 1.86s\n",
3623
      "301:\tlearn: 0.0375885\ttotal: 2.82s\tremaining: 1.85s\n",
3624
      "302:\tlearn: 0.0375826\ttotal: 2.83s\tremaining: 1.84s\n",
3625
      "303:\tlearn: 0.0375780\ttotal: 2.84s\tremaining: 1.83s\n",
3626
      "304:\tlearn: 0.0375726\ttotal: 2.85s\tremaining: 1.82s\n",
3627
      "305:\tlearn: 0.0375653\ttotal: 2.85s\tremaining: 1.81s\n",
3628
      "306:\tlearn: 0.0375616\ttotal: 2.86s\tremaining: 1.8s\n",
3629
      "307:\tlearn: 0.0375560\ttotal: 2.87s\tremaining: 1.79s\n",
3630
      "308:\tlearn: 0.0375500\ttotal: 2.88s\tremaining: 1.78s\n",
3631
      "309:\tlearn: 0.0375413\ttotal: 2.89s\tremaining: 1.77s\n",
3632
      "310:\tlearn: 0.0375350\ttotal: 2.9s\tremaining: 1.76s\n",
3633
      "311:\tlearn: 0.0375315\ttotal: 2.91s\tremaining: 1.75s\n",
3634
      "312:\tlearn: 0.0375236\ttotal: 2.92s\tremaining: 1.74s\n",
3635
      "313:\tlearn: 0.0375191\ttotal: 2.93s\tremaining: 1.73s\n",
3636
      "314:\tlearn: 0.0375130\ttotal: 2.94s\tremaining: 1.73s\n",
3637
      "315:\tlearn: 0.0375046\ttotal: 2.95s\tremaining: 1.72s\n",
3638
      "316:\tlearn: 0.0374960\ttotal: 2.96s\tremaining: 1.71s\n",
3639
      "317:\tlearn: 0.0374890\ttotal: 2.96s\tremaining: 1.7s\n",
3640
      "318:\tlearn: 0.0374843\ttotal: 2.97s\tremaining: 1.69s\n",
3641
      "319:\tlearn: 0.0374768\ttotal: 2.98s\tremaining: 1.68s\n",
3642
      "320:\tlearn: 0.0374684\ttotal: 2.99s\tremaining: 1.67s\n",
3643
      "321:\tlearn: 0.0374623\ttotal: 3s\tremaining: 1.66s\n",
3644
      "322:\tlearn: 0.0374580\ttotal: 3.01s\tremaining: 1.65s\n",
3645
      "323:\tlearn: 0.0374520\ttotal: 3.02s\tremaining: 1.64s\n",
3646
      "324:\tlearn: 0.0374474\ttotal: 3.03s\tremaining: 1.63s\n",
3647
      "325:\tlearn: 0.0374436\ttotal: 3.04s\tremaining: 1.62s\n",
3648
      "326:\tlearn: 0.0374398\ttotal: 3.05s\tremaining: 1.61s\n",
3649
      "327:\tlearn: 0.0374363\ttotal: 3.06s\tremaining: 1.6s\n",
3650
      "328:\tlearn: 0.0374307\ttotal: 3.07s\tremaining: 1.59s\n",
3651
      "329:\tlearn: 0.0374228\ttotal: 3.08s\tremaining: 1.58s\n",
3652
      "330:\tlearn: 0.0374154\ttotal: 3.08s\tremaining: 1.57s\n",
3653
      "331:\tlearn: 0.0374089\ttotal: 3.09s\tremaining: 1.56s\n",
3654
      "332:\tlearn: 0.0374052\ttotal: 3.1s\tremaining: 1.56s\n",
3655
      "333:\tlearn: 0.0373998\ttotal: 3.11s\tremaining: 1.55s\n",
3656
      "334:\tlearn: 0.0373947\ttotal: 3.12s\tremaining: 1.54s\n",
3657
      "335:\tlearn: 0.0373902\ttotal: 3.13s\tremaining: 1.53s\n",
3658
      "336:\tlearn: 0.0373843\ttotal: 3.14s\tremaining: 1.52s\n",
3659
      "337:\tlearn: 0.0373791\ttotal: 3.15s\tremaining: 1.51s\n",
3660
      "338:\tlearn: 0.0373747\ttotal: 3.16s\tremaining: 1.5s\n",
3661
      "339:\tlearn: 0.0373693\ttotal: 3.17s\tremaining: 1.49s\n",
3662
      "340:\tlearn: 0.0373585\ttotal: 3.18s\tremaining: 1.48s\n",
3663
      "341:\tlearn: 0.0373566\ttotal: 3.19s\tremaining: 1.47s\n",
3664
      "342:\tlearn: 0.0373536\ttotal: 3.19s\tremaining: 1.46s\n",
3665
      "343:\tlearn: 0.0373499\ttotal: 3.2s\tremaining: 1.45s\n",
3666
      "344:\tlearn: 0.0373470\ttotal: 3.21s\tremaining: 1.44s\n",
3667
      "345:\tlearn: 0.0373409\ttotal: 3.22s\tremaining: 1.43s\n",
3668
      "346:\tlearn: 0.0373386\ttotal: 3.23s\tremaining: 1.42s\n",
3669
      "347:\tlearn: 0.0373335\ttotal: 3.24s\tremaining: 1.42s\n",
3670
      "348:\tlearn: 0.0373284\ttotal: 3.25s\tremaining: 1.41s\n",
3671
      "349:\tlearn: 0.0373224\ttotal: 3.26s\tremaining: 1.4s\n"
3672
     ]
3673
    },
3674
    {
3675
     "name": "stdout",
3676
     "output_type": "stream",
3677
     "text": [
3678
      "350:\tlearn: 0.0373154\ttotal: 3.27s\tremaining: 1.39s\n",
3679
      "351:\tlearn: 0.0373102\ttotal: 3.28s\tremaining: 1.38s\n",
3680
      "352:\tlearn: 0.0373039\ttotal: 3.29s\tremaining: 1.37s\n",
3681
      "353:\tlearn: 0.0372967\ttotal: 3.29s\tremaining: 1.36s\n",
3682
      "354:\tlearn: 0.0372925\ttotal: 3.3s\tremaining: 1.35s\n",
3683
      "355:\tlearn: 0.0372871\ttotal: 3.31s\tremaining: 1.34s\n",
3684
      "356:\tlearn: 0.0372825\ttotal: 3.32s\tremaining: 1.33s\n",
3685
      "357:\tlearn: 0.0372786\ttotal: 3.33s\tremaining: 1.32s\n",
3686
      "358:\tlearn: 0.0372741\ttotal: 3.34s\tremaining: 1.31s\n",
3687
      "359:\tlearn: 0.0372712\ttotal: 3.35s\tremaining: 1.3s\n",
3688
      "360:\tlearn: 0.0372686\ttotal: 3.36s\tremaining: 1.29s\n",
3689
      "361:\tlearn: 0.0372629\ttotal: 3.37s\tremaining: 1.28s\n",
3690
      "362:\tlearn: 0.0372587\ttotal: 3.38s\tremaining: 1.27s\n",
3691
      "363:\tlearn: 0.0372557\ttotal: 3.39s\tremaining: 1.26s\n",
3692
      "364:\tlearn: 0.0372501\ttotal: 3.4s\tremaining: 1.25s\n",
3693
      "365:\tlearn: 0.0372429\ttotal: 3.4s\tremaining: 1.25s\n",
3694
      "366:\tlearn: 0.0372319\ttotal: 3.41s\tremaining: 1.24s\n",
3695
      "367:\tlearn: 0.0372281\ttotal: 3.42s\tremaining: 1.23s\n",
3696
      "368:\tlearn: 0.0372236\ttotal: 3.43s\tremaining: 1.22s\n",
3697
      "369:\tlearn: 0.0372211\ttotal: 3.44s\tremaining: 1.21s\n",
3698
      "370:\tlearn: 0.0372172\ttotal: 3.45s\tremaining: 1.2s\n",
3699
      "371:\tlearn: 0.0372108\ttotal: 3.46s\tremaining: 1.19s\n",
3700
      "372:\tlearn: 0.0372043\ttotal: 3.47s\tremaining: 1.18s\n",
3701
      "373:\tlearn: 0.0371987\ttotal: 3.48s\tremaining: 1.17s\n",
3702
      "374:\tlearn: 0.0371948\ttotal: 3.49s\tremaining: 1.16s\n",
3703
      "375:\tlearn: 0.0371875\ttotal: 3.5s\tremaining: 1.15s\n",
3704
      "376:\tlearn: 0.0371846\ttotal: 3.51s\tremaining: 1.14s\n",
3705
      "377:\tlearn: 0.0371818\ttotal: 3.52s\tremaining: 1.13s\n",
3706
      "378:\tlearn: 0.0371787\ttotal: 3.52s\tremaining: 1.13s\n",
3707
      "379:\tlearn: 0.0371723\ttotal: 3.53s\tremaining: 1.12s\n",
3708
      "380:\tlearn: 0.0371659\ttotal: 3.54s\tremaining: 1.11s\n",
3709
      "381:\tlearn: 0.0371605\ttotal: 3.55s\tremaining: 1.1s\n",
3710
      "382:\tlearn: 0.0371560\ttotal: 3.56s\tremaining: 1.09s\n",
3711
      "383:\tlearn: 0.0371482\ttotal: 3.57s\tremaining: 1.08s\n",
3712
      "384:\tlearn: 0.0371445\ttotal: 3.58s\tremaining: 1.07s\n",
3713
      "385:\tlearn: 0.0371408\ttotal: 3.59s\tremaining: 1.06s\n",
3714
      "386:\tlearn: 0.0371372\ttotal: 3.6s\tremaining: 1.05s\n",
3715
      "387:\tlearn: 0.0371321\ttotal: 3.61s\tremaining: 1.04s\n",
3716
      "388:\tlearn: 0.0371280\ttotal: 3.62s\tremaining: 1.03s\n",
3717
      "389:\tlearn: 0.0371255\ttotal: 3.63s\tremaining: 1.02s\n",
3718
      "390:\tlearn: 0.0371220\ttotal: 3.63s\tremaining: 1.01s\n",
3719
      "391:\tlearn: 0.0371167\ttotal: 3.64s\tremaining: 1s\n",
3720
      "392:\tlearn: 0.0371135\ttotal: 3.65s\tremaining: 995ms\n",
3721
      "393:\tlearn: 0.0371076\ttotal: 3.66s\tremaining: 986ms\n",
3722
      "394:\tlearn: 0.0371034\ttotal: 3.67s\tremaining: 976ms\n",
3723
      "395:\tlearn: 0.0370965\ttotal: 3.68s\tremaining: 967ms\n",
3724
      "396:\tlearn: 0.0370926\ttotal: 3.69s\tremaining: 958ms\n",
3725
      "397:\tlearn: 0.0370861\ttotal: 3.7s\tremaining: 949ms\n",
3726
      "398:\tlearn: 0.0370784\ttotal: 3.71s\tremaining: 939ms\n",
3727
      "399:\tlearn: 0.0370710\ttotal: 3.72s\tremaining: 930ms\n",
3728
      "400:\tlearn: 0.0370668\ttotal: 3.73s\tremaining: 921ms\n",
3729
      "401:\tlearn: 0.0370633\ttotal: 3.74s\tremaining: 911ms\n",
3730
      "402:\tlearn: 0.0370594\ttotal: 3.75s\tremaining: 902ms\n",
3731
      "403:\tlearn: 0.0370555\ttotal: 3.76s\tremaining: 893ms\n",
3732
      "404:\tlearn: 0.0370521\ttotal: 3.77s\tremaining: 883ms\n",
3733
      "405:\tlearn: 0.0370494\ttotal: 3.77s\tremaining: 874ms\n",
3734
      "406:\tlearn: 0.0370425\ttotal: 3.78s\tremaining: 865ms\n",
3735
      "407:\tlearn: 0.0370391\ttotal: 3.79s\tremaining: 856ms\n",
3736
      "408:\tlearn: 0.0370339\ttotal: 3.8s\tremaining: 846ms\n",
3737
      "409:\tlearn: 0.0370300\ttotal: 3.81s\tremaining: 837ms\n",
3738
      "410:\tlearn: 0.0370229\ttotal: 3.82s\tremaining: 828ms\n",
3739
      "411:\tlearn: 0.0370194\ttotal: 3.83s\tremaining: 818ms\n",
3740
      "412:\tlearn: 0.0370169\ttotal: 3.84s\tremaining: 809ms\n",
3741
      "413:\tlearn: 0.0370133\ttotal: 3.85s\tremaining: 800ms\n",
3742
      "414:\tlearn: 0.0370073\ttotal: 3.86s\tremaining: 791ms\n",
3743
      "415:\tlearn: 0.0370045\ttotal: 3.87s\tremaining: 781ms\n",
3744
      "416:\tlearn: 0.0369993\ttotal: 3.88s\tremaining: 772ms\n",
3745
      "417:\tlearn: 0.0369941\ttotal: 3.89s\tremaining: 763ms\n",
3746
      "418:\tlearn: 0.0369894\ttotal: 3.9s\tremaining: 753ms\n",
3747
      "419:\tlearn: 0.0369817\ttotal: 3.91s\tremaining: 744ms\n",
3748
      "420:\tlearn: 0.0369790\ttotal: 3.92s\tremaining: 735ms\n",
3749
      "421:\tlearn: 0.0369708\ttotal: 3.92s\tremaining: 726ms\n",
3750
      "422:\tlearn: 0.0369643\ttotal: 3.93s\tremaining: 716ms\n",
3751
      "423:\tlearn: 0.0369609\ttotal: 3.94s\tremaining: 707ms\n",
3752
      "424:\tlearn: 0.0369573\ttotal: 3.95s\tremaining: 697ms\n",
3753
      "425:\tlearn: 0.0369540\ttotal: 3.96s\tremaining: 688ms\n",
3754
      "426:\tlearn: 0.0369493\ttotal: 3.97s\tremaining: 679ms\n",
3755
      "427:\tlearn: 0.0369452\ttotal: 3.98s\tremaining: 670ms\n",
3756
      "428:\tlearn: 0.0369421\ttotal: 3.99s\tremaining: 660ms\n",
3757
      "429:\tlearn: 0.0369332\ttotal: 4s\tremaining: 651ms\n",
3758
      "430:\tlearn: 0.0369291\ttotal: 4.01s\tremaining: 642ms\n",
3759
      "431:\tlearn: 0.0369233\ttotal: 4.02s\tremaining: 632ms\n",
3760
      "432:\tlearn: 0.0369215\ttotal: 4.03s\tremaining: 623ms\n",
3761
      "433:\tlearn: 0.0369186\ttotal: 4.04s\tremaining: 614ms\n",
3762
      "434:\tlearn: 0.0369137\ttotal: 4.04s\tremaining: 605ms\n",
3763
      "435:\tlearn: 0.0369103\ttotal: 4.05s\tremaining: 595ms\n",
3764
      "436:\tlearn: 0.0369027\ttotal: 4.06s\tremaining: 586ms\n",
3765
      "437:\tlearn: 0.0368979\ttotal: 4.07s\tremaining: 577ms\n",
3766
      "438:\tlearn: 0.0368953\ttotal: 4.08s\tremaining: 567ms\n",
3767
      "439:\tlearn: 0.0368916\ttotal: 4.09s\tremaining: 558ms\n",
3768
      "440:\tlearn: 0.0368880\ttotal: 4.1s\tremaining: 549ms\n",
3769
      "441:\tlearn: 0.0368817\ttotal: 4.11s\tremaining: 539ms\n",
3770
      "442:\tlearn: 0.0368781\ttotal: 4.12s\tremaining: 530ms\n",
3771
      "443:\tlearn: 0.0368693\ttotal: 4.13s\tremaining: 521ms\n",
3772
      "444:\tlearn: 0.0368632\ttotal: 4.14s\tremaining: 512ms\n",
3773
      "445:\tlearn: 0.0368588\ttotal: 4.15s\tremaining: 502ms\n",
3774
      "446:\tlearn: 0.0368556\ttotal: 4.16s\tremaining: 493ms\n",
3775
      "447:\tlearn: 0.0368524\ttotal: 4.17s\tremaining: 484ms\n",
3776
      "448:\tlearn: 0.0368498\ttotal: 4.17s\tremaining: 474ms\n",
3777
      "449:\tlearn: 0.0368466\ttotal: 4.18s\tremaining: 465ms\n",
3778
      "450:\tlearn: 0.0368425\ttotal: 4.19s\tremaining: 456ms\n",
3779
      "451:\tlearn: 0.0368350\ttotal: 4.2s\tremaining: 446ms\n",
3780
      "452:\tlearn: 0.0368319\ttotal: 4.21s\tremaining: 437ms\n",
3781
      "453:\tlearn: 0.0368287\ttotal: 4.22s\tremaining: 428ms\n",
3782
      "454:\tlearn: 0.0368258\ttotal: 4.23s\tremaining: 418ms\n",
3783
      "455:\tlearn: 0.0368229\ttotal: 4.24s\tremaining: 409ms\n",
3784
      "456:\tlearn: 0.0368174\ttotal: 4.25s\tremaining: 400ms\n",
3785
      "457:\tlearn: 0.0368149\ttotal: 4.26s\tremaining: 390ms\n",
3786
      "458:\tlearn: 0.0368104\ttotal: 4.27s\tremaining: 381ms\n",
3787
      "459:\tlearn: 0.0368072\ttotal: 4.28s\tremaining: 372ms\n",
3788
      "460:\tlearn: 0.0368025\ttotal: 4.29s\tremaining: 363ms\n",
3789
      "461:\tlearn: 0.0367969\ttotal: 4.29s\tremaining: 353ms\n",
3790
      "462:\tlearn: 0.0367911\ttotal: 4.3s\tremaining: 344ms\n",
3791
      "463:\tlearn: 0.0367852\ttotal: 4.31s\tremaining: 335ms\n",
3792
      "464:\tlearn: 0.0367805\ttotal: 4.32s\tremaining: 325ms\n",
3793
      "465:\tlearn: 0.0367781\ttotal: 4.33s\tremaining: 316ms\n",
3794
      "466:\tlearn: 0.0367695\ttotal: 4.34s\tremaining: 307ms\n",
3795
      "467:\tlearn: 0.0367660\ttotal: 4.35s\tremaining: 297ms\n",
3796
      "468:\tlearn: 0.0367603\ttotal: 4.36s\tremaining: 288ms\n",
3797
      "469:\tlearn: 0.0367577\ttotal: 4.37s\tremaining: 279ms\n",
3798
      "470:\tlearn: 0.0367555\ttotal: 4.38s\tremaining: 270ms\n",
3799
      "471:\tlearn: 0.0367509\ttotal: 4.39s\tremaining: 260ms\n",
3800
      "472:\tlearn: 0.0367474\ttotal: 4.4s\tremaining: 251ms\n",
3801
      "473:\tlearn: 0.0367441\ttotal: 4.41s\tremaining: 242ms\n",
3802
      "474:\tlearn: 0.0367409\ttotal: 4.41s\tremaining: 232ms\n",
3803
      "475:\tlearn: 0.0367359\ttotal: 4.42s\tremaining: 223ms\n",
3804
      "476:\tlearn: 0.0367311\ttotal: 4.43s\tremaining: 214ms\n",
3805
      "477:\tlearn: 0.0367248\ttotal: 4.44s\tremaining: 204ms\n",
3806
      "478:\tlearn: 0.0367199\ttotal: 4.45s\tremaining: 195ms\n",
3807
      "479:\tlearn: 0.0367143\ttotal: 4.46s\tremaining: 186ms\n",
3808
      "480:\tlearn: 0.0367067\ttotal: 4.47s\tremaining: 177ms\n",
3809
      "481:\tlearn: 0.0367022\ttotal: 4.48s\tremaining: 167ms\n",
3810
      "482:\tlearn: 0.0366976\ttotal: 4.49s\tremaining: 158ms\n",
3811
      "483:\tlearn: 0.0366913\ttotal: 4.5s\tremaining: 149ms\n",
3812
      "484:\tlearn: 0.0366856\ttotal: 4.51s\tremaining: 139ms\n",
3813
      "485:\tlearn: 0.0366823\ttotal: 4.52s\tremaining: 130ms\n",
3814
      "486:\tlearn: 0.0366767\ttotal: 4.53s\tremaining: 121ms\n",
3815
      "487:\tlearn: 0.0366738\ttotal: 4.54s\tremaining: 112ms\n",
3816
      "488:\tlearn: 0.0366704\ttotal: 4.55s\tremaining: 102ms\n",
3817
      "489:\tlearn: 0.0366651\ttotal: 4.55s\tremaining: 93ms\n",
3818
      "490:\tlearn: 0.0366614\ttotal: 4.56s\tremaining: 83.7ms\n",
3819
      "491:\tlearn: 0.0366578\ttotal: 4.57s\tremaining: 74.4ms\n",
3820
      "492:\tlearn: 0.0366509\ttotal: 4.58s\tremaining: 65.1ms\n",
3821
      "493:\tlearn: 0.0366466\ttotal: 4.59s\tremaining: 55.8ms\n",
3822
      "494:\tlearn: 0.0366437\ttotal: 4.6s\tremaining: 46.5ms\n",
3823
      "495:\tlearn: 0.0366401\ttotal: 4.61s\tremaining: 37.2ms\n",
3824
      "496:\tlearn: 0.0366357\ttotal: 4.62s\tremaining: 27.9ms\n",
3825
      "497:\tlearn: 0.0366326\ttotal: 4.63s\tremaining: 18.6ms\n",
3826
      "498:\tlearn: 0.0366258\ttotal: 4.64s\tremaining: 9.3ms\n",
3827
      "499:\tlearn: 0.0366237\ttotal: 4.65s\tremaining: 0us\n"
3828
     ]
3829
    },
3830
    {
3831
     "name": "stderr",
3832
     "output_type": "stream",
3833
     "text": [
3834
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
3835
     ]
3836
    },
3837
    {
3838
     "name": "stdout",
3839
     "output_type": "stream",
3840
     "text": [
3841
      "0:\tlearn: 0.5974800\ttotal: 10.8ms\tremaining: 5.38s\n",
3842
      "1:\tlearn: 0.5163507\ttotal: 20.4ms\tremaining: 5.07s\n",
3843
      "2:\tlearn: 0.4474815\ttotal: 29.7ms\tremaining: 4.92s\n",
3844
      "3:\tlearn: 0.3925685\ttotal: 38.8ms\tremaining: 4.81s\n",
3845
      "4:\tlearn: 0.3338620\ttotal: 48.3ms\tremaining: 4.78s\n",
3846
      "5:\tlearn: 0.2860227\ttotal: 57.9ms\tremaining: 4.77s\n",
3847
      "6:\tlearn: 0.2460400\ttotal: 68ms\tremaining: 4.79s\n",
3848
      "7:\tlearn: 0.2119136\ttotal: 77.9ms\tremaining: 4.79s\n",
3849
      "8:\tlearn: 0.1857879\ttotal: 88.2ms\tremaining: 4.81s\n",
3850
      "9:\tlearn: 0.1621412\ttotal: 98ms\tremaining: 4.8s\n",
3851
      "10:\tlearn: 0.1423682\ttotal: 109ms\tremaining: 4.83s\n",
3852
      "11:\tlearn: 0.1266204\ttotal: 119ms\tremaining: 4.85s\n",
3853
      "12:\tlearn: 0.1132541\ttotal: 130ms\tremaining: 4.86s\n",
3854
      "13:\tlearn: 0.1021069\ttotal: 140ms\tremaining: 4.85s\n",
3855
      "14:\tlearn: 0.0919933\ttotal: 150ms\tremaining: 4.84s\n",
3856
      "15:\tlearn: 0.0836572\ttotal: 160ms\tremaining: 4.83s\n",
3857
      "16:\tlearn: 0.0770137\ttotal: 170ms\tremaining: 4.82s\n",
3858
      "17:\tlearn: 0.0707336\ttotal: 180ms\tremaining: 4.81s\n",
3859
      "18:\tlearn: 0.0657254\ttotal: 190ms\tremaining: 4.8s\n",
3860
      "19:\tlearn: 0.0610038\ttotal: 200ms\tremaining: 4.79s\n",
3861
      "20:\tlearn: 0.0574522\ttotal: 209ms\tremaining: 4.78s\n",
3862
      "21:\tlearn: 0.0540153\ttotal: 220ms\tremaining: 4.78s\n",
3863
      "22:\tlearn: 0.0511266\ttotal: 230ms\tremaining: 4.76s\n",
3864
      "23:\tlearn: 0.0485717\ttotal: 240ms\tremaining: 4.75s\n",
3865
      "24:\tlearn: 0.0462456\ttotal: 249ms\tremaining: 4.74s\n",
3866
      "25:\tlearn: 0.0441020\ttotal: 259ms\tremaining: 4.73s\n",
3867
      "26:\tlearn: 0.0422492\ttotal: 270ms\tremaining: 4.72s\n",
3868
      "27:\tlearn: 0.0407204\ttotal: 280ms\tremaining: 4.72s\n",
3869
      "28:\tlearn: 0.0395300\ttotal: 290ms\tremaining: 4.71s\n",
3870
      "29:\tlearn: 0.0383094\ttotal: 300ms\tremaining: 4.7s\n",
3871
      "30:\tlearn: 0.0371703\ttotal: 310ms\tremaining: 4.68s\n",
3872
      "31:\tlearn: 0.0361294\ttotal: 319ms\tremaining: 4.67s\n",
3873
      "32:\tlearn: 0.0350966\ttotal: 329ms\tremaining: 4.65s\n",
3874
      "33:\tlearn: 0.0344499\ttotal: 338ms\tremaining: 4.64s\n",
3875
      "34:\tlearn: 0.0337783\ttotal: 348ms\tremaining: 4.62s\n",
3876
      "35:\tlearn: 0.0329642\ttotal: 357ms\tremaining: 4.6s\n",
3877
      "36:\tlearn: 0.0324353\ttotal: 366ms\tremaining: 4.58s\n",
3878
      "37:\tlearn: 0.0319472\ttotal: 376ms\tremaining: 4.57s\n",
3879
      "38:\tlearn: 0.0313374\ttotal: 385ms\tremaining: 4.55s\n",
3880
      "39:\tlearn: 0.0309034\ttotal: 394ms\tremaining: 4.53s\n",
3881
      "40:\tlearn: 0.0305878\ttotal: 403ms\tremaining: 4.51s\n",
3882
      "41:\tlearn: 0.0302528\ttotal: 412ms\tremaining: 4.5s\n",
3883
      "42:\tlearn: 0.0298330\ttotal: 422ms\tremaining: 4.49s\n",
3884
      "43:\tlearn: 0.0294658\ttotal: 432ms\tremaining: 4.47s\n",
3885
      "44:\tlearn: 0.0291337\ttotal: 441ms\tremaining: 4.46s\n",
3886
      "45:\tlearn: 0.0288643\ttotal: 450ms\tremaining: 4.44s\n",
3887
      "46:\tlearn: 0.0285415\ttotal: 459ms\tremaining: 4.43s\n",
3888
      "47:\tlearn: 0.0283581\ttotal: 469ms\tremaining: 4.42s\n",
3889
      "48:\tlearn: 0.0281095\ttotal: 478ms\tremaining: 4.4s\n",
3890
      "49:\tlearn: 0.0279293\ttotal: 487ms\tremaining: 4.38s\n",
3891
      "50:\tlearn: 0.0277587\ttotal: 496ms\tremaining: 4.37s\n",
3892
      "51:\tlearn: 0.0276599\ttotal: 505ms\tremaining: 4.35s\n",
3893
      "52:\tlearn: 0.0275192\ttotal: 514ms\tremaining: 4.34s\n",
3894
      "53:\tlearn: 0.0274262\ttotal: 523ms\tremaining: 4.32s\n",
3895
      "54:\tlearn: 0.0272999\ttotal: 532ms\tremaining: 4.31s\n",
3896
      "55:\tlearn: 0.0271778\ttotal: 542ms\tremaining: 4.29s\n",
3897
      "56:\tlearn: 0.0270896\ttotal: 550ms\tremaining: 4.28s\n",
3898
      "57:\tlearn: 0.0269820\ttotal: 560ms\tremaining: 4.26s\n",
3899
      "58:\tlearn: 0.0268585\ttotal: 569ms\tremaining: 4.25s\n",
3900
      "59:\tlearn: 0.0267830\ttotal: 578ms\tremaining: 4.24s\n",
3901
      "60:\tlearn: 0.0266794\ttotal: 588ms\tremaining: 4.23s\n",
3902
      "61:\tlearn: 0.0265944\ttotal: 597ms\tremaining: 4.22s\n",
3903
      "62:\tlearn: 0.0264788\ttotal: 606ms\tremaining: 4.2s\n",
3904
      "63:\tlearn: 0.0263604\ttotal: 616ms\tremaining: 4.19s\n",
3905
      "64:\tlearn: 0.0262561\ttotal: 625ms\tremaining: 4.18s\n",
3906
      "65:\tlearn: 0.0261965\ttotal: 634ms\tremaining: 4.17s\n",
3907
      "66:\tlearn: 0.0261433\ttotal: 643ms\tremaining: 4.15s\n",
3908
      "67:\tlearn: 0.0260952\ttotal: 652ms\tremaining: 4.14s\n",
3909
      "68:\tlearn: 0.0260093\ttotal: 661ms\tremaining: 4.13s\n",
3910
      "69:\tlearn: 0.0259352\ttotal: 670ms\tremaining: 4.12s\n",
3911
      "70:\tlearn: 0.0259021\ttotal: 679ms\tremaining: 4.1s\n",
3912
      "71:\tlearn: 0.0258360\ttotal: 688ms\tremaining: 4.09s\n",
3913
      "72:\tlearn: 0.0257938\ttotal: 698ms\tremaining: 4.08s\n",
3914
      "73:\tlearn: 0.0257647\ttotal: 707ms\tremaining: 4.07s\n",
3915
      "74:\tlearn: 0.0257114\ttotal: 717ms\tremaining: 4.06s\n",
3916
      "75:\tlearn: 0.0256452\ttotal: 726ms\tremaining: 4.05s\n",
3917
      "76:\tlearn: 0.0255892\ttotal: 735ms\tremaining: 4.04s\n",
3918
      "77:\tlearn: 0.0255637\ttotal: 745ms\tremaining: 4.03s\n",
3919
      "78:\tlearn: 0.0255391\ttotal: 754ms\tremaining: 4.02s\n",
3920
      "79:\tlearn: 0.0254904\ttotal: 763ms\tremaining: 4s\n",
3921
      "80:\tlearn: 0.0254255\ttotal: 772ms\tremaining: 3.99s\n",
3922
      "81:\tlearn: 0.0253685\ttotal: 781ms\tremaining: 3.98s\n",
3923
      "82:\tlearn: 0.0253295\ttotal: 790ms\tremaining: 3.97s\n",
3924
      "83:\tlearn: 0.0252775\ttotal: 800ms\tremaining: 3.96s\n",
3925
      "84:\tlearn: 0.0252620\ttotal: 809ms\tremaining: 3.95s\n",
3926
      "85:\tlearn: 0.0252272\ttotal: 819ms\tremaining: 3.94s\n",
3927
      "86:\tlearn: 0.0251858\ttotal: 828ms\tremaining: 3.93s\n",
3928
      "87:\tlearn: 0.0251634\ttotal: 837ms\tremaining: 3.92s\n",
3929
      "88:\tlearn: 0.0251316\ttotal: 846ms\tremaining: 3.91s\n",
3930
      "89:\tlearn: 0.0251023\ttotal: 856ms\tremaining: 3.9s\n",
3931
      "90:\tlearn: 0.0250684\ttotal: 865ms\tremaining: 3.89s\n",
3932
      "91:\tlearn: 0.0250321\ttotal: 874ms\tremaining: 3.88s\n",
3933
      "92:\tlearn: 0.0250203\ttotal: 883ms\tremaining: 3.86s\n",
3934
      "93:\tlearn: 0.0250036\ttotal: 892ms\tremaining: 3.85s\n",
3935
      "94:\tlearn: 0.0249950\ttotal: 901ms\tremaining: 3.84s\n",
3936
      "95:\tlearn: 0.0249825\ttotal: 910ms\tremaining: 3.83s\n",
3937
      "96:\tlearn: 0.0249503\ttotal: 920ms\tremaining: 3.82s\n",
3938
      "97:\tlearn: 0.0249390\ttotal: 929ms\tremaining: 3.81s\n",
3939
      "98:\tlearn: 0.0249222\ttotal: 938ms\tremaining: 3.8s\n",
3940
      "99:\tlearn: 0.0249114\ttotal: 947ms\tremaining: 3.79s\n",
3941
      "100:\tlearn: 0.0248864\ttotal: 957ms\tremaining: 3.78s\n",
3942
      "101:\tlearn: 0.0248765\ttotal: 966ms\tremaining: 3.77s\n",
3943
      "102:\tlearn: 0.0248675\ttotal: 976ms\tremaining: 3.76s\n",
3944
      "103:\tlearn: 0.0248518\ttotal: 984ms\tremaining: 3.75s\n",
3945
      "104:\tlearn: 0.0248429\ttotal: 993ms\tremaining: 3.74s\n",
3946
      "105:\tlearn: 0.0248368\ttotal: 1s\tremaining: 3.73s\n",
3947
      "106:\tlearn: 0.0248211\ttotal: 1.01s\tremaining: 3.72s\n",
3948
      "107:\tlearn: 0.0248093\ttotal: 1.02s\tremaining: 3.71s\n",
3949
      "108:\tlearn: 0.0247979\ttotal: 1.03s\tremaining: 3.7s\n",
3950
      "109:\tlearn: 0.0247835\ttotal: 1.04s\tremaining: 3.69s\n",
3951
      "110:\tlearn: 0.0247736\ttotal: 1.05s\tremaining: 3.67s\n",
3952
      "111:\tlearn: 0.0247488\ttotal: 1.06s\tremaining: 3.67s\n",
3953
      "112:\tlearn: 0.0247361\ttotal: 1.07s\tremaining: 3.66s\n",
3954
      "113:\tlearn: 0.0247152\ttotal: 1.08s\tremaining: 3.65s\n",
3955
      "114:\tlearn: 0.0246844\ttotal: 1.09s\tremaining: 3.64s\n",
3956
      "115:\tlearn: 0.0246478\ttotal: 1.09s\tremaining: 3.63s\n",
3957
      "116:\tlearn: 0.0246280\ttotal: 1.1s\tremaining: 3.62s\n",
3958
      "117:\tlearn: 0.0246110\ttotal: 1.11s\tremaining: 3.6s\n",
3959
      "118:\tlearn: 0.0245984\ttotal: 1.12s\tremaining: 3.59s\n",
3960
      "119:\tlearn: 0.0245876\ttotal: 1.13s\tremaining: 3.59s\n",
3961
      "120:\tlearn: 0.0245799\ttotal: 1.14s\tremaining: 3.58s\n",
3962
      "121:\tlearn: 0.0245608\ttotal: 1.15s\tremaining: 3.56s\n",
3963
      "122:\tlearn: 0.0245517\ttotal: 1.16s\tremaining: 3.56s\n",
3964
      "123:\tlearn: 0.0245424\ttotal: 1.17s\tremaining: 3.54s\n",
3965
      "124:\tlearn: 0.0245261\ttotal: 1.18s\tremaining: 3.54s\n",
3966
      "125:\tlearn: 0.0245184\ttotal: 1.19s\tremaining: 3.52s\n",
3967
      "126:\tlearn: 0.0245081\ttotal: 1.2s\tremaining: 3.51s\n",
3968
      "127:\tlearn: 0.0245003\ttotal: 1.21s\tremaining: 3.5s\n",
3969
      "128:\tlearn: 0.0244846\ttotal: 1.21s\tremaining: 3.49s\n",
3970
      "129:\tlearn: 0.0244754\ttotal: 1.22s\tremaining: 3.48s\n",
3971
      "130:\tlearn: 0.0244582\ttotal: 1.23s\tremaining: 3.47s\n",
3972
      "131:\tlearn: 0.0244531\ttotal: 1.24s\tremaining: 3.46s\n",
3973
      "132:\tlearn: 0.0244462\ttotal: 1.25s\tremaining: 3.45s\n",
3974
      "133:\tlearn: 0.0244345\ttotal: 1.26s\tremaining: 3.44s\n",
3975
      "134:\tlearn: 0.0244283\ttotal: 1.27s\tremaining: 3.43s\n",
3976
      "135:\tlearn: 0.0244247\ttotal: 1.28s\tremaining: 3.42s\n",
3977
      "136:\tlearn: 0.0244195\ttotal: 1.29s\tremaining: 3.42s\n",
3978
      "137:\tlearn: 0.0244128\ttotal: 1.3s\tremaining: 3.4s\n",
3979
      "138:\tlearn: 0.0244012\ttotal: 1.31s\tremaining: 3.4s\n",
3980
      "139:\tlearn: 0.0243839\ttotal: 1.32s\tremaining: 3.38s\n",
3981
      "140:\tlearn: 0.0243778\ttotal: 1.32s\tremaining: 3.38s\n",
3982
      "141:\tlearn: 0.0243663\ttotal: 1.33s\tremaining: 3.37s\n",
3983
      "142:\tlearn: 0.0243602\ttotal: 1.34s\tremaining: 3.35s\n",
3984
      "143:\tlearn: 0.0243526\ttotal: 1.35s\tremaining: 3.35s\n",
3985
      "144:\tlearn: 0.0243385\ttotal: 1.36s\tremaining: 3.33s\n",
3986
      "145:\tlearn: 0.0243245\ttotal: 1.37s\tremaining: 3.32s\n",
3987
      "146:\tlearn: 0.0243157\ttotal: 1.38s\tremaining: 3.31s\n",
3988
      "147:\tlearn: 0.0243084\ttotal: 1.39s\tremaining: 3.3s\n",
3989
      "148:\tlearn: 0.0243037\ttotal: 1.4s\tremaining: 3.29s\n",
3990
      "149:\tlearn: 0.0242965\ttotal: 1.41s\tremaining: 3.28s\n",
3991
      "150:\tlearn: 0.0242925\ttotal: 1.42s\tremaining: 3.27s\n",
3992
      "151:\tlearn: 0.0242845\ttotal: 1.43s\tremaining: 3.26s\n",
3993
      "152:\tlearn: 0.0242700\ttotal: 1.43s\tremaining: 3.25s\n",
3994
      "153:\tlearn: 0.0242631\ttotal: 1.44s\tremaining: 3.24s\n",
3995
      "154:\tlearn: 0.0242509\ttotal: 1.45s\tremaining: 3.23s\n",
3996
      "155:\tlearn: 0.0242436\ttotal: 1.46s\tremaining: 3.22s\n",
3997
      "156:\tlearn: 0.0242299\ttotal: 1.47s\tremaining: 3.21s\n",
3998
      "157:\tlearn: 0.0242181\ttotal: 1.48s\tremaining: 3.2s\n",
3999
      "158:\tlearn: 0.0242094\ttotal: 1.49s\tremaining: 3.19s\n",
4000
      "159:\tlearn: 0.0242001\ttotal: 1.5s\tremaining: 3.18s\n",
4001
      "160:\tlearn: 0.0241941\ttotal: 1.51s\tremaining: 3.17s\n",
4002
      "161:\tlearn: 0.0241851\ttotal: 1.51s\tremaining: 3.16s\n",
4003
      "162:\tlearn: 0.0241732\ttotal: 1.52s\tremaining: 3.15s\n",
4004
      "163:\tlearn: 0.0241721\ttotal: 1.53s\tremaining: 3.14s\n",
4005
      "164:\tlearn: 0.0241677\ttotal: 1.54s\tremaining: 3.13s\n",
4006
      "165:\tlearn: 0.0241570\ttotal: 1.55s\tremaining: 3.12s\n",
4007
      "166:\tlearn: 0.0241537\ttotal: 1.56s\tremaining: 3.11s\n",
4008
      "167:\tlearn: 0.0241457\ttotal: 1.57s\tremaining: 3.1s\n",
4009
      "168:\tlearn: 0.0241409\ttotal: 1.58s\tremaining: 3.09s\n",
4010
      "169:\tlearn: 0.0241323\ttotal: 1.59s\tremaining: 3.08s\n",
4011
      "170:\tlearn: 0.0241306\ttotal: 1.6s\tremaining: 3.07s\n",
4012
      "171:\tlearn: 0.0241271\ttotal: 1.61s\tremaining: 3.07s\n",
4013
      "172:\tlearn: 0.0241239\ttotal: 1.62s\tremaining: 3.06s\n",
4014
      "173:\tlearn: 0.0241159\ttotal: 1.63s\tremaining: 3.05s\n"
4015
     ]
4016
    },
4017
    {
4018
     "name": "stdout",
4019
     "output_type": "stream",
4020
     "text": [
4021
      "174:\tlearn: 0.0241104\ttotal: 1.64s\tremaining: 3.04s\n",
4022
      "175:\tlearn: 0.0241050\ttotal: 1.64s\tremaining: 3.03s\n",
4023
      "176:\tlearn: 0.0240999\ttotal: 1.65s\tremaining: 3.02s\n",
4024
      "177:\tlearn: 0.0240941\ttotal: 1.66s\tremaining: 3.01s\n",
4025
      "178:\tlearn: 0.0240892\ttotal: 1.67s\tremaining: 3s\n",
4026
      "179:\tlearn: 0.0240848\ttotal: 1.68s\tremaining: 2.99s\n",
4027
      "180:\tlearn: 0.0240792\ttotal: 1.69s\tremaining: 2.98s\n",
4028
      "181:\tlearn: 0.0240744\ttotal: 1.7s\tremaining: 2.97s\n",
4029
      "182:\tlearn: 0.0240697\ttotal: 1.71s\tremaining: 2.96s\n",
4030
      "183:\tlearn: 0.0240653\ttotal: 1.72s\tremaining: 2.95s\n",
4031
      "184:\tlearn: 0.0240612\ttotal: 1.73s\tremaining: 2.94s\n",
4032
      "185:\tlearn: 0.0240565\ttotal: 1.74s\tremaining: 2.93s\n",
4033
      "186:\tlearn: 0.0240516\ttotal: 1.75s\tremaining: 2.92s\n",
4034
      "187:\tlearn: 0.0240482\ttotal: 1.75s\tremaining: 2.91s\n",
4035
      "188:\tlearn: 0.0240414\ttotal: 1.76s\tremaining: 2.9s\n",
4036
      "189:\tlearn: 0.0240394\ttotal: 1.77s\tremaining: 2.89s\n",
4037
      "190:\tlearn: 0.0240364\ttotal: 1.78s\tremaining: 2.88s\n",
4038
      "191:\tlearn: 0.0240318\ttotal: 1.79s\tremaining: 2.88s\n",
4039
      "192:\tlearn: 0.0240274\ttotal: 1.8s\tremaining: 2.87s\n",
4040
      "193:\tlearn: 0.0240229\ttotal: 1.81s\tremaining: 2.86s\n",
4041
      "194:\tlearn: 0.0240152\ttotal: 1.82s\tremaining: 2.85s\n",
4042
      "195:\tlearn: 0.0240074\ttotal: 1.83s\tremaining: 2.84s\n",
4043
      "196:\tlearn: 0.0240034\ttotal: 1.84s\tremaining: 2.83s\n",
4044
      "197:\tlearn: 0.0239962\ttotal: 1.85s\tremaining: 2.82s\n",
4045
      "198:\tlearn: 0.0239905\ttotal: 1.86s\tremaining: 2.81s\n",
4046
      "199:\tlearn: 0.0239848\ttotal: 1.87s\tremaining: 2.8s\n",
4047
      "200:\tlearn: 0.0239800\ttotal: 1.88s\tremaining: 2.79s\n",
4048
      "201:\tlearn: 0.0239706\ttotal: 1.89s\tremaining: 2.78s\n",
4049
      "202:\tlearn: 0.0239664\ttotal: 1.89s\tremaining: 2.77s\n",
4050
      "203:\tlearn: 0.0239603\ttotal: 1.9s\tremaining: 2.76s\n",
4051
      "204:\tlearn: 0.0239572\ttotal: 1.91s\tremaining: 2.75s\n",
4052
      "205:\tlearn: 0.0239547\ttotal: 1.92s\tremaining: 2.74s\n",
4053
      "206:\tlearn: 0.0239498\ttotal: 1.93s\tremaining: 2.73s\n",
4054
      "207:\tlearn: 0.0239437\ttotal: 1.94s\tremaining: 2.72s\n",
4055
      "208:\tlearn: 0.0239384\ttotal: 1.95s\tremaining: 2.71s\n",
4056
      "209:\tlearn: 0.0239326\ttotal: 1.96s\tremaining: 2.7s\n",
4057
      "210:\tlearn: 0.0239229\ttotal: 1.97s\tremaining: 2.69s\n",
4058
      "211:\tlearn: 0.0239176\ttotal: 1.98s\tremaining: 2.69s\n",
4059
      "212:\tlearn: 0.0239131\ttotal: 1.99s\tremaining: 2.67s\n",
4060
      "213:\tlearn: 0.0239062\ttotal: 1.99s\tremaining: 2.67s\n",
4061
      "214:\tlearn: 0.0239030\ttotal: 2s\tremaining: 2.66s\n",
4062
      "215:\tlearn: 0.0238988\ttotal: 2.01s\tremaining: 2.65s\n",
4063
      "216:\tlearn: 0.0238958\ttotal: 2.02s\tremaining: 2.64s\n",
4064
      "217:\tlearn: 0.0238935\ttotal: 2.03s\tremaining: 2.63s\n",
4065
      "218:\tlearn: 0.0238897\ttotal: 2.04s\tremaining: 2.62s\n",
4066
      "219:\tlearn: 0.0238838\ttotal: 2.05s\tremaining: 2.61s\n",
4067
      "220:\tlearn: 0.0238784\ttotal: 2.06s\tremaining: 2.6s\n",
4068
      "221:\tlearn: 0.0238705\ttotal: 2.07s\tremaining: 2.59s\n",
4069
      "222:\tlearn: 0.0238651\ttotal: 2.08s\tremaining: 2.58s\n",
4070
      "223:\tlearn: 0.0238627\ttotal: 2.09s\tremaining: 2.57s\n",
4071
      "224:\tlearn: 0.0238569\ttotal: 2.1s\tremaining: 2.56s\n",
4072
      "225:\tlearn: 0.0238515\ttotal: 2.11s\tremaining: 2.55s\n",
4073
      "226:\tlearn: 0.0238471\ttotal: 2.12s\tremaining: 2.54s\n",
4074
      "227:\tlearn: 0.0238436\ttotal: 2.13s\tremaining: 2.54s\n",
4075
      "228:\tlearn: 0.0238395\ttotal: 2.13s\tremaining: 2.52s\n",
4076
      "229:\tlearn: 0.0238354\ttotal: 2.14s\tremaining: 2.52s\n",
4077
      "230:\tlearn: 0.0238294\ttotal: 2.15s\tremaining: 2.51s\n",
4078
      "231:\tlearn: 0.0238260\ttotal: 2.16s\tremaining: 2.5s\n",
4079
      "232:\tlearn: 0.0238213\ttotal: 2.17s\tremaining: 2.49s\n",
4080
      "233:\tlearn: 0.0238167\ttotal: 2.18s\tremaining: 2.48s\n",
4081
      "234:\tlearn: 0.0238109\ttotal: 2.19s\tremaining: 2.47s\n",
4082
      "235:\tlearn: 0.0238056\ttotal: 2.2s\tremaining: 2.46s\n",
4083
      "236:\tlearn: 0.0238021\ttotal: 2.21s\tremaining: 2.45s\n",
4084
      "237:\tlearn: 0.0237966\ttotal: 2.22s\tremaining: 2.44s\n",
4085
      "238:\tlearn: 0.0237937\ttotal: 2.23s\tremaining: 2.43s\n",
4086
      "239:\tlearn: 0.0237821\ttotal: 2.24s\tremaining: 2.42s\n",
4087
      "240:\tlearn: 0.0237753\ttotal: 2.25s\tremaining: 2.41s\n",
4088
      "241:\tlearn: 0.0237718\ttotal: 2.25s\tremaining: 2.4s\n",
4089
      "242:\tlearn: 0.0237685\ttotal: 2.27s\tremaining: 2.4s\n",
4090
      "243:\tlearn: 0.0237659\ttotal: 2.27s\tremaining: 2.39s\n",
4091
      "244:\tlearn: 0.0237597\ttotal: 2.28s\tremaining: 2.38s\n",
4092
      "245:\tlearn: 0.0237542\ttotal: 2.29s\tremaining: 2.37s\n",
4093
      "246:\tlearn: 0.0237490\ttotal: 2.3s\tremaining: 2.36s\n",
4094
      "247:\tlearn: 0.0237441\ttotal: 2.31s\tremaining: 2.35s\n",
4095
      "248:\tlearn: 0.0237408\ttotal: 2.32s\tremaining: 2.34s\n",
4096
      "249:\tlearn: 0.0237359\ttotal: 2.33s\tremaining: 2.33s\n",
4097
      "250:\tlearn: 0.0237325\ttotal: 2.34s\tremaining: 2.32s\n",
4098
      "251:\tlearn: 0.0237270\ttotal: 2.35s\tremaining: 2.31s\n",
4099
      "252:\tlearn: 0.0237238\ttotal: 2.36s\tremaining: 2.3s\n",
4100
      "253:\tlearn: 0.0237204\ttotal: 2.37s\tremaining: 2.29s\n",
4101
      "254:\tlearn: 0.0237145\ttotal: 2.38s\tremaining: 2.28s\n",
4102
      "255:\tlearn: 0.0237125\ttotal: 2.38s\tremaining: 2.27s\n",
4103
      "256:\tlearn: 0.0237100\ttotal: 2.39s\tremaining: 2.26s\n",
4104
      "257:\tlearn: 0.0237061\ttotal: 2.4s\tremaining: 2.25s\n",
4105
      "258:\tlearn: 0.0237018\ttotal: 2.41s\tremaining: 2.24s\n",
4106
      "259:\tlearn: 0.0236957\ttotal: 2.42s\tremaining: 2.23s\n",
4107
      "260:\tlearn: 0.0236922\ttotal: 2.43s\tremaining: 2.23s\n",
4108
      "261:\tlearn: 0.0236884\ttotal: 2.44s\tremaining: 2.21s\n",
4109
      "262:\tlearn: 0.0236833\ttotal: 2.45s\tremaining: 2.21s\n",
4110
      "263:\tlearn: 0.0236799\ttotal: 2.46s\tremaining: 2.2s\n",
4111
      "264:\tlearn: 0.0236740\ttotal: 2.47s\tremaining: 2.19s\n",
4112
      "265:\tlearn: 0.0236721\ttotal: 2.48s\tremaining: 2.18s\n",
4113
      "266:\tlearn: 0.0236677\ttotal: 2.48s\tremaining: 2.17s\n",
4114
      "267:\tlearn: 0.0236641\ttotal: 2.49s\tremaining: 2.16s\n",
4115
      "268:\tlearn: 0.0236568\ttotal: 2.5s\tremaining: 2.15s\n",
4116
      "269:\tlearn: 0.0236537\ttotal: 2.51s\tremaining: 2.14s\n",
4117
      "270:\tlearn: 0.0236502\ttotal: 2.52s\tremaining: 2.13s\n",
4118
      "271:\tlearn: 0.0236463\ttotal: 2.53s\tremaining: 2.12s\n",
4119
      "272:\tlearn: 0.0236425\ttotal: 2.54s\tremaining: 2.11s\n",
4120
      "273:\tlearn: 0.0236390\ttotal: 2.55s\tremaining: 2.1s\n",
4121
      "274:\tlearn: 0.0236363\ttotal: 2.56s\tremaining: 2.09s\n",
4122
      "275:\tlearn: 0.0236326\ttotal: 2.57s\tremaining: 2.08s\n",
4123
      "276:\tlearn: 0.0236284\ttotal: 2.58s\tremaining: 2.08s\n",
4124
      "277:\tlearn: 0.0236237\ttotal: 2.59s\tremaining: 2.06s\n",
4125
      "278:\tlearn: 0.0236187\ttotal: 2.6s\tremaining: 2.06s\n",
4126
      "279:\tlearn: 0.0236143\ttotal: 2.6s\tremaining: 2.05s\n",
4127
      "280:\tlearn: 0.0236124\ttotal: 2.61s\tremaining: 2.04s\n",
4128
      "281:\tlearn: 0.0236085\ttotal: 2.62s\tremaining: 2.03s\n",
4129
      "282:\tlearn: 0.0236011\ttotal: 2.63s\tremaining: 2.02s\n",
4130
      "283:\tlearn: 0.0235964\ttotal: 2.64s\tremaining: 2.01s\n",
4131
      "284:\tlearn: 0.0235944\ttotal: 2.65s\tremaining: 2s\n",
4132
      "285:\tlearn: 0.0235920\ttotal: 2.66s\tremaining: 1.99s\n",
4133
      "286:\tlearn: 0.0235853\ttotal: 2.67s\tremaining: 1.98s\n",
4134
      "287:\tlearn: 0.0235819\ttotal: 2.68s\tremaining: 1.97s\n",
4135
      "288:\tlearn: 0.0235771\ttotal: 2.69s\tremaining: 1.96s\n",
4136
      "289:\tlearn: 0.0235738\ttotal: 2.7s\tremaining: 1.95s\n",
4137
      "290:\tlearn: 0.0235648\ttotal: 2.71s\tremaining: 1.94s\n",
4138
      "291:\tlearn: 0.0235609\ttotal: 2.72s\tremaining: 1.93s\n",
4139
      "292:\tlearn: 0.0235567\ttotal: 2.73s\tremaining: 1.93s\n",
4140
      "293:\tlearn: 0.0235515\ttotal: 2.73s\tremaining: 1.92s\n",
4141
      "294:\tlearn: 0.0235447\ttotal: 2.74s\tremaining: 1.91s\n",
4142
      "295:\tlearn: 0.0235387\ttotal: 2.75s\tremaining: 1.9s\n",
4143
      "296:\tlearn: 0.0235346\ttotal: 2.76s\tremaining: 1.89s\n",
4144
      "297:\tlearn: 0.0235311\ttotal: 2.77s\tremaining: 1.88s\n",
4145
      "298:\tlearn: 0.0235271\ttotal: 2.78s\tremaining: 1.87s\n",
4146
      "299:\tlearn: 0.0235236\ttotal: 2.79s\tremaining: 1.86s\n",
4147
      "300:\tlearn: 0.0235204\ttotal: 2.8s\tremaining: 1.85s\n",
4148
      "301:\tlearn: 0.0235139\ttotal: 2.81s\tremaining: 1.84s\n",
4149
      "302:\tlearn: 0.0235104\ttotal: 2.82s\tremaining: 1.83s\n",
4150
      "303:\tlearn: 0.0235073\ttotal: 2.83s\tremaining: 1.82s\n",
4151
      "304:\tlearn: 0.0235024\ttotal: 2.84s\tremaining: 1.81s\n",
4152
      "305:\tlearn: 0.0234967\ttotal: 2.85s\tremaining: 1.8s\n",
4153
      "306:\tlearn: 0.0234917\ttotal: 2.85s\tremaining: 1.79s\n",
4154
      "307:\tlearn: 0.0234881\ttotal: 2.86s\tremaining: 1.78s\n",
4155
      "308:\tlearn: 0.0234847\ttotal: 2.87s\tremaining: 1.78s\n",
4156
      "309:\tlearn: 0.0234810\ttotal: 2.88s\tremaining: 1.77s\n",
4157
      "310:\tlearn: 0.0234766\ttotal: 2.89s\tremaining: 1.76s\n",
4158
      "311:\tlearn: 0.0234736\ttotal: 2.9s\tremaining: 1.75s\n",
4159
      "312:\tlearn: 0.0234675\ttotal: 2.91s\tremaining: 1.74s\n",
4160
      "313:\tlearn: 0.0234640\ttotal: 2.92s\tremaining: 1.73s\n",
4161
      "314:\tlearn: 0.0234620\ttotal: 2.93s\tremaining: 1.72s\n",
4162
      "315:\tlearn: 0.0234595\ttotal: 2.94s\tremaining: 1.71s\n",
4163
      "316:\tlearn: 0.0234552\ttotal: 2.95s\tremaining: 1.7s\n",
4164
      "317:\tlearn: 0.0234524\ttotal: 2.96s\tremaining: 1.69s\n",
4165
      "318:\tlearn: 0.0234498\ttotal: 2.96s\tremaining: 1.68s\n",
4166
      "319:\tlearn: 0.0234459\ttotal: 2.98s\tremaining: 1.67s\n",
4167
      "320:\tlearn: 0.0234427\ttotal: 2.98s\tremaining: 1.66s\n",
4168
      "321:\tlearn: 0.0234400\ttotal: 2.99s\tremaining: 1.65s\n",
4169
      "322:\tlearn: 0.0234372\ttotal: 3s\tremaining: 1.65s\n",
4170
      "323:\tlearn: 0.0234355\ttotal: 3.01s\tremaining: 1.64s\n",
4171
      "324:\tlearn: 0.0234321\ttotal: 3.02s\tremaining: 1.63s\n",
4172
      "325:\tlearn: 0.0234288\ttotal: 3.03s\tremaining: 1.62s\n",
4173
      "326:\tlearn: 0.0234241\ttotal: 3.04s\tremaining: 1.61s\n",
4174
      "327:\tlearn: 0.0234196\ttotal: 3.05s\tremaining: 1.6s\n",
4175
      "328:\tlearn: 0.0234115\ttotal: 3.06s\tremaining: 1.59s\n",
4176
      "329:\tlearn: 0.0234083\ttotal: 3.07s\tremaining: 1.58s\n",
4177
      "330:\tlearn: 0.0234051\ttotal: 3.08s\tremaining: 1.57s\n",
4178
      "331:\tlearn: 0.0234008\ttotal: 3.08s\tremaining: 1.56s\n",
4179
      "332:\tlearn: 0.0233974\ttotal: 3.09s\tremaining: 1.55s\n",
4180
      "333:\tlearn: 0.0233951\ttotal: 3.1s\tremaining: 1.54s\n",
4181
      "334:\tlearn: 0.0233894\ttotal: 3.11s\tremaining: 1.53s\n",
4182
      "335:\tlearn: 0.0233855\ttotal: 3.12s\tremaining: 1.52s\n",
4183
      "336:\tlearn: 0.0233807\ttotal: 3.13s\tremaining: 1.51s\n",
4184
      "337:\tlearn: 0.0233768\ttotal: 3.14s\tremaining: 1.5s\n",
4185
      "338:\tlearn: 0.0233727\ttotal: 3.15s\tremaining: 1.5s\n",
4186
      "339:\tlearn: 0.0233678\ttotal: 3.16s\tremaining: 1.49s\n",
4187
      "340:\tlearn: 0.0233631\ttotal: 3.17s\tremaining: 1.48s\n",
4188
      "341:\tlearn: 0.0233579\ttotal: 3.18s\tremaining: 1.47s\n",
4189
      "342:\tlearn: 0.0233561\ttotal: 3.19s\tremaining: 1.46s\n",
4190
      "343:\tlearn: 0.0233524\ttotal: 3.19s\tremaining: 1.45s\n",
4191
      "344:\tlearn: 0.0233504\ttotal: 3.2s\tremaining: 1.44s\n",
4192
      "345:\tlearn: 0.0233479\ttotal: 3.21s\tremaining: 1.43s\n",
4193
      "346:\tlearn: 0.0233444\ttotal: 3.22s\tremaining: 1.42s\n",
4194
      "347:\tlearn: 0.0233390\ttotal: 3.23s\tremaining: 1.41s\n",
4195
      "348:\tlearn: 0.0233351\ttotal: 3.24s\tremaining: 1.4s\n",
4196
      "349:\tlearn: 0.0233299\ttotal: 3.25s\tremaining: 1.39s\n"
4197
     ]
4198
    },
4199
    {
4200
     "name": "stdout",
4201
     "output_type": "stream",
4202
     "text": [
4203
      "350:\tlearn: 0.0233266\ttotal: 3.26s\tremaining: 1.38s\n",
4204
      "351:\tlearn: 0.0233216\ttotal: 3.27s\tremaining: 1.37s\n",
4205
      "352:\tlearn: 0.0233152\ttotal: 3.28s\tremaining: 1.36s\n",
4206
      "353:\tlearn: 0.0233112\ttotal: 3.29s\tremaining: 1.35s\n",
4207
      "354:\tlearn: 0.0233071\ttotal: 3.29s\tremaining: 1.34s\n",
4208
      "355:\tlearn: 0.0233035\ttotal: 3.3s\tremaining: 1.34s\n",
4209
      "356:\tlearn: 0.0232985\ttotal: 3.31s\tremaining: 1.33s\n",
4210
      "357:\tlearn: 0.0232939\ttotal: 3.32s\tremaining: 1.32s\n",
4211
      "358:\tlearn: 0.0232903\ttotal: 3.33s\tremaining: 1.31s\n",
4212
      "359:\tlearn: 0.0232836\ttotal: 3.34s\tremaining: 1.3s\n",
4213
      "360:\tlearn: 0.0232809\ttotal: 3.35s\tremaining: 1.29s\n",
4214
      "361:\tlearn: 0.0232783\ttotal: 3.36s\tremaining: 1.28s\n",
4215
      "362:\tlearn: 0.0232739\ttotal: 3.37s\tremaining: 1.27s\n",
4216
      "363:\tlearn: 0.0232700\ttotal: 3.38s\tremaining: 1.26s\n",
4217
      "364:\tlearn: 0.0232674\ttotal: 3.39s\tremaining: 1.25s\n",
4218
      "365:\tlearn: 0.0232640\ttotal: 3.4s\tremaining: 1.24s\n",
4219
      "366:\tlearn: 0.0232590\ttotal: 3.4s\tremaining: 1.23s\n",
4220
      "367:\tlearn: 0.0232547\ttotal: 3.41s\tremaining: 1.22s\n",
4221
      "368:\tlearn: 0.0232500\ttotal: 3.42s\tremaining: 1.22s\n",
4222
      "369:\tlearn: 0.0232468\ttotal: 3.43s\tremaining: 1.21s\n",
4223
      "370:\tlearn: 0.0232444\ttotal: 3.44s\tremaining: 1.2s\n",
4224
      "371:\tlearn: 0.0232414\ttotal: 3.45s\tremaining: 1.19s\n",
4225
      "372:\tlearn: 0.0232367\ttotal: 3.46s\tremaining: 1.18s\n",
4226
      "373:\tlearn: 0.0232309\ttotal: 3.47s\tremaining: 1.17s\n",
4227
      "374:\tlearn: 0.0232279\ttotal: 3.48s\tremaining: 1.16s\n",
4228
      "375:\tlearn: 0.0232241\ttotal: 3.49s\tremaining: 1.15s\n",
4229
      "376:\tlearn: 0.0232214\ttotal: 3.5s\tremaining: 1.14s\n",
4230
      "377:\tlearn: 0.0232184\ttotal: 3.51s\tremaining: 1.13s\n",
4231
      "378:\tlearn: 0.0232135\ttotal: 3.52s\tremaining: 1.12s\n",
4232
      "379:\tlearn: 0.0232100\ttotal: 3.52s\tremaining: 1.11s\n",
4233
      "380:\tlearn: 0.0232055\ttotal: 3.53s\tremaining: 1.1s\n",
4234
      "381:\tlearn: 0.0232004\ttotal: 3.54s\tremaining: 1.09s\n",
4235
      "382:\tlearn: 0.0231967\ttotal: 3.55s\tremaining: 1.08s\n",
4236
      "383:\tlearn: 0.0231933\ttotal: 3.56s\tremaining: 1.08s\n",
4237
      "384:\tlearn: 0.0231896\ttotal: 3.57s\tremaining: 1.07s\n",
4238
      "385:\tlearn: 0.0231853\ttotal: 3.58s\tremaining: 1.06s\n",
4239
      "386:\tlearn: 0.0231828\ttotal: 3.59s\tremaining: 1.05s\n",
4240
      "387:\tlearn: 0.0231801\ttotal: 3.6s\tremaining: 1.04s\n",
4241
      "388:\tlearn: 0.0231761\ttotal: 3.61s\tremaining: 1.03s\n",
4242
      "389:\tlearn: 0.0231723\ttotal: 3.62s\tremaining: 1.02s\n",
4243
      "390:\tlearn: 0.0231675\ttotal: 3.63s\tremaining: 1.01s\n",
4244
      "391:\tlearn: 0.0231644\ttotal: 3.63s\tremaining: 1s\n",
4245
      "392:\tlearn: 0.0231614\ttotal: 3.65s\tremaining: 993ms\n",
4246
      "393:\tlearn: 0.0231598\ttotal: 3.65s\tremaining: 983ms\n",
4247
      "394:\tlearn: 0.0231550\ttotal: 3.66s\tremaining: 974ms\n",
4248
      "395:\tlearn: 0.0231511\ttotal: 3.67s\tremaining: 965ms\n",
4249
      "396:\tlearn: 0.0231462\ttotal: 3.68s\tremaining: 955ms\n",
4250
      "397:\tlearn: 0.0231414\ttotal: 3.69s\tremaining: 946ms\n",
4251
      "398:\tlearn: 0.0231381\ttotal: 3.7s\tremaining: 937ms\n",
4252
      "399:\tlearn: 0.0231348\ttotal: 3.71s\tremaining: 928ms\n",
4253
      "400:\tlearn: 0.0231312\ttotal: 3.72s\tremaining: 918ms\n",
4254
      "401:\tlearn: 0.0231267\ttotal: 3.73s\tremaining: 909ms\n",
4255
      "402:\tlearn: 0.0231240\ttotal: 3.74s\tremaining: 900ms\n",
4256
      "403:\tlearn: 0.0231170\ttotal: 3.75s\tremaining: 891ms\n",
4257
      "404:\tlearn: 0.0231134\ttotal: 3.76s\tremaining: 881ms\n",
4258
      "405:\tlearn: 0.0231067\ttotal: 3.77s\tremaining: 872ms\n",
4259
      "406:\tlearn: 0.0231039\ttotal: 3.77s\tremaining: 863ms\n",
4260
      "407:\tlearn: 0.0230979\ttotal: 3.79s\tremaining: 854ms\n",
4261
      "408:\tlearn: 0.0230939\ttotal: 3.79s\tremaining: 844ms\n",
4262
      "409:\tlearn: 0.0230905\ttotal: 3.8s\tremaining: 835ms\n",
4263
      "410:\tlearn: 0.0230848\ttotal: 3.81s\tremaining: 826ms\n",
4264
      "411:\tlearn: 0.0230819\ttotal: 3.82s\tremaining: 817ms\n",
4265
      "412:\tlearn: 0.0230768\ttotal: 3.83s\tremaining: 807ms\n",
4266
      "413:\tlearn: 0.0230746\ttotal: 3.84s\tremaining: 798ms\n",
4267
      "414:\tlearn: 0.0230713\ttotal: 3.85s\tremaining: 789ms\n",
4268
      "415:\tlearn: 0.0230687\ttotal: 3.86s\tremaining: 779ms\n",
4269
      "416:\tlearn: 0.0230618\ttotal: 3.87s\tremaining: 770ms\n",
4270
      "417:\tlearn: 0.0230578\ttotal: 3.88s\tremaining: 761ms\n",
4271
      "418:\tlearn: 0.0230544\ttotal: 3.89s\tremaining: 752ms\n",
4272
      "419:\tlearn: 0.0230493\ttotal: 3.9s\tremaining: 742ms\n",
4273
      "420:\tlearn: 0.0230445\ttotal: 3.91s\tremaining: 733ms\n",
4274
      "421:\tlearn: 0.0230418\ttotal: 3.92s\tremaining: 724ms\n",
4275
      "422:\tlearn: 0.0230390\ttotal: 3.92s\tremaining: 715ms\n",
4276
      "423:\tlearn: 0.0230353\ttotal: 3.93s\tremaining: 705ms\n",
4277
      "424:\tlearn: 0.0230331\ttotal: 3.94s\tremaining: 696ms\n",
4278
      "425:\tlearn: 0.0230312\ttotal: 3.95s\tremaining: 687ms\n",
4279
      "426:\tlearn: 0.0230266\ttotal: 3.96s\tremaining: 677ms\n",
4280
      "427:\tlearn: 0.0230239\ttotal: 3.97s\tremaining: 668ms\n",
4281
      "428:\tlearn: 0.0230213\ttotal: 3.98s\tremaining: 659ms\n",
4282
      "429:\tlearn: 0.0230196\ttotal: 3.99s\tremaining: 650ms\n",
4283
      "430:\tlearn: 0.0230140\ttotal: 4s\tremaining: 640ms\n",
4284
      "431:\tlearn: 0.0230103\ttotal: 4.01s\tremaining: 631ms\n",
4285
      "432:\tlearn: 0.0230056\ttotal: 4.02s\tremaining: 622ms\n",
4286
      "433:\tlearn: 0.0230028\ttotal: 4.03s\tremaining: 612ms\n",
4287
      "434:\tlearn: 0.0230002\ttotal: 4.04s\tremaining: 603ms\n",
4288
      "435:\tlearn: 0.0229951\ttotal: 4.05s\tremaining: 594ms\n",
4289
      "436:\tlearn: 0.0229944\ttotal: 4.05s\tremaining: 585ms\n",
4290
      "437:\tlearn: 0.0229912\ttotal: 4.06s\tremaining: 575ms\n",
4291
      "438:\tlearn: 0.0229884\ttotal: 4.07s\tremaining: 566ms\n",
4292
      "439:\tlearn: 0.0229862\ttotal: 4.08s\tremaining: 557ms\n",
4293
      "440:\tlearn: 0.0229825\ttotal: 4.09s\tremaining: 548ms\n",
4294
      "441:\tlearn: 0.0229755\ttotal: 4.1s\tremaining: 538ms\n",
4295
      "442:\tlearn: 0.0229727\ttotal: 4.11s\tremaining: 529ms\n",
4296
      "443:\tlearn: 0.0229701\ttotal: 4.12s\tremaining: 520ms\n",
4297
      "444:\tlearn: 0.0229658\ttotal: 4.13s\tremaining: 510ms\n",
4298
      "445:\tlearn: 0.0229640\ttotal: 4.14s\tremaining: 501ms\n",
4299
      "446:\tlearn: 0.0229593\ttotal: 4.15s\tremaining: 492ms\n",
4300
      "447:\tlearn: 0.0229565\ttotal: 4.16s\tremaining: 483ms\n",
4301
      "448:\tlearn: 0.0229538\ttotal: 4.17s\tremaining: 473ms\n",
4302
      "449:\tlearn: 0.0229483\ttotal: 4.18s\tremaining: 464ms\n",
4303
      "450:\tlearn: 0.0229455\ttotal: 4.18s\tremaining: 455ms\n",
4304
      "451:\tlearn: 0.0229427\ttotal: 4.19s\tremaining: 445ms\n",
4305
      "452:\tlearn: 0.0229373\ttotal: 4.2s\tremaining: 436ms\n",
4306
      "453:\tlearn: 0.0229332\ttotal: 4.21s\tremaining: 427ms\n",
4307
      "454:\tlearn: 0.0229319\ttotal: 4.22s\tremaining: 418ms\n",
4308
      "455:\tlearn: 0.0229302\ttotal: 4.23s\tremaining: 408ms\n",
4309
      "456:\tlearn: 0.0229272\ttotal: 4.24s\tremaining: 399ms\n",
4310
      "457:\tlearn: 0.0229241\ttotal: 4.25s\tremaining: 390ms\n",
4311
      "458:\tlearn: 0.0229217\ttotal: 4.26s\tremaining: 381ms\n",
4312
      "459:\tlearn: 0.0229193\ttotal: 4.27s\tremaining: 371ms\n",
4313
      "460:\tlearn: 0.0229163\ttotal: 4.28s\tremaining: 362ms\n",
4314
      "461:\tlearn: 0.0229135\ttotal: 4.29s\tremaining: 353ms\n",
4315
      "462:\tlearn: 0.0229103\ttotal: 4.3s\tremaining: 343ms\n",
4316
      "463:\tlearn: 0.0229034\ttotal: 4.3s\tremaining: 334ms\n",
4317
      "464:\tlearn: 0.0229001\ttotal: 4.31s\tremaining: 325ms\n",
4318
      "465:\tlearn: 0.0228976\ttotal: 4.32s\tremaining: 315ms\n",
4319
      "466:\tlearn: 0.0228902\ttotal: 4.33s\tremaining: 306ms\n",
4320
      "467:\tlearn: 0.0228884\ttotal: 4.34s\tremaining: 297ms\n",
4321
      "468:\tlearn: 0.0228852\ttotal: 4.35s\tremaining: 288ms\n",
4322
      "469:\tlearn: 0.0228824\ttotal: 4.36s\tremaining: 278ms\n",
4323
      "470:\tlearn: 0.0228788\ttotal: 4.37s\tremaining: 269ms\n",
4324
      "471:\tlearn: 0.0228723\ttotal: 4.38s\tremaining: 260ms\n",
4325
      "472:\tlearn: 0.0228686\ttotal: 4.39s\tremaining: 250ms\n",
4326
      "473:\tlearn: 0.0228638\ttotal: 4.4s\tremaining: 241ms\n",
4327
      "474:\tlearn: 0.0228619\ttotal: 4.41s\tremaining: 232ms\n",
4328
      "475:\tlearn: 0.0228576\ttotal: 4.42s\tremaining: 223ms\n",
4329
      "476:\tlearn: 0.0228550\ttotal: 4.42s\tremaining: 213ms\n",
4330
      "477:\tlearn: 0.0228507\ttotal: 4.43s\tremaining: 204ms\n",
4331
      "478:\tlearn: 0.0228481\ttotal: 4.44s\tremaining: 195ms\n",
4332
      "479:\tlearn: 0.0228442\ttotal: 4.45s\tremaining: 186ms\n",
4333
      "480:\tlearn: 0.0228420\ttotal: 4.46s\tremaining: 176ms\n",
4334
      "481:\tlearn: 0.0228400\ttotal: 4.47s\tremaining: 167ms\n",
4335
      "482:\tlearn: 0.0228374\ttotal: 4.48s\tremaining: 158ms\n",
4336
      "483:\tlearn: 0.0228359\ttotal: 4.49s\tremaining: 148ms\n",
4337
      "484:\tlearn: 0.0228319\ttotal: 4.5s\tremaining: 139ms\n",
4338
      "485:\tlearn: 0.0228273\ttotal: 4.51s\tremaining: 130ms\n",
4339
      "486:\tlearn: 0.0228246\ttotal: 4.52s\tremaining: 121ms\n",
4340
      "487:\tlearn: 0.0228200\ttotal: 4.53s\tremaining: 111ms\n",
4341
      "488:\tlearn: 0.0228172\ttotal: 4.54s\tremaining: 102ms\n",
4342
      "489:\tlearn: 0.0228160\ttotal: 4.54s\tremaining: 92.8ms\n",
4343
      "490:\tlearn: 0.0228115\ttotal: 4.55s\tremaining: 83.5ms\n",
4344
      "491:\tlearn: 0.0228064\ttotal: 4.56s\tremaining: 74.2ms\n",
4345
      "492:\tlearn: 0.0228032\ttotal: 4.57s\tremaining: 64.9ms\n",
4346
      "493:\tlearn: 0.0228016\ttotal: 4.58s\tremaining: 55.7ms\n",
4347
      "494:\tlearn: 0.0227979\ttotal: 4.59s\tremaining: 46.4ms\n",
4348
      "495:\tlearn: 0.0227933\ttotal: 4.6s\tremaining: 37.1ms\n",
4349
      "496:\tlearn: 0.0227898\ttotal: 4.61s\tremaining: 27.8ms\n",
4350
      "497:\tlearn: 0.0227867\ttotal: 4.62s\tremaining: 18.6ms\n",
4351
      "498:\tlearn: 0.0227847\ttotal: 4.63s\tremaining: 9.28ms\n",
4352
      "499:\tlearn: 0.0227827\ttotal: 4.64s\tremaining: 0us\n"
4353
     ]
4354
    },
4355
    {
4356
     "name": "stderr",
4357
     "output_type": "stream",
4358
     "text": [
4359
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
4360
     ]
4361
    },
4362
    {
4363
     "name": "stdout",
4364
     "output_type": "stream",
4365
     "text": [
4366
      "0:\tlearn: 0.6197599\ttotal: 11.4ms\tremaining: 5.69s\n",
4367
      "1:\tlearn: 0.5539440\ttotal: 21.2ms\tremaining: 5.29s\n",
4368
      "2:\tlearn: 0.4974472\ttotal: 31.5ms\tremaining: 5.21s\n",
4369
      "3:\tlearn: 0.4421587\ttotal: 41.7ms\tremaining: 5.17s\n",
4370
      "4:\tlearn: 0.4004615\ttotal: 51.6ms\tremaining: 5.11s\n",
4371
      "5:\tlearn: 0.3558608\ttotal: 61.7ms\tremaining: 5.08s\n",
4372
      "6:\tlearn: 0.3247709\ttotal: 71.8ms\tremaining: 5.05s\n",
4373
      "7:\tlearn: 0.2907828\ttotal: 81.9ms\tremaining: 5.04s\n",
4374
      "8:\tlearn: 0.2654862\ttotal: 91.8ms\tremaining: 5.01s\n",
4375
      "9:\tlearn: 0.2403010\ttotal: 101ms\tremaining: 4.96s\n",
4376
      "10:\tlearn: 0.2196778\ttotal: 111ms\tremaining: 4.94s\n",
4377
      "11:\tlearn: 0.2017721\ttotal: 121ms\tremaining: 4.91s\n",
4378
      "12:\tlearn: 0.1855790\ttotal: 130ms\tremaining: 4.88s\n",
4379
      "13:\tlearn: 0.1716541\ttotal: 140ms\tremaining: 4.86s\n",
4380
      "14:\tlearn: 0.1589952\ttotal: 150ms\tremaining: 4.86s\n",
4381
      "15:\tlearn: 0.1482553\ttotal: 160ms\tremaining: 4.84s\n",
4382
      "16:\tlearn: 0.1389602\ttotal: 170ms\tremaining: 4.84s\n",
4383
      "17:\tlearn: 0.1308176\ttotal: 180ms\tremaining: 4.81s\n",
4384
      "18:\tlearn: 0.1237818\ttotal: 189ms\tremaining: 4.79s\n",
4385
      "19:\tlearn: 0.1177107\ttotal: 199ms\tremaining: 4.77s\n",
4386
      "20:\tlearn: 0.1122809\ttotal: 208ms\tremaining: 4.75s\n",
4387
      "21:\tlearn: 0.1075039\ttotal: 218ms\tremaining: 4.74s\n",
4388
      "22:\tlearn: 0.1033580\ttotal: 228ms\tremaining: 4.72s\n",
4389
      "23:\tlearn: 0.0995873\ttotal: 237ms\tremaining: 4.71s\n",
4390
      "24:\tlearn: 0.0962599\ttotal: 247ms\tremaining: 4.69s\n",
4391
      "25:\tlearn: 0.0932975\ttotal: 257ms\tremaining: 4.68s\n",
4392
      "26:\tlearn: 0.0907166\ttotal: 266ms\tremaining: 4.67s\n",
4393
      "27:\tlearn: 0.0883673\ttotal: 276ms\tremaining: 4.65s\n",
4394
      "28:\tlearn: 0.0860622\ttotal: 286ms\tremaining: 4.64s\n",
4395
      "29:\tlearn: 0.0840710\ttotal: 295ms\tremaining: 4.63s\n",
4396
      "30:\tlearn: 0.0824202\ttotal: 305ms\tremaining: 4.61s\n",
4397
      "31:\tlearn: 0.0808386\ttotal: 314ms\tremaining: 4.59s\n",
4398
      "32:\tlearn: 0.0794781\ttotal: 323ms\tremaining: 4.57s\n",
4399
      "33:\tlearn: 0.0782010\ttotal: 332ms\tremaining: 4.55s\n",
4400
      "34:\tlearn: 0.0770150\ttotal: 341ms\tremaining: 4.53s\n",
4401
      "35:\tlearn: 0.0759726\ttotal: 351ms\tremaining: 4.52s\n",
4402
      "36:\tlearn: 0.0749967\ttotal: 360ms\tremaining: 4.5s\n",
4403
      "37:\tlearn: 0.0741594\ttotal: 369ms\tremaining: 4.48s\n",
4404
      "38:\tlearn: 0.0734366\ttotal: 378ms\tremaining: 4.46s\n",
4405
      "39:\tlearn: 0.0727324\ttotal: 387ms\tremaining: 4.45s\n",
4406
      "40:\tlearn: 0.0721077\ttotal: 396ms\tremaining: 4.44s\n",
4407
      "41:\tlearn: 0.0714836\ttotal: 405ms\tremaining: 4.42s\n",
4408
      "42:\tlearn: 0.0709001\ttotal: 414ms\tremaining: 4.4s\n",
4409
      "43:\tlearn: 0.0703774\ttotal: 424ms\tremaining: 4.39s\n",
4410
      "44:\tlearn: 0.0698388\ttotal: 433ms\tremaining: 4.38s\n",
4411
      "45:\tlearn: 0.0693637\ttotal: 442ms\tremaining: 4.36s\n",
4412
      "46:\tlearn: 0.0688870\ttotal: 451ms\tremaining: 4.35s\n",
4413
      "47:\tlearn: 0.0684398\ttotal: 461ms\tremaining: 4.34s\n",
4414
      "48:\tlearn: 0.0681008\ttotal: 470ms\tremaining: 4.32s\n",
4415
      "49:\tlearn: 0.0676953\ttotal: 479ms\tremaining: 4.31s\n",
4416
      "50:\tlearn: 0.0674425\ttotal: 488ms\tremaining: 4.3s\n",
4417
      "51:\tlearn: 0.0671933\ttotal: 497ms\tremaining: 4.28s\n",
4418
      "52:\tlearn: 0.0668820\ttotal: 507ms\tremaining: 4.27s\n",
4419
      "53:\tlearn: 0.0665753\ttotal: 516ms\tremaining: 4.26s\n",
4420
      "54:\tlearn: 0.0662959\ttotal: 525ms\tremaining: 4.25s\n",
4421
      "55:\tlearn: 0.0660764\ttotal: 534ms\tremaining: 4.23s\n",
4422
      "56:\tlearn: 0.0659022\ttotal: 543ms\tremaining: 4.22s\n",
4423
      "57:\tlearn: 0.0657007\ttotal: 552ms\tremaining: 4.21s\n",
4424
      "58:\tlearn: 0.0655000\ttotal: 562ms\tremaining: 4.2s\n",
4425
      "59:\tlearn: 0.0652517\ttotal: 571ms\tremaining: 4.19s\n",
4426
      "60:\tlearn: 0.0651270\ttotal: 580ms\tremaining: 4.17s\n",
4427
      "61:\tlearn: 0.0649750\ttotal: 589ms\tremaining: 4.16s\n",
4428
      "62:\tlearn: 0.0648428\ttotal: 598ms\tremaining: 4.15s\n",
4429
      "63:\tlearn: 0.0646872\ttotal: 608ms\tremaining: 4.14s\n",
4430
      "64:\tlearn: 0.0645627\ttotal: 617ms\tremaining: 4.13s\n",
4431
      "65:\tlearn: 0.0644313\ttotal: 626ms\tremaining: 4.12s\n",
4432
      "66:\tlearn: 0.0643242\ttotal: 636ms\tremaining: 4.11s\n",
4433
      "67:\tlearn: 0.0642087\ttotal: 645ms\tremaining: 4.1s\n",
4434
      "68:\tlearn: 0.0641038\ttotal: 655ms\tremaining: 4.09s\n",
4435
      "69:\tlearn: 0.0640007\ttotal: 664ms\tremaining: 4.08s\n",
4436
      "70:\tlearn: 0.0638589\ttotal: 673ms\tremaining: 4.07s\n",
4437
      "71:\tlearn: 0.0637322\ttotal: 682ms\tremaining: 4.06s\n",
4438
      "72:\tlearn: 0.0636099\ttotal: 692ms\tremaining: 4.04s\n",
4439
      "73:\tlearn: 0.0635147\ttotal: 701ms\tremaining: 4.04s\n",
4440
      "74:\tlearn: 0.0634454\ttotal: 710ms\tremaining: 4.03s\n",
4441
      "75:\tlearn: 0.0633832\ttotal: 719ms\tremaining: 4.01s\n",
4442
      "76:\tlearn: 0.0633424\ttotal: 728ms\tremaining: 4s\n",
4443
      "77:\tlearn: 0.0632714\ttotal: 738ms\tremaining: 3.99s\n",
4444
      "78:\tlearn: 0.0632311\ttotal: 747ms\tremaining: 3.98s\n",
4445
      "79:\tlearn: 0.0631866\ttotal: 755ms\tremaining: 3.97s\n",
4446
      "80:\tlearn: 0.0631225\ttotal: 765ms\tremaining: 3.96s\n",
4447
      "81:\tlearn: 0.0630718\ttotal: 774ms\tremaining: 3.95s\n",
4448
      "82:\tlearn: 0.0630125\ttotal: 783ms\tremaining: 3.94s\n",
4449
      "83:\tlearn: 0.0629523\ttotal: 793ms\tremaining: 3.92s\n",
4450
      "84:\tlearn: 0.0628937\ttotal: 802ms\tremaining: 3.91s\n",
4451
      "85:\tlearn: 0.0628508\ttotal: 811ms\tremaining: 3.9s\n",
4452
      "86:\tlearn: 0.0628201\ttotal: 820ms\tremaining: 3.89s\n",
4453
      "87:\tlearn: 0.0627957\ttotal: 829ms\tremaining: 3.88s\n",
4454
      "88:\tlearn: 0.0627630\ttotal: 838ms\tremaining: 3.87s\n",
4455
      "89:\tlearn: 0.0627322\ttotal: 847ms\tremaining: 3.86s\n",
4456
      "90:\tlearn: 0.0626900\ttotal: 856ms\tremaining: 3.85s\n",
4457
      "91:\tlearn: 0.0626589\ttotal: 865ms\tremaining: 3.84s\n",
4458
      "92:\tlearn: 0.0626264\ttotal: 874ms\tremaining: 3.83s\n",
4459
      "93:\tlearn: 0.0625972\ttotal: 884ms\tremaining: 3.82s\n",
4460
      "94:\tlearn: 0.0625562\ttotal: 893ms\tremaining: 3.81s\n",
4461
      "95:\tlearn: 0.0625301\ttotal: 902ms\tremaining: 3.8s\n",
4462
      "96:\tlearn: 0.0625057\ttotal: 911ms\tremaining: 3.79s\n",
4463
      "97:\tlearn: 0.0624874\ttotal: 920ms\tremaining: 3.77s\n",
4464
      "98:\tlearn: 0.0624521\ttotal: 929ms\tremaining: 3.76s\n",
4465
      "99:\tlearn: 0.0624235\ttotal: 938ms\tremaining: 3.75s\n",
4466
      "100:\tlearn: 0.0623688\ttotal: 948ms\tremaining: 3.74s\n",
4467
      "101:\tlearn: 0.0623498\ttotal: 957ms\tremaining: 3.73s\n",
4468
      "102:\tlearn: 0.0623129\ttotal: 967ms\tremaining: 3.73s\n",
4469
      "103:\tlearn: 0.0622824\ttotal: 976ms\tremaining: 3.72s\n",
4470
      "104:\tlearn: 0.0622528\ttotal: 986ms\tremaining: 3.71s\n",
4471
      "105:\tlearn: 0.0622348\ttotal: 996ms\tremaining: 3.7s\n",
4472
      "106:\tlearn: 0.0622053\ttotal: 1s\tremaining: 3.69s\n",
4473
      "107:\tlearn: 0.0621687\ttotal: 1.01s\tremaining: 3.68s\n",
4474
      "108:\tlearn: 0.0621487\ttotal: 1.02s\tremaining: 3.67s\n",
4475
      "109:\tlearn: 0.0621185\ttotal: 1.03s\tremaining: 3.66s\n",
4476
      "110:\tlearn: 0.0620974\ttotal: 1.04s\tremaining: 3.65s\n",
4477
      "111:\tlearn: 0.0620801\ttotal: 1.05s\tremaining: 3.65s\n",
4478
      "112:\tlearn: 0.0620601\ttotal: 1.06s\tremaining: 3.63s\n",
4479
      "113:\tlearn: 0.0620329\ttotal: 1.07s\tremaining: 3.63s\n",
4480
      "114:\tlearn: 0.0620181\ttotal: 1.08s\tremaining: 3.61s\n",
4481
      "115:\tlearn: 0.0619970\ttotal: 1.09s\tremaining: 3.6s\n",
4482
      "116:\tlearn: 0.0619757\ttotal: 1.1s\tremaining: 3.59s\n",
4483
      "117:\tlearn: 0.0619538\ttotal: 1.11s\tremaining: 3.58s\n",
4484
      "118:\tlearn: 0.0619260\ttotal: 1.12s\tremaining: 3.58s\n",
4485
      "119:\tlearn: 0.0619023\ttotal: 1.13s\tremaining: 3.57s\n",
4486
      "120:\tlearn: 0.0618809\ttotal: 1.14s\tremaining: 3.56s\n",
4487
      "121:\tlearn: 0.0618591\ttotal: 1.15s\tremaining: 3.55s\n",
4488
      "122:\tlearn: 0.0618399\ttotal: 1.15s\tremaining: 3.54s\n",
4489
      "123:\tlearn: 0.0618207\ttotal: 1.16s\tremaining: 3.53s\n",
4490
      "124:\tlearn: 0.0618017\ttotal: 1.17s\tremaining: 3.52s\n",
4491
      "125:\tlearn: 0.0617721\ttotal: 1.18s\tremaining: 3.51s\n",
4492
      "126:\tlearn: 0.0617523\ttotal: 1.19s\tremaining: 3.5s\n",
4493
      "127:\tlearn: 0.0617403\ttotal: 1.2s\tremaining: 3.49s\n",
4494
      "128:\tlearn: 0.0617212\ttotal: 1.21s\tremaining: 3.48s\n",
4495
      "129:\tlearn: 0.0617085\ttotal: 1.22s\tremaining: 3.47s\n",
4496
      "130:\tlearn: 0.0616953\ttotal: 1.23s\tremaining: 3.47s\n",
4497
      "131:\tlearn: 0.0616842\ttotal: 1.24s\tremaining: 3.46s\n",
4498
      "132:\tlearn: 0.0616678\ttotal: 1.25s\tremaining: 3.45s\n",
4499
      "133:\tlearn: 0.0616347\ttotal: 1.26s\tremaining: 3.44s\n",
4500
      "134:\tlearn: 0.0616082\ttotal: 1.27s\tremaining: 3.43s\n",
4501
      "135:\tlearn: 0.0615921\ttotal: 1.28s\tremaining: 3.42s\n",
4502
      "136:\tlearn: 0.0615793\ttotal: 1.29s\tremaining: 3.41s\n",
4503
      "137:\tlearn: 0.0615595\ttotal: 1.29s\tremaining: 3.4s\n",
4504
      "138:\tlearn: 0.0615415\ttotal: 1.3s\tremaining: 3.39s\n",
4505
      "139:\tlearn: 0.0615260\ttotal: 1.31s\tremaining: 3.38s\n",
4506
      "140:\tlearn: 0.0615042\ttotal: 1.32s\tremaining: 3.37s\n",
4507
      "141:\tlearn: 0.0614944\ttotal: 1.33s\tremaining: 3.36s\n",
4508
      "142:\tlearn: 0.0614847\ttotal: 1.34s\tremaining: 3.35s\n",
4509
      "143:\tlearn: 0.0614642\ttotal: 1.35s\tremaining: 3.34s\n",
4510
      "144:\tlearn: 0.0614468\ttotal: 1.36s\tremaining: 3.33s\n",
4511
      "145:\tlearn: 0.0614301\ttotal: 1.37s\tremaining: 3.32s\n",
4512
      "146:\tlearn: 0.0614162\ttotal: 1.38s\tremaining: 3.31s\n",
4513
      "147:\tlearn: 0.0614059\ttotal: 1.39s\tremaining: 3.3s\n",
4514
      "148:\tlearn: 0.0613920\ttotal: 1.4s\tremaining: 3.29s\n",
4515
      "149:\tlearn: 0.0613693\ttotal: 1.41s\tremaining: 3.28s\n",
4516
      "150:\tlearn: 0.0613478\ttotal: 1.41s\tremaining: 3.27s\n",
4517
      "151:\tlearn: 0.0613308\ttotal: 1.42s\tremaining: 3.26s\n",
4518
      "152:\tlearn: 0.0613094\ttotal: 1.43s\tremaining: 3.25s\n",
4519
      "153:\tlearn: 0.0612973\ttotal: 1.44s\tremaining: 3.24s\n",
4520
      "154:\tlearn: 0.0612902\ttotal: 1.45s\tremaining: 3.23s\n",
4521
      "155:\tlearn: 0.0612748\ttotal: 1.46s\tremaining: 3.22s\n",
4522
      "156:\tlearn: 0.0612667\ttotal: 1.47s\tremaining: 3.21s\n",
4523
      "157:\tlearn: 0.0612495\ttotal: 1.48s\tremaining: 3.2s\n",
4524
      "158:\tlearn: 0.0612386\ttotal: 1.49s\tremaining: 3.19s\n",
4525
      "159:\tlearn: 0.0612196\ttotal: 1.5s\tremaining: 3.18s\n",
4526
      "160:\tlearn: 0.0612071\ttotal: 1.51s\tremaining: 3.17s\n",
4527
      "161:\tlearn: 0.0611869\ttotal: 1.51s\tremaining: 3.16s\n",
4528
      "162:\tlearn: 0.0611781\ttotal: 1.52s\tremaining: 3.15s\n",
4529
      "163:\tlearn: 0.0611650\ttotal: 1.53s\tremaining: 3.14s\n",
4530
      "164:\tlearn: 0.0611508\ttotal: 1.54s\tremaining: 3.13s\n",
4531
      "165:\tlearn: 0.0611416\ttotal: 1.55s\tremaining: 3.12s\n",
4532
      "166:\tlearn: 0.0611246\ttotal: 1.56s\tremaining: 3.12s\n",
4533
      "167:\tlearn: 0.0611179\ttotal: 1.57s\tremaining: 3.11s\n",
4534
      "168:\tlearn: 0.0611007\ttotal: 1.58s\tremaining: 3.1s\n",
4535
      "169:\tlearn: 0.0610868\ttotal: 1.59s\tremaining: 3.09s\n",
4536
      "170:\tlearn: 0.0610713\ttotal: 1.6s\tremaining: 3.08s\n",
4537
      "171:\tlearn: 0.0610593\ttotal: 1.61s\tremaining: 3.07s\n",
4538
      "172:\tlearn: 0.0610472\ttotal: 1.62s\tremaining: 3.06s\n",
4539
      "173:\tlearn: 0.0610360\ttotal: 1.63s\tremaining: 3.05s\n",
4540
      "174:\tlearn: 0.0610204\ttotal: 1.64s\tremaining: 3.04s\n"
4541
     ]
4542
    },
4543
    {
4544
     "name": "stdout",
4545
     "output_type": "stream",
4546
     "text": [
4547
      "175:\tlearn: 0.0609980\ttotal: 1.65s\tremaining: 3.03s\n",
4548
      "176:\tlearn: 0.0609863\ttotal: 1.66s\tremaining: 3.02s\n",
4549
      "177:\tlearn: 0.0609757\ttotal: 1.66s\tremaining: 3.01s\n",
4550
      "178:\tlearn: 0.0609594\ttotal: 1.67s\tremaining: 3s\n",
4551
      "179:\tlearn: 0.0609472\ttotal: 1.68s\tremaining: 2.99s\n",
4552
      "180:\tlearn: 0.0609355\ttotal: 1.69s\tremaining: 2.98s\n",
4553
      "181:\tlearn: 0.0609242\ttotal: 1.7s\tremaining: 2.97s\n",
4554
      "182:\tlearn: 0.0609147\ttotal: 1.71s\tremaining: 2.96s\n",
4555
      "183:\tlearn: 0.0609061\ttotal: 1.72s\tremaining: 2.95s\n",
4556
      "184:\tlearn: 0.0608873\ttotal: 1.73s\tremaining: 2.94s\n",
4557
      "185:\tlearn: 0.0608789\ttotal: 1.74s\tremaining: 2.93s\n",
4558
      "186:\tlearn: 0.0608684\ttotal: 1.75s\tremaining: 2.92s\n",
4559
      "187:\tlearn: 0.0608566\ttotal: 1.76s\tremaining: 2.92s\n",
4560
      "188:\tlearn: 0.0608426\ttotal: 1.77s\tremaining: 2.91s\n",
4561
      "189:\tlearn: 0.0608273\ttotal: 1.77s\tremaining: 2.9s\n",
4562
      "190:\tlearn: 0.0608137\ttotal: 1.78s\tremaining: 2.89s\n",
4563
      "191:\tlearn: 0.0608056\ttotal: 1.79s\tremaining: 2.88s\n",
4564
      "192:\tlearn: 0.0607971\ttotal: 1.8s\tremaining: 2.87s\n",
4565
      "193:\tlearn: 0.0607899\ttotal: 1.81s\tremaining: 2.86s\n",
4566
      "194:\tlearn: 0.0607716\ttotal: 1.82s\tremaining: 2.85s\n",
4567
      "195:\tlearn: 0.0607659\ttotal: 1.83s\tremaining: 2.84s\n",
4568
      "196:\tlearn: 0.0607493\ttotal: 1.84s\tremaining: 2.83s\n",
4569
      "197:\tlearn: 0.0607415\ttotal: 1.85s\tremaining: 2.82s\n",
4570
      "198:\tlearn: 0.0607340\ttotal: 1.86s\tremaining: 2.81s\n",
4571
      "199:\tlearn: 0.0607244\ttotal: 1.87s\tremaining: 2.8s\n",
4572
      "200:\tlearn: 0.0607070\ttotal: 1.88s\tremaining: 2.79s\n",
4573
      "201:\tlearn: 0.0607030\ttotal: 1.89s\tremaining: 2.78s\n",
4574
      "202:\tlearn: 0.0606960\ttotal: 1.9s\tremaining: 2.77s\n",
4575
      "203:\tlearn: 0.0606768\ttotal: 1.91s\tremaining: 2.76s\n",
4576
      "204:\tlearn: 0.0606718\ttotal: 1.91s\tremaining: 2.75s\n",
4577
      "205:\tlearn: 0.0606646\ttotal: 1.92s\tremaining: 2.75s\n",
4578
      "206:\tlearn: 0.0606492\ttotal: 1.93s\tremaining: 2.74s\n",
4579
      "207:\tlearn: 0.0606424\ttotal: 1.94s\tremaining: 2.73s\n",
4580
      "208:\tlearn: 0.0606318\ttotal: 1.95s\tremaining: 2.72s\n",
4581
      "209:\tlearn: 0.0606147\ttotal: 1.96s\tremaining: 2.71s\n",
4582
      "210:\tlearn: 0.0605959\ttotal: 1.97s\tremaining: 2.7s\n",
4583
      "211:\tlearn: 0.0605884\ttotal: 1.98s\tremaining: 2.69s\n",
4584
      "212:\tlearn: 0.0605775\ttotal: 1.99s\tremaining: 2.68s\n",
4585
      "213:\tlearn: 0.0605666\ttotal: 2s\tremaining: 2.67s\n",
4586
      "214:\tlearn: 0.0605566\ttotal: 2.01s\tremaining: 2.66s\n",
4587
      "215:\tlearn: 0.0605487\ttotal: 2.02s\tremaining: 2.65s\n",
4588
      "216:\tlearn: 0.0605309\ttotal: 2.02s\tremaining: 2.64s\n",
4589
      "217:\tlearn: 0.0605239\ttotal: 2.03s\tremaining: 2.63s\n",
4590
      "218:\tlearn: 0.0605162\ttotal: 2.04s\tremaining: 2.62s\n",
4591
      "219:\tlearn: 0.0605067\ttotal: 2.05s\tremaining: 2.61s\n",
4592
      "220:\tlearn: 0.0604990\ttotal: 2.06s\tremaining: 2.6s\n",
4593
      "221:\tlearn: 0.0604882\ttotal: 2.07s\tremaining: 2.59s\n",
4594
      "222:\tlearn: 0.0604755\ttotal: 2.08s\tremaining: 2.58s\n",
4595
      "223:\tlearn: 0.0604586\ttotal: 2.09s\tremaining: 2.57s\n",
4596
      "224:\tlearn: 0.0604526\ttotal: 2.1s\tremaining: 2.56s\n",
4597
      "225:\tlearn: 0.0604437\ttotal: 2.11s\tremaining: 2.55s\n",
4598
      "226:\tlearn: 0.0604304\ttotal: 2.12s\tremaining: 2.54s\n",
4599
      "227:\tlearn: 0.0604222\ttotal: 2.12s\tremaining: 2.53s\n",
4600
      "228:\tlearn: 0.0604107\ttotal: 2.13s\tremaining: 2.52s\n",
4601
      "229:\tlearn: 0.0604032\ttotal: 2.14s\tremaining: 2.52s\n",
4602
      "230:\tlearn: 0.0603939\ttotal: 2.15s\tremaining: 2.51s\n",
4603
      "231:\tlearn: 0.0603809\ttotal: 2.16s\tremaining: 2.5s\n",
4604
      "232:\tlearn: 0.0603694\ttotal: 2.17s\tremaining: 2.49s\n",
4605
      "233:\tlearn: 0.0603504\ttotal: 2.18s\tremaining: 2.48s\n",
4606
      "234:\tlearn: 0.0603391\ttotal: 2.19s\tremaining: 2.47s\n",
4607
      "235:\tlearn: 0.0603273\ttotal: 2.2s\tremaining: 2.46s\n",
4608
      "236:\tlearn: 0.0603146\ttotal: 2.21s\tremaining: 2.45s\n",
4609
      "237:\tlearn: 0.0603013\ttotal: 2.22s\tremaining: 2.44s\n",
4610
      "238:\tlearn: 0.0602950\ttotal: 2.22s\tremaining: 2.43s\n",
4611
      "239:\tlearn: 0.0602841\ttotal: 2.23s\tremaining: 2.42s\n",
4612
      "240:\tlearn: 0.0602715\ttotal: 2.24s\tremaining: 2.41s\n",
4613
      "241:\tlearn: 0.0602657\ttotal: 2.25s\tremaining: 2.4s\n",
4614
      "242:\tlearn: 0.0602541\ttotal: 2.26s\tremaining: 2.39s\n",
4615
      "243:\tlearn: 0.0602432\ttotal: 2.27s\tremaining: 2.38s\n",
4616
      "244:\tlearn: 0.0602388\ttotal: 2.28s\tremaining: 2.37s\n",
4617
      "245:\tlearn: 0.0602338\ttotal: 2.29s\tremaining: 2.36s\n",
4618
      "246:\tlearn: 0.0602254\ttotal: 2.3s\tremaining: 2.35s\n",
4619
      "247:\tlearn: 0.0602169\ttotal: 2.31s\tremaining: 2.34s\n",
4620
      "248:\tlearn: 0.0602052\ttotal: 2.32s\tremaining: 2.33s\n",
4621
      "249:\tlearn: 0.0601975\ttotal: 2.33s\tremaining: 2.33s\n",
4622
      "250:\tlearn: 0.0601855\ttotal: 2.33s\tremaining: 2.32s\n",
4623
      "251:\tlearn: 0.0601784\ttotal: 2.34s\tremaining: 2.31s\n",
4624
      "252:\tlearn: 0.0601639\ttotal: 2.35s\tremaining: 2.3s\n",
4625
      "253:\tlearn: 0.0601496\ttotal: 2.36s\tremaining: 2.29s\n",
4626
      "254:\tlearn: 0.0601408\ttotal: 2.37s\tremaining: 2.28s\n",
4627
      "255:\tlearn: 0.0601308\ttotal: 2.38s\tremaining: 2.27s\n",
4628
      "256:\tlearn: 0.0601223\ttotal: 2.39s\tremaining: 2.26s\n",
4629
      "257:\tlearn: 0.0601045\ttotal: 2.4s\tremaining: 2.25s\n",
4630
      "258:\tlearn: 0.0600967\ttotal: 2.41s\tremaining: 2.24s\n",
4631
      "259:\tlearn: 0.0600825\ttotal: 2.42s\tremaining: 2.23s\n",
4632
      "260:\tlearn: 0.0600741\ttotal: 2.43s\tremaining: 2.22s\n",
4633
      "261:\tlearn: 0.0600637\ttotal: 2.44s\tremaining: 2.21s\n",
4634
      "262:\tlearn: 0.0600533\ttotal: 2.44s\tremaining: 2.2s\n",
4635
      "263:\tlearn: 0.0600443\ttotal: 2.45s\tremaining: 2.19s\n",
4636
      "264:\tlearn: 0.0600347\ttotal: 2.46s\tremaining: 2.18s\n",
4637
      "265:\tlearn: 0.0600209\ttotal: 2.47s\tremaining: 2.17s\n",
4638
      "266:\tlearn: 0.0600162\ttotal: 2.48s\tremaining: 2.17s\n",
4639
      "267:\tlearn: 0.0600030\ttotal: 2.49s\tremaining: 2.15s\n",
4640
      "268:\tlearn: 0.0599939\ttotal: 2.5s\tremaining: 2.15s\n",
4641
      "269:\tlearn: 0.0599905\ttotal: 2.51s\tremaining: 2.14s\n",
4642
      "270:\tlearn: 0.0599853\ttotal: 2.52s\tremaining: 2.13s\n",
4643
      "271:\tlearn: 0.0599759\ttotal: 2.53s\tremaining: 2.12s\n",
4644
      "272:\tlearn: 0.0599700\ttotal: 2.54s\tremaining: 2.11s\n",
4645
      "273:\tlearn: 0.0599606\ttotal: 2.54s\tremaining: 2.1s\n",
4646
      "274:\tlearn: 0.0599445\ttotal: 2.55s\tremaining: 2.09s\n",
4647
      "275:\tlearn: 0.0599363\ttotal: 2.56s\tremaining: 2.08s\n",
4648
      "276:\tlearn: 0.0599293\ttotal: 2.57s\tremaining: 2.07s\n",
4649
      "277:\tlearn: 0.0599189\ttotal: 2.58s\tremaining: 2.06s\n",
4650
      "278:\tlearn: 0.0599090\ttotal: 2.59s\tremaining: 2.05s\n",
4651
      "279:\tlearn: 0.0599009\ttotal: 2.6s\tremaining: 2.04s\n",
4652
      "280:\tlearn: 0.0598855\ttotal: 2.61s\tremaining: 2.03s\n",
4653
      "281:\tlearn: 0.0598800\ttotal: 2.62s\tremaining: 2.02s\n",
4654
      "282:\tlearn: 0.0598744\ttotal: 2.63s\tremaining: 2.02s\n",
4655
      "283:\tlearn: 0.0598632\ttotal: 2.64s\tremaining: 2s\n",
4656
      "284:\tlearn: 0.0598525\ttotal: 2.65s\tremaining: 2s\n",
4657
      "285:\tlearn: 0.0598483\ttotal: 2.65s\tremaining: 1.99s\n",
4658
      "286:\tlearn: 0.0598313\ttotal: 2.67s\tremaining: 1.98s\n",
4659
      "287:\tlearn: 0.0598226\ttotal: 2.67s\tremaining: 1.97s\n",
4660
      "288:\tlearn: 0.0598168\ttotal: 2.68s\tremaining: 1.96s\n",
4661
      "289:\tlearn: 0.0598095\ttotal: 2.69s\tremaining: 1.95s\n",
4662
      "290:\tlearn: 0.0598022\ttotal: 2.7s\tremaining: 1.94s\n",
4663
      "291:\tlearn: 0.0597964\ttotal: 2.71s\tremaining: 1.93s\n",
4664
      "292:\tlearn: 0.0597813\ttotal: 2.72s\tremaining: 1.92s\n",
4665
      "293:\tlearn: 0.0597702\ttotal: 2.73s\tremaining: 1.91s\n",
4666
      "294:\tlearn: 0.0597599\ttotal: 2.74s\tremaining: 1.9s\n",
4667
      "295:\tlearn: 0.0597454\ttotal: 2.75s\tremaining: 1.89s\n",
4668
      "296:\tlearn: 0.0597360\ttotal: 2.76s\tremaining: 1.88s\n",
4669
      "297:\tlearn: 0.0597263\ttotal: 2.77s\tremaining: 1.88s\n",
4670
      "298:\tlearn: 0.0597161\ttotal: 2.78s\tremaining: 1.87s\n",
4671
      "299:\tlearn: 0.0597012\ttotal: 2.79s\tremaining: 1.86s\n",
4672
      "300:\tlearn: 0.0596887\ttotal: 2.79s\tremaining: 1.85s\n",
4673
      "301:\tlearn: 0.0596628\ttotal: 2.8s\tremaining: 1.84s\n",
4674
      "302:\tlearn: 0.0596502\ttotal: 2.81s\tremaining: 1.83s\n",
4675
      "303:\tlearn: 0.0596415\ttotal: 2.82s\tremaining: 1.82s\n",
4676
      "304:\tlearn: 0.0596326\ttotal: 2.83s\tremaining: 1.81s\n",
4677
      "305:\tlearn: 0.0596266\ttotal: 2.84s\tremaining: 1.8s\n",
4678
      "306:\tlearn: 0.0596180\ttotal: 2.85s\tremaining: 1.79s\n",
4679
      "307:\tlearn: 0.0596085\ttotal: 2.86s\tremaining: 1.78s\n",
4680
      "308:\tlearn: 0.0596011\ttotal: 2.87s\tremaining: 1.77s\n",
4681
      "309:\tlearn: 0.0595902\ttotal: 2.88s\tremaining: 1.76s\n",
4682
      "310:\tlearn: 0.0595808\ttotal: 2.89s\tremaining: 1.75s\n",
4683
      "311:\tlearn: 0.0595681\ttotal: 2.9s\tremaining: 1.75s\n",
4684
      "312:\tlearn: 0.0595615\ttotal: 2.91s\tremaining: 1.74s\n",
4685
      "313:\tlearn: 0.0595529\ttotal: 2.92s\tremaining: 1.73s\n",
4686
      "314:\tlearn: 0.0595444\ttotal: 2.92s\tremaining: 1.72s\n",
4687
      "315:\tlearn: 0.0595383\ttotal: 2.93s\tremaining: 1.71s\n",
4688
      "316:\tlearn: 0.0595255\ttotal: 2.94s\tremaining: 1.7s\n",
4689
      "317:\tlearn: 0.0595126\ttotal: 2.95s\tremaining: 1.69s\n",
4690
      "318:\tlearn: 0.0595058\ttotal: 2.96s\tremaining: 1.68s\n",
4691
      "319:\tlearn: 0.0595013\ttotal: 2.97s\tremaining: 1.67s\n",
4692
      "320:\tlearn: 0.0594914\ttotal: 2.98s\tremaining: 1.66s\n",
4693
      "321:\tlearn: 0.0594793\ttotal: 2.99s\tremaining: 1.65s\n",
4694
      "322:\tlearn: 0.0594705\ttotal: 3s\tremaining: 1.64s\n",
4695
      "323:\tlearn: 0.0594618\ttotal: 3.01s\tremaining: 1.64s\n",
4696
      "324:\tlearn: 0.0594574\ttotal: 3.02s\tremaining: 1.63s\n",
4697
      "325:\tlearn: 0.0594470\ttotal: 3.03s\tremaining: 1.62s\n",
4698
      "326:\tlearn: 0.0594389\ttotal: 3.04s\tremaining: 1.61s\n",
4699
      "327:\tlearn: 0.0594316\ttotal: 3.05s\tremaining: 1.6s\n",
4700
      "328:\tlearn: 0.0594217\ttotal: 3.06s\tremaining: 1.59s\n",
4701
      "329:\tlearn: 0.0594156\ttotal: 3.07s\tremaining: 1.58s\n",
4702
      "330:\tlearn: 0.0594062\ttotal: 3.08s\tremaining: 1.57s\n",
4703
      "331:\tlearn: 0.0593972\ttotal: 3.08s\tremaining: 1.56s\n",
4704
      "332:\tlearn: 0.0593861\ttotal: 3.09s\tremaining: 1.55s\n",
4705
      "333:\tlearn: 0.0593770\ttotal: 3.1s\tremaining: 1.54s\n",
4706
      "334:\tlearn: 0.0593660\ttotal: 3.11s\tremaining: 1.53s\n",
4707
      "335:\tlearn: 0.0593566\ttotal: 3.12s\tremaining: 1.52s\n",
4708
      "336:\tlearn: 0.0593486\ttotal: 3.13s\tremaining: 1.51s\n",
4709
      "337:\tlearn: 0.0593373\ttotal: 3.14s\tremaining: 1.5s\n",
4710
      "338:\tlearn: 0.0593241\ttotal: 3.15s\tremaining: 1.5s\n",
4711
      "339:\tlearn: 0.0593142\ttotal: 3.16s\tremaining: 1.49s\n",
4712
      "340:\tlearn: 0.0593084\ttotal: 3.17s\tremaining: 1.48s\n",
4713
      "341:\tlearn: 0.0593020\ttotal: 3.18s\tremaining: 1.47s\n",
4714
      "342:\tlearn: 0.0592939\ttotal: 3.19s\tremaining: 1.46s\n",
4715
      "343:\tlearn: 0.0592803\ttotal: 3.2s\tremaining: 1.45s\n",
4716
      "344:\tlearn: 0.0592742\ttotal: 3.21s\tremaining: 1.44s\n",
4717
      "345:\tlearn: 0.0592647\ttotal: 3.21s\tremaining: 1.43s\n",
4718
      "346:\tlearn: 0.0592590\ttotal: 3.22s\tremaining: 1.42s\n",
4719
      "347:\tlearn: 0.0592468\ttotal: 3.23s\tremaining: 1.41s\n",
4720
      "348:\tlearn: 0.0592403\ttotal: 3.24s\tremaining: 1.4s\n",
4721
      "349:\tlearn: 0.0592297\ttotal: 3.25s\tremaining: 1.39s\n",
4722
      "350:\tlearn: 0.0592209\ttotal: 3.26s\tremaining: 1.38s\n"
4723
     ]
4724
    },
4725
    {
4726
     "name": "stdout",
4727
     "output_type": "stream",
4728
     "text": [
4729
      "351:\tlearn: 0.0592165\ttotal: 3.27s\tremaining: 1.37s\n",
4730
      "352:\tlearn: 0.0592114\ttotal: 3.28s\tremaining: 1.36s\n",
4731
      "353:\tlearn: 0.0592041\ttotal: 3.29s\tremaining: 1.35s\n",
4732
      "354:\tlearn: 0.0591966\ttotal: 3.3s\tremaining: 1.35s\n",
4733
      "355:\tlearn: 0.0591925\ttotal: 3.31s\tremaining: 1.34s\n",
4734
      "356:\tlearn: 0.0591861\ttotal: 3.31s\tremaining: 1.33s\n",
4735
      "357:\tlearn: 0.0591820\ttotal: 3.32s\tremaining: 1.32s\n",
4736
      "358:\tlearn: 0.0591759\ttotal: 3.33s\tremaining: 1.31s\n",
4737
      "359:\tlearn: 0.0591648\ttotal: 3.34s\tremaining: 1.3s\n",
4738
      "360:\tlearn: 0.0591556\ttotal: 3.35s\tremaining: 1.29s\n",
4739
      "361:\tlearn: 0.0591503\ttotal: 3.36s\tremaining: 1.28s\n",
4740
      "362:\tlearn: 0.0591408\ttotal: 3.37s\tremaining: 1.27s\n",
4741
      "363:\tlearn: 0.0591339\ttotal: 3.38s\tremaining: 1.26s\n",
4742
      "364:\tlearn: 0.0591270\ttotal: 3.39s\tremaining: 1.25s\n",
4743
      "365:\tlearn: 0.0591207\ttotal: 3.4s\tremaining: 1.24s\n",
4744
      "366:\tlearn: 0.0591123\ttotal: 3.41s\tremaining: 1.24s\n",
4745
      "367:\tlearn: 0.0591006\ttotal: 3.42s\tremaining: 1.23s\n",
4746
      "368:\tlearn: 0.0590962\ttotal: 3.43s\tremaining: 1.22s\n",
4747
      "369:\tlearn: 0.0590894\ttotal: 3.43s\tremaining: 1.21s\n",
4748
      "370:\tlearn: 0.0590827\ttotal: 3.44s\tremaining: 1.2s\n",
4749
      "371:\tlearn: 0.0590723\ttotal: 3.45s\tremaining: 1.19s\n",
4750
      "372:\tlearn: 0.0590614\ttotal: 3.46s\tremaining: 1.18s\n",
4751
      "373:\tlearn: 0.0590537\ttotal: 3.47s\tremaining: 1.17s\n",
4752
      "374:\tlearn: 0.0590434\ttotal: 3.48s\tremaining: 1.16s\n",
4753
      "375:\tlearn: 0.0590289\ttotal: 3.49s\tremaining: 1.15s\n",
4754
      "376:\tlearn: 0.0590202\ttotal: 3.5s\tremaining: 1.14s\n",
4755
      "377:\tlearn: 0.0590136\ttotal: 3.51s\tremaining: 1.13s\n",
4756
      "378:\tlearn: 0.0590028\ttotal: 3.52s\tremaining: 1.12s\n",
4757
      "379:\tlearn: 0.0589927\ttotal: 3.53s\tremaining: 1.11s\n",
4758
      "380:\tlearn: 0.0589792\ttotal: 3.54s\tremaining: 1.1s\n",
4759
      "381:\tlearn: 0.0589731\ttotal: 3.55s\tremaining: 1.09s\n",
4760
      "382:\tlearn: 0.0589625\ttotal: 3.56s\tremaining: 1.09s\n",
4761
      "383:\tlearn: 0.0589538\ttotal: 3.57s\tremaining: 1.08s\n",
4762
      "384:\tlearn: 0.0589464\ttotal: 3.58s\tremaining: 1.07s\n",
4763
      "385:\tlearn: 0.0589238\ttotal: 3.58s\tremaining: 1.06s\n",
4764
      "386:\tlearn: 0.0589083\ttotal: 3.59s\tremaining: 1.05s\n",
4765
      "387:\tlearn: 0.0588977\ttotal: 3.6s\tremaining: 1.04s\n",
4766
      "388:\tlearn: 0.0588895\ttotal: 3.61s\tremaining: 1.03s\n",
4767
      "389:\tlearn: 0.0588812\ttotal: 3.62s\tremaining: 1.02s\n",
4768
      "390:\tlearn: 0.0588731\ttotal: 3.63s\tremaining: 1.01s\n",
4769
      "391:\tlearn: 0.0588629\ttotal: 3.64s\tremaining: 1s\n",
4770
      "392:\tlearn: 0.0588531\ttotal: 3.65s\tremaining: 994ms\n",
4771
      "393:\tlearn: 0.0588491\ttotal: 3.66s\tremaining: 984ms\n",
4772
      "394:\tlearn: 0.0588386\ttotal: 3.67s\tremaining: 975ms\n",
4773
      "395:\tlearn: 0.0588325\ttotal: 3.68s\tremaining: 966ms\n",
4774
      "396:\tlearn: 0.0588247\ttotal: 3.69s\tremaining: 956ms\n",
4775
      "397:\tlearn: 0.0588129\ttotal: 3.69s\tremaining: 947ms\n",
4776
      "398:\tlearn: 0.0588086\ttotal: 3.7s\tremaining: 938ms\n",
4777
      "399:\tlearn: 0.0588003\ttotal: 3.71s\tremaining: 929ms\n",
4778
      "400:\tlearn: 0.0587978\ttotal: 3.72s\tremaining: 919ms\n",
4779
      "401:\tlearn: 0.0587906\ttotal: 3.73s\tremaining: 910ms\n",
4780
      "402:\tlearn: 0.0587855\ttotal: 3.74s\tremaining: 901ms\n",
4781
      "403:\tlearn: 0.0587781\ttotal: 3.75s\tremaining: 891ms\n",
4782
      "404:\tlearn: 0.0587703\ttotal: 3.76s\tremaining: 882ms\n",
4783
      "405:\tlearn: 0.0587609\ttotal: 3.77s\tremaining: 873ms\n",
4784
      "406:\tlearn: 0.0587520\ttotal: 3.78s\tremaining: 863ms\n",
4785
      "407:\tlearn: 0.0587406\ttotal: 3.79s\tremaining: 854ms\n",
4786
      "408:\tlearn: 0.0587354\ttotal: 3.8s\tremaining: 845ms\n",
4787
      "409:\tlearn: 0.0587263\ttotal: 3.81s\tremaining: 835ms\n",
4788
      "410:\tlearn: 0.0587173\ttotal: 3.81s\tremaining: 826ms\n",
4789
      "411:\tlearn: 0.0587098\ttotal: 3.82s\tremaining: 817ms\n",
4790
      "412:\tlearn: 0.0587024\ttotal: 3.83s\tremaining: 808ms\n",
4791
      "413:\tlearn: 0.0586972\ttotal: 3.84s\tremaining: 798ms\n",
4792
      "414:\tlearn: 0.0586873\ttotal: 3.85s\tremaining: 789ms\n",
4793
      "415:\tlearn: 0.0586832\ttotal: 3.86s\tremaining: 780ms\n",
4794
      "416:\tlearn: 0.0586756\ttotal: 3.87s\tremaining: 770ms\n",
4795
      "417:\tlearn: 0.0586683\ttotal: 3.88s\tremaining: 761ms\n",
4796
      "418:\tlearn: 0.0586607\ttotal: 3.89s\tremaining: 752ms\n",
4797
      "419:\tlearn: 0.0586482\ttotal: 3.9s\tremaining: 742ms\n",
4798
      "420:\tlearn: 0.0586347\ttotal: 3.91s\tremaining: 733ms\n",
4799
      "421:\tlearn: 0.0586285\ttotal: 3.92s\tremaining: 724ms\n",
4800
      "422:\tlearn: 0.0586106\ttotal: 3.92s\tremaining: 715ms\n",
4801
      "423:\tlearn: 0.0586052\ttotal: 3.93s\tremaining: 705ms\n",
4802
      "424:\tlearn: 0.0585935\ttotal: 3.94s\tremaining: 696ms\n",
4803
      "425:\tlearn: 0.0585862\ttotal: 3.95s\tremaining: 687ms\n",
4804
      "426:\tlearn: 0.0585784\ttotal: 3.96s\tremaining: 677ms\n",
4805
      "427:\tlearn: 0.0585714\ttotal: 3.97s\tremaining: 668ms\n",
4806
      "428:\tlearn: 0.0585661\ttotal: 3.98s\tremaining: 659ms\n",
4807
      "429:\tlearn: 0.0585602\ttotal: 3.99s\tremaining: 650ms\n",
4808
      "430:\tlearn: 0.0585553\ttotal: 4s\tremaining: 640ms\n",
4809
      "431:\tlearn: 0.0585522\ttotal: 4.01s\tremaining: 631ms\n",
4810
      "432:\tlearn: 0.0585447\ttotal: 4.02s\tremaining: 622ms\n",
4811
      "433:\tlearn: 0.0585333\ttotal: 4.03s\tremaining: 612ms\n",
4812
      "434:\tlearn: 0.0585209\ttotal: 4.04s\tremaining: 603ms\n",
4813
      "435:\tlearn: 0.0585153\ttotal: 4.04s\tremaining: 594ms\n",
4814
      "436:\tlearn: 0.0585059\ttotal: 4.05s\tremaining: 585ms\n",
4815
      "437:\tlearn: 0.0585007\ttotal: 4.06s\tremaining: 575ms\n",
4816
      "438:\tlearn: 0.0584926\ttotal: 4.07s\tremaining: 566ms\n",
4817
      "439:\tlearn: 0.0584845\ttotal: 4.08s\tremaining: 557ms\n",
4818
      "440:\tlearn: 0.0584768\ttotal: 4.09s\tremaining: 547ms\n",
4819
      "441:\tlearn: 0.0584641\ttotal: 4.1s\tremaining: 538ms\n",
4820
      "442:\tlearn: 0.0584572\ttotal: 4.11s\tremaining: 529ms\n",
4821
      "443:\tlearn: 0.0584491\ttotal: 4.12s\tremaining: 519ms\n",
4822
      "444:\tlearn: 0.0584329\ttotal: 4.13s\tremaining: 510ms\n",
4823
      "445:\tlearn: 0.0584213\ttotal: 4.14s\tremaining: 501ms\n",
4824
      "446:\tlearn: 0.0584126\ttotal: 4.15s\tremaining: 492ms\n",
4825
      "447:\tlearn: 0.0584050\ttotal: 4.16s\tremaining: 482ms\n",
4826
      "448:\tlearn: 0.0583978\ttotal: 4.17s\tremaining: 473ms\n",
4827
      "449:\tlearn: 0.0583930\ttotal: 4.17s\tremaining: 464ms\n",
4828
      "450:\tlearn: 0.0583843\ttotal: 4.18s\tremaining: 455ms\n",
4829
      "451:\tlearn: 0.0583751\ttotal: 4.19s\tremaining: 445ms\n",
4830
      "452:\tlearn: 0.0583647\ttotal: 4.2s\tremaining: 436ms\n",
4831
      "453:\tlearn: 0.0583575\ttotal: 4.21s\tremaining: 427ms\n",
4832
      "454:\tlearn: 0.0583527\ttotal: 4.22s\tremaining: 417ms\n",
4833
      "455:\tlearn: 0.0583424\ttotal: 4.23s\tremaining: 408ms\n",
4834
      "456:\tlearn: 0.0583332\ttotal: 4.24s\tremaining: 399ms\n",
4835
      "457:\tlearn: 0.0583283\ttotal: 4.25s\tremaining: 389ms\n",
4836
      "458:\tlearn: 0.0583160\ttotal: 4.26s\tremaining: 380ms\n",
4837
      "459:\tlearn: 0.0583130\ttotal: 4.26s\tremaining: 371ms\n",
4838
      "460:\tlearn: 0.0583084\ttotal: 4.27s\tremaining: 362ms\n",
4839
      "461:\tlearn: 0.0583032\ttotal: 4.28s\tremaining: 352ms\n",
4840
      "462:\tlearn: 0.0582945\ttotal: 4.29s\tremaining: 343ms\n",
4841
      "463:\tlearn: 0.0582893\ttotal: 4.3s\tremaining: 334ms\n",
4842
      "464:\tlearn: 0.0582822\ttotal: 4.31s\tremaining: 325ms\n",
4843
      "465:\tlearn: 0.0582737\ttotal: 4.32s\tremaining: 315ms\n",
4844
      "466:\tlearn: 0.0582691\ttotal: 4.33s\tremaining: 306ms\n",
4845
      "467:\tlearn: 0.0582597\ttotal: 4.34s\tremaining: 297ms\n",
4846
      "468:\tlearn: 0.0582556\ttotal: 4.35s\tremaining: 288ms\n",
4847
      "469:\tlearn: 0.0582485\ttotal: 4.36s\tremaining: 278ms\n",
4848
      "470:\tlearn: 0.0582445\ttotal: 4.37s\tremaining: 269ms\n",
4849
      "471:\tlearn: 0.0582374\ttotal: 4.38s\tremaining: 260ms\n",
4850
      "472:\tlearn: 0.0582325\ttotal: 4.39s\tremaining: 250ms\n",
4851
      "473:\tlearn: 0.0582208\ttotal: 4.4s\tremaining: 241ms\n",
4852
      "474:\tlearn: 0.0582138\ttotal: 4.41s\tremaining: 232ms\n",
4853
      "475:\tlearn: 0.0582067\ttotal: 4.42s\tremaining: 223ms\n",
4854
      "476:\tlearn: 0.0581962\ttotal: 4.42s\tremaining: 213ms\n",
4855
      "477:\tlearn: 0.0581876\ttotal: 4.43s\tremaining: 204ms\n",
4856
      "478:\tlearn: 0.0581809\ttotal: 4.44s\tremaining: 195ms\n",
4857
      "479:\tlearn: 0.0581743\ttotal: 4.45s\tremaining: 186ms\n",
4858
      "480:\tlearn: 0.0581672\ttotal: 4.46s\tremaining: 176ms\n",
4859
      "481:\tlearn: 0.0581591\ttotal: 4.47s\tremaining: 167ms\n",
4860
      "482:\tlearn: 0.0581521\ttotal: 4.48s\tremaining: 158ms\n",
4861
      "483:\tlearn: 0.0581421\ttotal: 4.49s\tremaining: 148ms\n",
4862
      "484:\tlearn: 0.0581393\ttotal: 4.5s\tremaining: 139ms\n",
4863
      "485:\tlearn: 0.0581340\ttotal: 4.51s\tremaining: 130ms\n",
4864
      "486:\tlearn: 0.0581273\ttotal: 4.52s\tremaining: 121ms\n",
4865
      "487:\tlearn: 0.0581233\ttotal: 4.53s\tremaining: 111ms\n",
4866
      "488:\tlearn: 0.0581150\ttotal: 4.54s\tremaining: 102ms\n",
4867
      "489:\tlearn: 0.0581071\ttotal: 4.54s\tremaining: 92.8ms\n",
4868
      "490:\tlearn: 0.0581019\ttotal: 4.55s\tremaining: 83.5ms\n",
4869
      "491:\tlearn: 0.0580959\ttotal: 4.56s\tremaining: 74.2ms\n",
4870
      "492:\tlearn: 0.0580895\ttotal: 4.57s\tremaining: 64.9ms\n",
4871
      "493:\tlearn: 0.0580769\ttotal: 4.58s\tremaining: 55.6ms\n",
4872
      "494:\tlearn: 0.0580736\ttotal: 4.59s\tremaining: 46.4ms\n",
4873
      "495:\tlearn: 0.0580688\ttotal: 4.6s\tremaining: 37.1ms\n",
4874
      "496:\tlearn: 0.0580616\ttotal: 4.61s\tremaining: 27.8ms\n",
4875
      "497:\tlearn: 0.0580503\ttotal: 4.62s\tremaining: 18.6ms\n",
4876
      "498:\tlearn: 0.0580430\ttotal: 4.63s\tremaining: 9.29ms\n",
4877
      "499:\tlearn: 0.0580407\ttotal: 4.64s\tremaining: 0us\n"
4878
     ]
4879
    },
4880
    {
4881
     "name": "stderr",
4882
     "output_type": "stream",
4883
     "text": [
4884
      "Warning: less than 75% gpu memory available for training. Free: 4064.625 Total: 11019.4375\n"
4885
     ]
4886
    },
4887
    {
4888
     "name": "stdout",
4889
     "output_type": "stream",
4890
     "text": [
4891
      "0:\tlearn: 0.6257764\ttotal: 15ms\tremaining: 7.48s\n",
4892
      "1:\tlearn: 0.5651476\ttotal: 28.9ms\tremaining: 7.2s\n",
4893
      "2:\tlearn: 0.5085256\ttotal: 43ms\tremaining: 7.12s\n",
4894
      "3:\tlearn: 0.4633903\ttotal: 56.4ms\tremaining: 7s\n",
4895
      "4:\tlearn: 0.4234627\ttotal: 70.7ms\tremaining: 7s\n",
4896
      "5:\tlearn: 0.3840513\ttotal: 84.6ms\tremaining: 6.96s\n",
4897
      "6:\tlearn: 0.3526822\ttotal: 94.5ms\tremaining: 6.65s\n",
4898
      "7:\tlearn: 0.3229816\ttotal: 104ms\tremaining: 6.41s\n",
4899
      "8:\tlearn: 0.2984860\ttotal: 114ms\tremaining: 6.22s\n",
4900
      "9:\tlearn: 0.2753699\ttotal: 125ms\tremaining: 6.1s\n",
4901
      "10:\tlearn: 0.2558969\ttotal: 135ms\tremaining: 5.99s\n",
4902
      "11:\tlearn: 0.2379854\ttotal: 144ms\tremaining: 5.88s\n",
4903
      "12:\tlearn: 0.2226474\ttotal: 154ms\tremaining: 5.78s\n",
4904
      "13:\tlearn: 0.2101508\ttotal: 164ms\tremaining: 5.7s\n",
4905
      "14:\tlearn: 0.1979292\ttotal: 174ms\tremaining: 5.63s\n",
4906
      "15:\tlearn: 0.1869549\ttotal: 184ms\tremaining: 5.56s\n",
4907
      "16:\tlearn: 0.1774927\ttotal: 193ms\tremaining: 5.49s\n",
4908
      "17:\tlearn: 0.1694308\ttotal: 203ms\tremaining: 5.44s\n",
4909
      "18:\tlearn: 0.1621997\ttotal: 214ms\tremaining: 5.41s\n",
4910
      "19:\tlearn: 0.1545322\ttotal: 224ms\tremaining: 5.37s\n",
4911
      "20:\tlearn: 0.1481794\ttotal: 234ms\tremaining: 5.33s\n",
4912
      "21:\tlearn: 0.1417536\ttotal: 244ms\tremaining: 5.29s\n",
4913
      "22:\tlearn: 0.1362018\ttotal: 254ms\tremaining: 5.26s\n",
4914
      "23:\tlearn: 0.1310937\ttotal: 264ms\tremaining: 5.23s\n",
4915
      "24:\tlearn: 0.1273010\ttotal: 274ms\tremaining: 5.2s\n",
4916
      "25:\tlearn: 0.1242802\ttotal: 284ms\tremaining: 5.17s\n",
4917
      "26:\tlearn: 0.1213909\ttotal: 293ms\tremaining: 5.12s\n",
4918
      "27:\tlearn: 0.1186649\ttotal: 301ms\tremaining: 5.08s\n",
4919
      "28:\tlearn: 0.1152861\ttotal: 310ms\tremaining: 5.04s\n",
4920
      "29:\tlearn: 0.1122106\ttotal: 320ms\tremaining: 5.01s\n",
4921
      "30:\tlearn: 0.1096162\ttotal: 329ms\tremaining: 4.97s\n",
4922
      "31:\tlearn: 0.1070164\ttotal: 338ms\tremaining: 4.94s\n",
4923
      "32:\tlearn: 0.1046425\ttotal: 347ms\tremaining: 4.91s\n",
4924
      "33:\tlearn: 0.1024993\ttotal: 356ms\tremaining: 4.88s\n",
4925
      "34:\tlearn: 0.1010733\ttotal: 365ms\tremaining: 4.85s\n",
4926
      "35:\tlearn: 0.0997385\ttotal: 374ms\tremaining: 4.82s\n",
4927
      "36:\tlearn: 0.0981950\ttotal: 383ms\tremaining: 4.79s\n",
4928
      "37:\tlearn: 0.0970868\ttotal: 392ms\tremaining: 4.77s\n",
4929
      "38:\tlearn: 0.0957960\ttotal: 401ms\tremaining: 4.74s\n",
4930
      "39:\tlearn: 0.0948432\ttotal: 410ms\tremaining: 4.72s\n",
4931
      "40:\tlearn: 0.0938939\ttotal: 419ms\tremaining: 4.69s\n",
4932
      "41:\tlearn: 0.0929877\ttotal: 428ms\tremaining: 4.67s\n",
4933
      "42:\tlearn: 0.0919962\ttotal: 437ms\tremaining: 4.65s\n",
4934
      "43:\tlearn: 0.0910057\ttotal: 447ms\tremaining: 4.63s\n",
4935
      "44:\tlearn: 0.0905920\ttotal: 456ms\tremaining: 4.61s\n",
4936
      "45:\tlearn: 0.0900491\ttotal: 465ms\tremaining: 4.59s\n",
4937
      "46:\tlearn: 0.0893054\ttotal: 475ms\tremaining: 4.57s\n",
4938
      "47:\tlearn: 0.0886174\ttotal: 484ms\tremaining: 4.56s\n",
4939
      "48:\tlearn: 0.0879410\ttotal: 493ms\tremaining: 4.54s\n",
4940
      "49:\tlearn: 0.0873311\ttotal: 502ms\tremaining: 4.52s\n",
4941
      "50:\tlearn: 0.0867164\ttotal: 512ms\tremaining: 4.51s\n",
4942
      "51:\tlearn: 0.0861954\ttotal: 521ms\tremaining: 4.49s\n",
4943
      "52:\tlearn: 0.0857554\ttotal: 531ms\tremaining: 4.47s\n",
4944
      "53:\tlearn: 0.0853713\ttotal: 540ms\tremaining: 4.46s\n",
4945
      "54:\tlearn: 0.0850961\ttotal: 549ms\tremaining: 4.44s\n",
4946
      "55:\tlearn: 0.0846955\ttotal: 558ms\tremaining: 4.42s\n",
4947
      "56:\tlearn: 0.0842343\ttotal: 567ms\tremaining: 4.41s\n",
4948
      "57:\tlearn: 0.0838028\ttotal: 577ms\tremaining: 4.39s\n",
4949
      "58:\tlearn: 0.0835021\ttotal: 586ms\tremaining: 4.38s\n",
4950
      "59:\tlearn: 0.0832483\ttotal: 595ms\tremaining: 4.36s\n",
4951
      "60:\tlearn: 0.0830413\ttotal: 605ms\tremaining: 4.35s\n",
4952
      "61:\tlearn: 0.0827062\ttotal: 614ms\tremaining: 4.34s\n",
4953
      "62:\tlearn: 0.0826085\ttotal: 623ms\tremaining: 4.32s\n",
4954
      "63:\tlearn: 0.0823317\ttotal: 633ms\tremaining: 4.31s\n",
4955
      "64:\tlearn: 0.0821482\ttotal: 642ms\tremaining: 4.3s\n",
4956
      "65:\tlearn: 0.0820028\ttotal: 651ms\tremaining: 4.28s\n",
4957
      "66:\tlearn: 0.0817650\ttotal: 660ms\tremaining: 4.27s\n",
4958
      "67:\tlearn: 0.0814728\ttotal: 669ms\tremaining: 4.25s\n",
4959
      "68:\tlearn: 0.0812960\ttotal: 678ms\tremaining: 4.24s\n",
4960
      "69:\tlearn: 0.0810990\ttotal: 688ms\tremaining: 4.22s\n",
4961
      "70:\tlearn: 0.0809106\ttotal: 697ms\tremaining: 4.21s\n",
4962
      "71:\tlearn: 0.0807946\ttotal: 706ms\tremaining: 4.2s\n",
4963
      "72:\tlearn: 0.0806369\ttotal: 716ms\tremaining: 4.18s\n",
4964
      "73:\tlearn: 0.0805664\ttotal: 725ms\tremaining: 4.17s\n",
4965
      "74:\tlearn: 0.0803649\ttotal: 734ms\tremaining: 4.16s\n",
4966
      "75:\tlearn: 0.0802542\ttotal: 744ms\tremaining: 4.15s\n",
4967
      "76:\tlearn: 0.0801177\ttotal: 753ms\tremaining: 4.13s\n",
4968
      "77:\tlearn: 0.0799576\ttotal: 762ms\tremaining: 4.12s\n",
4969
      "78:\tlearn: 0.0798259\ttotal: 771ms\tremaining: 4.11s\n",
4970
      "79:\tlearn: 0.0796954\ttotal: 781ms\tremaining: 4.1s\n",
4971
      "80:\tlearn: 0.0796217\ttotal: 790ms\tremaining: 4.09s\n",
4972
      "81:\tlearn: 0.0795715\ttotal: 799ms\tremaining: 4.07s\n",
4973
      "82:\tlearn: 0.0794620\ttotal: 808ms\tremaining: 4.06s\n",
4974
      "83:\tlearn: 0.0794056\ttotal: 818ms\tremaining: 4.05s\n",
4975
      "84:\tlearn: 0.0793202\ttotal: 827ms\tremaining: 4.04s\n",
4976
      "85:\tlearn: 0.0792080\ttotal: 837ms\tremaining: 4.03s\n",
4977
      "86:\tlearn: 0.0791575\ttotal: 846ms\tremaining: 4.01s\n",
4978
      "87:\tlearn: 0.0790723\ttotal: 855ms\tremaining: 4s\n",
4979
      "88:\tlearn: 0.0789626\ttotal: 864ms\tremaining: 3.99s\n",
4980
      "89:\tlearn: 0.0788389\ttotal: 874ms\tremaining: 3.98s\n",
4981
      "90:\tlearn: 0.0787519\ttotal: 883ms\tremaining: 3.97s\n",
4982
      "91:\tlearn: 0.0786343\ttotal: 892ms\tremaining: 3.96s\n",
4983
      "92:\tlearn: 0.0785206\ttotal: 902ms\tremaining: 3.94s\n",
4984
      "93:\tlearn: 0.0784946\ttotal: 911ms\tremaining: 3.93s\n",
4985
      "94:\tlearn: 0.0783924\ttotal: 920ms\tremaining: 3.92s\n",
4986
      "95:\tlearn: 0.0783602\ttotal: 929ms\tremaining: 3.91s\n",
4987
      "96:\tlearn: 0.0782653\ttotal: 938ms\tremaining: 3.9s\n",
4988
      "97:\tlearn: 0.0781952\ttotal: 947ms\tremaining: 3.88s\n",
4989
      "98:\tlearn: 0.0781549\ttotal: 956ms\tremaining: 3.87s\n",
4990
      "99:\tlearn: 0.0780717\ttotal: 966ms\tremaining: 3.86s\n",
4991
      "100:\tlearn: 0.0780515\ttotal: 975ms\tremaining: 3.85s\n",
4992
      "101:\tlearn: 0.0779741\ttotal: 984ms\tremaining: 3.84s\n",
4993
      "102:\tlearn: 0.0779167\ttotal: 994ms\tremaining: 3.83s\n",
4994
      "103:\tlearn: 0.0778442\ttotal: 1s\tremaining: 3.82s\n",
4995
      "104:\tlearn: 0.0778131\ttotal: 1.01s\tremaining: 3.81s\n",
4996
      "105:\tlearn: 0.0777720\ttotal: 1.02s\tremaining: 3.8s\n",
4997
      "106:\tlearn: 0.0777100\ttotal: 1.03s\tremaining: 3.79s\n",
4998
      "107:\tlearn: 0.0776803\ttotal: 1.04s\tremaining: 3.77s\n",
4999
      "108:\tlearn: 0.0776092\ttotal: 1.05s\tremaining: 3.77s\n",
5000
      "109:\tlearn: 0.0775392\ttotal: 1.06s\tremaining: 3.76s\n",
5001
      "110:\tlearn: 0.0775169\ttotal: 1.07s\tremaining: 3.75s\n",
5002
      "111:\tlearn: 0.0774538\ttotal: 1.08s\tremaining: 3.74s\n",
5003
      "112:\tlearn: 0.0773908\ttotal: 1.09s\tremaining: 3.73s\n",
5004
      "113:\tlearn: 0.0773621\ttotal: 1.1s\tremaining: 3.71s\n",
5005
      "114:\tlearn: 0.0773347\ttotal: 1.11s\tremaining: 3.7s\n",
5006
      "115:\tlearn: 0.0772693\ttotal: 1.11s\tremaining: 3.69s\n",
5007
      "116:\tlearn: 0.0772137\ttotal: 1.12s\tremaining: 3.68s\n",
5008
      "117:\tlearn: 0.0771861\ttotal: 1.13s\tremaining: 3.67s\n",
5009
      "118:\tlearn: 0.0771647\ttotal: 1.14s\tremaining: 3.66s\n",
5010
      "119:\tlearn: 0.0771411\ttotal: 1.15s\tremaining: 3.65s\n",
5011
      "120:\tlearn: 0.0770859\ttotal: 1.16s\tremaining: 3.64s\n",
5012
      "121:\tlearn: 0.0770651\ttotal: 1.17s\tremaining: 3.63s\n",
5013
      "122:\tlearn: 0.0770420\ttotal: 1.18s\tremaining: 3.62s\n",
5014
      "123:\tlearn: 0.0770212\ttotal: 1.19s\tremaining: 3.6s\n",
5015
      "124:\tlearn: 0.0769653\ttotal: 1.2s\tremaining: 3.59s\n",
5016
      "125:\tlearn: 0.0769195\ttotal: 1.21s\tremaining: 3.58s\n",
5017
      "126:\tlearn: 0.0768683\ttotal: 1.22s\tremaining: 3.57s\n",
5018
      "127:\tlearn: 0.0768469\ttotal: 1.23s\tremaining: 3.56s\n",
5019
      "128:\tlearn: 0.0767996\ttotal: 1.23s\tremaining: 3.55s\n",
5020
      "129:\tlearn: 0.0767662\ttotal: 1.24s\tremaining: 3.54s\n",
5021
      "130:\tlearn: 0.0767396\ttotal: 1.25s\tremaining: 3.53s\n",
5022
      "131:\tlearn: 0.0767134\ttotal: 1.26s\tremaining: 3.52s\n",
5023
      "132:\tlearn: 0.0766596\ttotal: 1.27s\tremaining: 3.51s\n",
5024
      "133:\tlearn: 0.0766478\ttotal: 1.28s\tremaining: 3.5s\n",
5025
      "134:\tlearn: 0.0766240\ttotal: 1.29s\tremaining: 3.49s\n",
5026
      "135:\tlearn: 0.0766052\ttotal: 1.3s\tremaining: 3.48s\n",
5027
      "136:\tlearn: 0.0765608\ttotal: 1.31s\tremaining: 3.47s\n",
5028
      "137:\tlearn: 0.0765447\ttotal: 1.32s\tremaining: 3.46s\n",
5029
      "138:\tlearn: 0.0765267\ttotal: 1.33s\tremaining: 3.45s\n",
5030
      "139:\tlearn: 0.0765102\ttotal: 1.34s\tremaining: 3.44s\n",
5031
      "140:\tlearn: 0.0764873\ttotal: 1.34s\tremaining: 3.42s\n",
5032
      "141:\tlearn: 0.0764716\ttotal: 1.35s\tremaining: 3.42s\n",
5033
      "142:\tlearn: 0.0764434\ttotal: 1.36s\tremaining: 3.4s\n",
5034
      "143:\tlearn: 0.0763954\ttotal: 1.37s\tremaining: 3.39s\n",
5035
      "144:\tlearn: 0.0763774\ttotal: 1.38s\tremaining: 3.38s\n",
5036
      "145:\tlearn: 0.0763486\ttotal: 1.39s\tremaining: 3.37s\n",
5037
      "146:\tlearn: 0.0762991\ttotal: 1.4s\tremaining: 3.36s\n",
5038
      "147:\tlearn: 0.0762784\ttotal: 1.41s\tremaining: 3.35s\n",
5039
      "148:\tlearn: 0.0762503\ttotal: 1.42s\tremaining: 3.34s\n",
5040
      "149:\tlearn: 0.0762339\ttotal: 1.43s\tremaining: 3.33s\n",
5041
      "150:\tlearn: 0.0762174\ttotal: 1.44s\tremaining: 3.32s\n",
5042
      "151:\tlearn: 0.0761927\ttotal: 1.45s\tremaining: 3.31s\n",
5043
      "152:\tlearn: 0.0761661\ttotal: 1.46s\tremaining: 3.3s\n",
5044
      "153:\tlearn: 0.0761471\ttotal: 1.47s\tremaining: 3.29s\n",
5045
      "154:\tlearn: 0.0761114\ttotal: 1.47s\tremaining: 3.28s\n",
5046
      "155:\tlearn: 0.0760798\ttotal: 1.48s\tremaining: 3.27s\n",
5047
      "156:\tlearn: 0.0760466\ttotal: 1.49s\tremaining: 3.26s\n",
5048
      "157:\tlearn: 0.0760247\ttotal: 1.5s\tremaining: 3.25s\n",
5049
      "158:\tlearn: 0.0760067\ttotal: 1.51s\tremaining: 3.24s\n",
5050
      "159:\tlearn: 0.0759755\ttotal: 1.52s\tremaining: 3.23s\n",
5051
      "160:\tlearn: 0.0759545\ttotal: 1.53s\tremaining: 3.22s\n",
5052
      "161:\tlearn: 0.0759382\ttotal: 1.54s\tremaining: 3.21s\n",
5053
      "162:\tlearn: 0.0759257\ttotal: 1.55s\tremaining: 3.2s\n",
5054
      "163:\tlearn: 0.0759074\ttotal: 1.56s\tremaining: 3.19s\n",
5055
      "164:\tlearn: 0.0758858\ttotal: 1.57s\tremaining: 3.18s\n",
5056
      "165:\tlearn: 0.0758716\ttotal: 1.57s\tremaining: 3.17s\n",
5057
      "166:\tlearn: 0.0758546\ttotal: 1.58s\tremaining: 3.16s\n",
5058
      "167:\tlearn: 0.0758355\ttotal: 1.59s\tremaining: 3.15s\n",
5059
      "168:\tlearn: 0.0757954\ttotal: 1.6s\tremaining: 3.14s\n",
5060
      "169:\tlearn: 0.0757762\ttotal: 1.61s\tremaining: 3.13s\n",
5061
      "170:\tlearn: 0.0757607\ttotal: 1.62s\tremaining: 3.12s\n",
5062
      "171:\tlearn: 0.0757418\ttotal: 1.63s\tremaining: 3.11s\n",
5063
      "172:\tlearn: 0.0757304\ttotal: 1.64s\tremaining: 3.1s\n"
5064
     ]
5065
    },
5066
    {
5067
     "name": "stdout",
5068
     "output_type": "stream",
5069
     "text": [
5070
      "173:\tlearn: 0.0756912\ttotal: 1.65s\tremaining: 3.09s\n",
5071
      "174:\tlearn: 0.0756692\ttotal: 1.66s\tremaining: 3.08s\n",
5072
      "175:\tlearn: 0.0756538\ttotal: 1.67s\tremaining: 3.07s\n",
5073
      "176:\tlearn: 0.0756379\ttotal: 1.68s\tremaining: 3.06s\n",
5074
      "177:\tlearn: 0.0756186\ttotal: 1.69s\tremaining: 3.05s\n",
5075
      "178:\tlearn: 0.0756015\ttotal: 1.7s\tremaining: 3.04s\n",
5076
      "179:\tlearn: 0.0755803\ttotal: 1.71s\tremaining: 3.04s\n",
5077
      "180:\tlearn: 0.0755621\ttotal: 1.72s\tremaining: 3.02s\n",
5078
      "181:\tlearn: 0.0755436\ttotal: 1.73s\tremaining: 3.01s\n",
5079
      "182:\tlearn: 0.0755217\ttotal: 1.74s\tremaining: 3s\n",
5080
      "183:\tlearn: 0.0755030\ttotal: 1.74s\tremaining: 3s\n",
5081
      "184:\tlearn: 0.0754736\ttotal: 1.75s\tremaining: 2.99s\n",
5082
      "185:\tlearn: 0.0754556\ttotal: 1.76s\tremaining: 2.98s\n",
5083
      "186:\tlearn: 0.0754395\ttotal: 1.77s\tremaining: 2.97s\n",
5084
      "187:\tlearn: 0.0754149\ttotal: 1.78s\tremaining: 2.96s\n",
5085
      "188:\tlearn: 0.0754039\ttotal: 1.79s\tremaining: 2.95s\n",
5086
      "189:\tlearn: 0.0753808\ttotal: 1.8s\tremaining: 2.94s\n",
5087
      "190:\tlearn: 0.0753634\ttotal: 1.81s\tremaining: 2.93s\n",
5088
      "191:\tlearn: 0.0753438\ttotal: 1.82s\tremaining: 2.92s\n",
5089
      "192:\tlearn: 0.0753286\ttotal: 1.83s\tremaining: 2.91s\n",
5090
      "193:\tlearn: 0.0752987\ttotal: 1.84s\tremaining: 2.9s\n",
5091
      "194:\tlearn: 0.0752792\ttotal: 1.85s\tremaining: 2.89s\n",
5092
      "195:\tlearn: 0.0752612\ttotal: 1.86s\tremaining: 2.88s\n",
5093
      "196:\tlearn: 0.0752265\ttotal: 1.87s\tremaining: 2.87s\n",
5094
      "197:\tlearn: 0.0752110\ttotal: 1.88s\tremaining: 2.86s\n",
5095
      "198:\tlearn: 0.0751697\ttotal: 1.89s\tremaining: 2.85s\n",
5096
      "199:\tlearn: 0.0751552\ttotal: 1.89s\tremaining: 2.84s\n",
5097
      "200:\tlearn: 0.0751416\ttotal: 1.9s\tremaining: 2.83s\n",
5098
      "201:\tlearn: 0.0751209\ttotal: 1.91s\tremaining: 2.82s\n",
5099
      "202:\tlearn: 0.0750913\ttotal: 1.92s\tremaining: 2.81s\n",
5100
      "203:\tlearn: 0.0750649\ttotal: 1.93s\tremaining: 2.81s\n",
5101
      "204:\tlearn: 0.0750495\ttotal: 1.94s\tremaining: 2.79s\n",
5102
      "205:\tlearn: 0.0750160\ttotal: 1.95s\tremaining: 2.79s\n",
5103
      "206:\tlearn: 0.0749961\ttotal: 1.96s\tremaining: 2.78s\n",
5104
      "207:\tlearn: 0.0749767\ttotal: 1.97s\tremaining: 2.77s\n",
5105
      "208:\tlearn: 0.0749566\ttotal: 1.98s\tremaining: 2.76s\n",
5106
      "209:\tlearn: 0.0749401\ttotal: 1.99s\tremaining: 2.75s\n",
5107
      "210:\tlearn: 0.0749216\ttotal: 2s\tremaining: 2.74s\n",
5108
      "211:\tlearn: 0.0748842\ttotal: 2.01s\tremaining: 2.73s\n",
5109
      "212:\tlearn: 0.0748558\ttotal: 2.02s\tremaining: 2.72s\n",
5110
      "213:\tlearn: 0.0748431\ttotal: 2.03s\tremaining: 2.71s\n",
5111
      "214:\tlearn: 0.0748219\ttotal: 2.04s\tremaining: 2.7s\n",
5112
      "215:\tlearn: 0.0747943\ttotal: 2.05s\tremaining: 2.69s\n",
5113
      "216:\tlearn: 0.0747617\ttotal: 2.06s\tremaining: 2.68s\n",
5114
      "217:\tlearn: 0.0747479\ttotal: 2.07s\tremaining: 2.67s\n",
5115
      "218:\tlearn: 0.0747359\ttotal: 2.08s\tremaining: 2.67s\n",
5116
      "219:\tlearn: 0.0747165\ttotal: 2.09s\tremaining: 2.65s\n",
5117
      "220:\tlearn: 0.0747016\ttotal: 2.1s\tremaining: 2.65s\n",
5118
      "221:\tlearn: 0.0746867\ttotal: 2.1s\tremaining: 2.64s\n",
5119
      "222:\tlearn: 0.0746728\ttotal: 2.11s\tremaining: 2.63s\n",
5120
      "223:\tlearn: 0.0746608\ttotal: 2.12s\tremaining: 2.62s\n",
5121
      "224:\tlearn: 0.0746510\ttotal: 2.13s\tremaining: 2.61s\n",
5122
      "225:\tlearn: 0.0746298\ttotal: 2.14s\tremaining: 2.6s\n",
5123
      "226:\tlearn: 0.0746142\ttotal: 2.15s\tremaining: 2.59s\n",
5124
      "227:\tlearn: 0.0745971\ttotal: 2.16s\tremaining: 2.58s\n",
5125
      "228:\tlearn: 0.0745830\ttotal: 2.17s\tremaining: 2.57s\n",
5126
      "229:\tlearn: 0.0745643\ttotal: 2.18s\tremaining: 2.56s\n",
5127
      "230:\tlearn: 0.0745454\ttotal: 2.19s\tremaining: 2.55s\n",
5128
      "231:\tlearn: 0.0745321\ttotal: 2.2s\tremaining: 2.54s\n",
5129
      "232:\tlearn: 0.0745202\ttotal: 2.21s\tremaining: 2.53s\n",
5130
      "233:\tlearn: 0.0745024\ttotal: 2.21s\tremaining: 2.52s\n",
5131
      "234:\tlearn: 0.0744866\ttotal: 2.22s\tremaining: 2.51s\n",
5132
      "235:\tlearn: 0.0744663\ttotal: 2.23s\tremaining: 2.5s\n",
5133
      "236:\tlearn: 0.0744455\ttotal: 2.24s\tremaining: 2.49s\n",
5134
      "237:\tlearn: 0.0744222\ttotal: 2.25s\tremaining: 2.48s\n",
5135
      "238:\tlearn: 0.0744013\ttotal: 2.26s\tremaining: 2.47s\n",
5136
      "239:\tlearn: 0.0743854\ttotal: 2.27s\tremaining: 2.46s\n",
5137
      "240:\tlearn: 0.0743624\ttotal: 2.28s\tremaining: 2.45s\n",
5138
      "241:\tlearn: 0.0743498\ttotal: 2.29s\tremaining: 2.44s\n",
5139
      "242:\tlearn: 0.0743336\ttotal: 2.3s\tremaining: 2.43s\n",
5140
      "243:\tlearn: 0.0743106\ttotal: 2.31s\tremaining: 2.42s\n",
5141
      "244:\tlearn: 0.0742881\ttotal: 2.32s\tremaining: 2.41s\n",
5142
      "245:\tlearn: 0.0742759\ttotal: 2.33s\tremaining: 2.4s\n",
5143
      "246:\tlearn: 0.0742584\ttotal: 2.33s\tremaining: 2.39s\n",
5144
      "247:\tlearn: 0.0742471\ttotal: 2.34s\tremaining: 2.38s\n",
5145
      "248:\tlearn: 0.0742266\ttotal: 2.35s\tremaining: 2.37s\n",
5146
      "249:\tlearn: 0.0742131\ttotal: 2.36s\tremaining: 2.36s\n",
5147
      "250:\tlearn: 0.0741980\ttotal: 2.37s\tremaining: 2.35s\n",
5148
      "251:\tlearn: 0.0741745\ttotal: 2.38s\tremaining: 2.34s\n",
5149
      "252:\tlearn: 0.0741568\ttotal: 2.39s\tremaining: 2.33s\n",
5150
      "253:\tlearn: 0.0741407\ttotal: 2.4s\tremaining: 2.32s\n",
5151
      "254:\tlearn: 0.0741089\ttotal: 2.41s\tremaining: 2.31s\n",
5152
      "255:\tlearn: 0.0740969\ttotal: 2.42s\tremaining: 2.3s\n",
5153
      "256:\tlearn: 0.0740842\ttotal: 2.43s\tremaining: 2.29s\n",
5154
      "257:\tlearn: 0.0740648\ttotal: 2.44s\tremaining: 2.29s\n",
5155
      "258:\tlearn: 0.0740522\ttotal: 2.44s\tremaining: 2.27s\n",
5156
      "259:\tlearn: 0.0740265\ttotal: 2.46s\tremaining: 2.27s\n",
5157
      "260:\tlearn: 0.0740038\ttotal: 2.46s\tremaining: 2.26s\n",
5158
      "261:\tlearn: 0.0739822\ttotal: 2.47s\tremaining: 2.25s\n",
5159
      "262:\tlearn: 0.0739671\ttotal: 2.48s\tremaining: 2.24s\n",
5160
      "263:\tlearn: 0.0739568\ttotal: 2.49s\tremaining: 2.23s\n",
5161
      "264:\tlearn: 0.0739377\ttotal: 2.5s\tremaining: 2.22s\n",
5162
      "265:\tlearn: 0.0739275\ttotal: 2.51s\tremaining: 2.21s\n",
5163
      "266:\tlearn: 0.0739158\ttotal: 2.52s\tremaining: 2.2s\n",
5164
      "267:\tlearn: 0.0738968\ttotal: 2.53s\tremaining: 2.19s\n",
5165
      "268:\tlearn: 0.0738828\ttotal: 2.54s\tremaining: 2.18s\n",
5166
      "269:\tlearn: 0.0738738\ttotal: 2.55s\tremaining: 2.17s\n",
5167
      "270:\tlearn: 0.0738530\ttotal: 2.56s\tremaining: 2.16s\n",
5168
      "271:\tlearn: 0.0738385\ttotal: 2.57s\tremaining: 2.15s\n",
5169
      "272:\tlearn: 0.0738217\ttotal: 2.57s\tremaining: 2.14s\n",
5170
      "273:\tlearn: 0.0738107\ttotal: 2.58s\tremaining: 2.13s\n",
5171
      "274:\tlearn: 0.0737937\ttotal: 2.59s\tremaining: 2.12s\n",
5172
      "275:\tlearn: 0.0737767\ttotal: 2.6s\tremaining: 2.11s\n",
5173
      "276:\tlearn: 0.0737616\ttotal: 2.61s\tremaining: 2.1s\n",
5174
      "277:\tlearn: 0.0737502\ttotal: 2.62s\tremaining: 2.09s\n",
5175
      "278:\tlearn: 0.0737328\ttotal: 2.63s\tremaining: 2.08s\n",
5176
      "279:\tlearn: 0.0737203\ttotal: 2.64s\tremaining: 2.07s\n",
5177
      "280:\tlearn: 0.0737007\ttotal: 2.65s\tremaining: 2.06s\n",
5178
      "281:\tlearn: 0.0736849\ttotal: 2.66s\tremaining: 2.06s\n",
5179
      "282:\tlearn: 0.0736769\ttotal: 2.67s\tremaining: 2.05s\n",
5180
      "283:\tlearn: 0.0736578\ttotal: 2.68s\tremaining: 2.04s\n",
5181
      "284:\tlearn: 0.0736427\ttotal: 2.69s\tremaining: 2.03s\n",
5182
      "285:\tlearn: 0.0736287\ttotal: 2.69s\tremaining: 2.02s\n",
5183
      "286:\tlearn: 0.0736217\ttotal: 2.7s\tremaining: 2.01s\n",
5184
      "287:\tlearn: 0.0736067\ttotal: 2.71s\tremaining: 2s\n",
5185
      "288:\tlearn: 0.0735961\ttotal: 2.72s\tremaining: 1.99s\n",
5186
      "289:\tlearn: 0.0735789\ttotal: 2.73s\tremaining: 1.98s\n",
5187
      "290:\tlearn: 0.0735650\ttotal: 2.74s\tremaining: 1.97s\n",
5188
      "291:\tlearn: 0.0735480\ttotal: 2.75s\tremaining: 1.96s\n",
5189
      "292:\tlearn: 0.0735351\ttotal: 2.76s\tremaining: 1.95s\n",
5190
      "293:\tlearn: 0.0735144\ttotal: 2.77s\tremaining: 1.94s\n",
5191
      "294:\tlearn: 0.0734994\ttotal: 2.78s\tremaining: 1.93s\n",
5192
      "295:\tlearn: 0.0734780\ttotal: 2.79s\tremaining: 1.92s\n",
5193
      "296:\tlearn: 0.0734637\ttotal: 2.8s\tremaining: 1.91s\n",
5194
      "297:\tlearn: 0.0734448\ttotal: 2.81s\tremaining: 1.9s\n",
5195
      "298:\tlearn: 0.0734306\ttotal: 2.82s\tremaining: 1.89s\n",
5196
      "299:\tlearn: 0.0734133\ttotal: 2.83s\tremaining: 1.88s\n",
5197
      "300:\tlearn: 0.0733927\ttotal: 2.83s\tremaining: 1.87s\n",
5198
      "301:\tlearn: 0.0733793\ttotal: 2.84s\tremaining: 1.86s\n",
5199
      "302:\tlearn: 0.0733619\ttotal: 2.85s\tremaining: 1.85s\n",
5200
      "303:\tlearn: 0.0733459\ttotal: 2.86s\tremaining: 1.84s\n",
5201
      "304:\tlearn: 0.0733379\ttotal: 2.87s\tremaining: 1.83s\n",
5202
      "305:\tlearn: 0.0733261\ttotal: 2.88s\tremaining: 1.83s\n",
5203
      "306:\tlearn: 0.0733182\ttotal: 2.89s\tremaining: 1.82s\n",
5204
      "307:\tlearn: 0.0733047\ttotal: 2.9s\tremaining: 1.81s\n",
5205
      "308:\tlearn: 0.0732879\ttotal: 2.91s\tremaining: 1.8s\n",
5206
      "309:\tlearn: 0.0732732\ttotal: 2.92s\tremaining: 1.79s\n",
5207
      "310:\tlearn: 0.0732567\ttotal: 2.93s\tremaining: 1.78s\n",
5208
      "311:\tlearn: 0.0732464\ttotal: 2.94s\tremaining: 1.77s\n",
5209
      "312:\tlearn: 0.0732296\ttotal: 2.94s\tremaining: 1.76s\n",
5210
      "313:\tlearn: 0.0732169\ttotal: 2.95s\tremaining: 1.75s\n",
5211
      "314:\tlearn: 0.0731990\ttotal: 2.96s\tremaining: 1.74s\n",
5212
      "315:\tlearn: 0.0731851\ttotal: 2.97s\tremaining: 1.73s\n",
5213
      "316:\tlearn: 0.0731691\ttotal: 2.98s\tremaining: 1.72s\n",
5214
      "317:\tlearn: 0.0731539\ttotal: 2.99s\tremaining: 1.71s\n",
5215
      "318:\tlearn: 0.0731409\ttotal: 3s\tremaining: 1.7s\n",
5216
      "319:\tlearn: 0.0731239\ttotal: 3.01s\tremaining: 1.69s\n",
5217
      "320:\tlearn: 0.0731167\ttotal: 3.02s\tremaining: 1.68s\n",
5218
      "321:\tlearn: 0.0730990\ttotal: 3.03s\tremaining: 1.67s\n",
5219
      "322:\tlearn: 0.0730824\ttotal: 3.04s\tremaining: 1.66s\n",
5220
      "323:\tlearn: 0.0730710\ttotal: 3.05s\tremaining: 1.66s\n",
5221
      "324:\tlearn: 0.0730631\ttotal: 3.06s\tremaining: 1.65s\n",
5222
      "325:\tlearn: 0.0730454\ttotal: 3.06s\tremaining: 1.64s\n",
5223
      "326:\tlearn: 0.0730259\ttotal: 3.07s\tremaining: 1.63s\n",
5224
      "327:\tlearn: 0.0730080\ttotal: 3.08s\tremaining: 1.62s\n",
5225
      "328:\tlearn: 0.0729973\ttotal: 3.09s\tremaining: 1.61s\n",
5226
      "329:\tlearn: 0.0729854\ttotal: 3.1s\tremaining: 1.6s\n",
5227
      "330:\tlearn: 0.0729719\ttotal: 3.11s\tremaining: 1.59s\n",
5228
      "331:\tlearn: 0.0729522\ttotal: 3.12s\tremaining: 1.58s\n",
5229
      "332:\tlearn: 0.0729362\ttotal: 3.13s\tremaining: 1.57s\n",
5230
      "333:\tlearn: 0.0729223\ttotal: 3.14s\tremaining: 1.56s\n",
5231
      "334:\tlearn: 0.0729088\ttotal: 3.15s\tremaining: 1.55s\n",
5232
      "335:\tlearn: 0.0728980\ttotal: 3.16s\tremaining: 1.54s\n",
5233
      "336:\tlearn: 0.0728841\ttotal: 3.17s\tremaining: 1.53s\n",
5234
      "337:\tlearn: 0.0728731\ttotal: 3.17s\tremaining: 1.52s\n",
5235
      "338:\tlearn: 0.0728568\ttotal: 3.18s\tremaining: 1.51s\n",
5236
      "339:\tlearn: 0.0728383\ttotal: 3.19s\tremaining: 1.5s\n",
5237
      "340:\tlearn: 0.0728278\ttotal: 3.2s\tremaining: 1.49s\n",
5238
      "341:\tlearn: 0.0728188\ttotal: 3.21s\tremaining: 1.48s\n",
5239
      "342:\tlearn: 0.0728046\ttotal: 3.22s\tremaining: 1.47s\n",
5240
      "343:\tlearn: 0.0727955\ttotal: 3.23s\tremaining: 1.46s\n",
5241
      "344:\tlearn: 0.0727719\ttotal: 3.24s\tremaining: 1.46s\n",
5242
      "345:\tlearn: 0.0727531\ttotal: 3.25s\tremaining: 1.45s\n",
5243
      "346:\tlearn: 0.0727345\ttotal: 3.26s\tremaining: 1.44s\n",
5244
      "347:\tlearn: 0.0727180\ttotal: 3.27s\tremaining: 1.43s\n"
5245
     ]
5246
    },
5247
    {
5248
     "name": "stdout",
5249
     "output_type": "stream",
5250
     "text": [
5251
      "348:\tlearn: 0.0727054\ttotal: 3.28s\tremaining: 1.42s\n",
5252
      "349:\tlearn: 0.0726937\ttotal: 3.29s\tremaining: 1.41s\n",
5253
      "350:\tlearn: 0.0726851\ttotal: 3.29s\tremaining: 1.4s\n",
5254
      "351:\tlearn: 0.0726723\ttotal: 3.3s\tremaining: 1.39s\n",
5255
      "352:\tlearn: 0.0726589\ttotal: 3.31s\tremaining: 1.38s\n",
5256
      "353:\tlearn: 0.0726447\ttotal: 3.32s\tremaining: 1.37s\n",
5257
      "354:\tlearn: 0.0726371\ttotal: 3.33s\tremaining: 1.36s\n",
5258
      "355:\tlearn: 0.0726234\ttotal: 3.34s\tremaining: 1.35s\n",
5259
      "356:\tlearn: 0.0726058\ttotal: 3.35s\tremaining: 1.34s\n",
5260
      "357:\tlearn: 0.0725990\ttotal: 3.36s\tremaining: 1.33s\n",
5261
      "358:\tlearn: 0.0725809\ttotal: 3.37s\tremaining: 1.32s\n",
5262
      "359:\tlearn: 0.0725742\ttotal: 3.38s\tremaining: 1.31s\n",
5263
      "360:\tlearn: 0.0725603\ttotal: 3.38s\tremaining: 1.3s\n",
5264
      "361:\tlearn: 0.0725405\ttotal: 3.39s\tremaining: 1.29s\n",
5265
      "362:\tlearn: 0.0725202\ttotal: 3.4s\tremaining: 1.28s\n",
5266
      "363:\tlearn: 0.0725112\ttotal: 3.41s\tremaining: 1.27s\n",
5267
      "364:\tlearn: 0.0724904\ttotal: 3.42s\tremaining: 1.26s\n",
5268
      "365:\tlearn: 0.0724800\ttotal: 3.43s\tremaining: 1.26s\n",
5269
      "366:\tlearn: 0.0724662\ttotal: 3.44s\tremaining: 1.25s\n",
5270
      "367:\tlearn: 0.0724458\ttotal: 3.45s\tremaining: 1.24s\n",
5271
      "368:\tlearn: 0.0724359\ttotal: 3.46s\tremaining: 1.23s\n",
5272
      "369:\tlearn: 0.0724198\ttotal: 3.47s\tremaining: 1.22s\n",
5273
      "370:\tlearn: 0.0724060\ttotal: 3.48s\tremaining: 1.21s\n",
5274
      "371:\tlearn: 0.0723882\ttotal: 3.49s\tremaining: 1.2s\n",
5275
      "372:\tlearn: 0.0723750\ttotal: 3.5s\tremaining: 1.19s\n",
5276
      "373:\tlearn: 0.0723575\ttotal: 3.5s\tremaining: 1.18s\n",
5277
      "374:\tlearn: 0.0723401\ttotal: 3.51s\tremaining: 1.17s\n",
5278
      "375:\tlearn: 0.0723282\ttotal: 3.52s\tremaining: 1.16s\n",
5279
      "376:\tlearn: 0.0723209\ttotal: 3.53s\tremaining: 1.15s\n",
5280
      "377:\tlearn: 0.0723067\ttotal: 3.54s\tremaining: 1.14s\n",
5281
      "378:\tlearn: 0.0723002\ttotal: 3.55s\tremaining: 1.13s\n",
5282
      "379:\tlearn: 0.0722854\ttotal: 3.56s\tremaining: 1.12s\n",
5283
      "380:\tlearn: 0.0722713\ttotal: 3.57s\tremaining: 1.11s\n",
5284
      "381:\tlearn: 0.0722583\ttotal: 3.58s\tremaining: 1.1s\n",
5285
      "382:\tlearn: 0.0722447\ttotal: 3.59s\tremaining: 1.09s\n",
5286
      "383:\tlearn: 0.0722340\ttotal: 3.6s\tremaining: 1.09s\n",
5287
      "384:\tlearn: 0.0722257\ttotal: 3.61s\tremaining: 1.08s\n",
5288
      "385:\tlearn: 0.0722123\ttotal: 3.62s\tremaining: 1.07s\n",
5289
      "386:\tlearn: 0.0722020\ttotal: 3.63s\tremaining: 1.06s\n",
5290
      "387:\tlearn: 0.0721919\ttotal: 3.63s\tremaining: 1.05s\n",
5291
      "388:\tlearn: 0.0721809\ttotal: 3.64s\tremaining: 1.04s\n",
5292
      "389:\tlearn: 0.0721664\ttotal: 3.65s\tremaining: 1.03s\n",
5293
      "390:\tlearn: 0.0721542\ttotal: 3.66s\tremaining: 1.02s\n",
5294
      "391:\tlearn: 0.0721382\ttotal: 3.67s\tremaining: 1.01s\n",
5295
      "392:\tlearn: 0.0721300\ttotal: 3.68s\tremaining: 1s\n",
5296
      "393:\tlearn: 0.0721132\ttotal: 3.69s\tremaining: 992ms\n",
5297
      "394:\tlearn: 0.0720966\ttotal: 3.7s\tremaining: 983ms\n",
5298
      "395:\tlearn: 0.0720859\ttotal: 3.71s\tremaining: 974ms\n",
5299
      "396:\tlearn: 0.0720791\ttotal: 3.72s\tremaining: 965ms\n",
5300
      "397:\tlearn: 0.0720603\ttotal: 3.73s\tremaining: 955ms\n",
5301
      "398:\tlearn: 0.0720437\ttotal: 3.74s\tremaining: 946ms\n",
5302
      "399:\tlearn: 0.0720353\ttotal: 3.75s\tremaining: 936ms\n",
5303
      "400:\tlearn: 0.0720230\ttotal: 3.75s\tremaining: 927ms\n",
5304
      "401:\tlearn: 0.0720101\ttotal: 3.76s\tremaining: 918ms\n",
5305
      "402:\tlearn: 0.0719957\ttotal: 3.77s\tremaining: 908ms\n",
5306
      "403:\tlearn: 0.0719793\ttotal: 3.78s\tremaining: 899ms\n",
5307
      "404:\tlearn: 0.0719648\ttotal: 3.79s\tremaining: 890ms\n",
5308
      "405:\tlearn: 0.0719545\ttotal: 3.8s\tremaining: 880ms\n",
5309
      "406:\tlearn: 0.0719462\ttotal: 3.81s\tremaining: 871ms\n",
5310
      "407:\tlearn: 0.0719292\ttotal: 3.82s\tremaining: 861ms\n",
5311
      "408:\tlearn: 0.0719149\ttotal: 3.83s\tremaining: 852ms\n",
5312
      "409:\tlearn: 0.0719043\ttotal: 3.84s\tremaining: 843ms\n",
5313
      "410:\tlearn: 0.0718889\ttotal: 3.85s\tremaining: 833ms\n",
5314
      "411:\tlearn: 0.0718678\ttotal: 3.86s\tremaining: 824ms\n",
5315
      "412:\tlearn: 0.0718597\ttotal: 3.87s\tremaining: 815ms\n",
5316
      "413:\tlearn: 0.0718502\ttotal: 3.88s\tremaining: 805ms\n",
5317
      "414:\tlearn: 0.0718380\ttotal: 3.89s\tremaining: 796ms\n",
5318
      "415:\tlearn: 0.0718257\ttotal: 3.9s\tremaining: 787ms\n",
5319
      "416:\tlearn: 0.0718165\ttotal: 3.9s\tremaining: 777ms\n",
5320
      "417:\tlearn: 0.0718029\ttotal: 3.91s\tremaining: 768ms\n",
5321
      "418:\tlearn: 0.0717902\ttotal: 3.92s\tremaining: 758ms\n",
5322
      "419:\tlearn: 0.0717771\ttotal: 3.93s\tremaining: 749ms\n",
5323
      "420:\tlearn: 0.0717688\ttotal: 3.94s\tremaining: 740ms\n",
5324
      "421:\tlearn: 0.0717573\ttotal: 3.95s\tremaining: 730ms\n",
5325
      "422:\tlearn: 0.0717474\ttotal: 3.96s\tremaining: 721ms\n",
5326
      "423:\tlearn: 0.0717324\ttotal: 3.97s\tremaining: 711ms\n",
5327
      "424:\tlearn: 0.0717264\ttotal: 3.98s\tremaining: 702ms\n",
5328
      "425:\tlearn: 0.0717157\ttotal: 3.99s\tremaining: 693ms\n",
5329
      "426:\tlearn: 0.0717059\ttotal: 4s\tremaining: 683ms\n",
5330
      "427:\tlearn: 0.0716873\ttotal: 4.01s\tremaining: 674ms\n",
5331
      "428:\tlearn: 0.0716677\ttotal: 4.01s\tremaining: 665ms\n",
5332
      "429:\tlearn: 0.0716600\ttotal: 4.03s\tremaining: 655ms\n",
5333
      "430:\tlearn: 0.0716483\ttotal: 4.04s\tremaining: 646ms\n",
5334
      "431:\tlearn: 0.0716365\ttotal: 4.04s\tremaining: 637ms\n",
5335
      "432:\tlearn: 0.0716202\ttotal: 4.05s\tremaining: 628ms\n",
5336
      "433:\tlearn: 0.0716095\ttotal: 4.06s\tremaining: 618ms\n",
5337
      "434:\tlearn: 0.0715985\ttotal: 4.07s\tremaining: 609ms\n",
5338
      "435:\tlearn: 0.0715876\ttotal: 4.08s\tremaining: 599ms\n",
5339
      "436:\tlearn: 0.0715798\ttotal: 4.09s\tremaining: 590ms\n",
5340
      "437:\tlearn: 0.0715610\ttotal: 4.1s\tremaining: 581ms\n",
5341
      "438:\tlearn: 0.0715484\ttotal: 4.11s\tremaining: 571ms\n",
5342
      "439:\tlearn: 0.0715376\ttotal: 4.12s\tremaining: 562ms\n",
5343
      "440:\tlearn: 0.0715258\ttotal: 4.13s\tremaining: 553ms\n",
5344
      "441:\tlearn: 0.0715089\ttotal: 4.14s\tremaining: 543ms\n",
5345
      "442:\tlearn: 0.0714980\ttotal: 4.15s\tremaining: 534ms\n",
5346
      "443:\tlearn: 0.0714831\ttotal: 4.16s\tremaining: 524ms\n",
5347
      "444:\tlearn: 0.0714712\ttotal: 4.17s\tremaining: 515ms\n",
5348
      "445:\tlearn: 0.0714504\ttotal: 4.18s\tremaining: 506ms\n",
5349
      "446:\tlearn: 0.0714367\ttotal: 4.19s\tremaining: 496ms\n",
5350
      "447:\tlearn: 0.0714226\ttotal: 4.2s\tremaining: 487ms\n",
5351
      "448:\tlearn: 0.0714022\ttotal: 4.21s\tremaining: 478ms\n",
5352
      "449:\tlearn: 0.0713922\ttotal: 4.21s\tremaining: 468ms\n",
5353
      "450:\tlearn: 0.0713754\ttotal: 4.22s\tremaining: 459ms\n",
5354
      "451:\tlearn: 0.0713548\ttotal: 4.23s\tremaining: 449ms\n",
5355
      "452:\tlearn: 0.0713430\ttotal: 4.24s\tremaining: 440ms\n",
5356
      "453:\tlearn: 0.0713314\ttotal: 4.25s\tremaining: 431ms\n",
5357
      "454:\tlearn: 0.0713193\ttotal: 4.26s\tremaining: 421ms\n",
5358
      "455:\tlearn: 0.0713045\ttotal: 4.27s\tremaining: 412ms\n",
5359
      "456:\tlearn: 0.0712836\ttotal: 4.28s\tremaining: 403ms\n",
5360
      "457:\tlearn: 0.0712709\ttotal: 4.29s\tremaining: 393ms\n",
5361
      "458:\tlearn: 0.0712616\ttotal: 4.3s\tremaining: 384ms\n",
5362
      "459:\tlearn: 0.0712485\ttotal: 4.31s\tremaining: 375ms\n",
5363
      "460:\tlearn: 0.0712362\ttotal: 4.32s\tremaining: 365ms\n",
5364
      "461:\tlearn: 0.0712228\ttotal: 4.33s\tremaining: 356ms\n",
5365
      "462:\tlearn: 0.0712109\ttotal: 4.33s\tremaining: 346ms\n",
5366
      "463:\tlearn: 0.0711906\ttotal: 4.34s\tremaining: 337ms\n",
5367
      "464:\tlearn: 0.0711781\ttotal: 4.35s\tremaining: 328ms\n",
5368
      "465:\tlearn: 0.0711673\ttotal: 4.36s\tremaining: 318ms\n",
5369
      "466:\tlearn: 0.0711520\ttotal: 4.37s\tremaining: 309ms\n",
5370
      "467:\tlearn: 0.0711382\ttotal: 4.38s\tremaining: 300ms\n",
5371
      "468:\tlearn: 0.0711256\ttotal: 4.39s\tremaining: 290ms\n",
5372
      "469:\tlearn: 0.0711134\ttotal: 4.4s\tremaining: 281ms\n",
5373
      "470:\tlearn: 0.0710990\ttotal: 4.41s\tremaining: 272ms\n",
5374
      "471:\tlearn: 0.0710890\ttotal: 4.42s\tremaining: 262ms\n",
5375
      "472:\tlearn: 0.0710718\ttotal: 4.43s\tremaining: 253ms\n",
5376
      "473:\tlearn: 0.0710646\ttotal: 4.44s\tremaining: 243ms\n",
5377
      "474:\tlearn: 0.0710488\ttotal: 4.45s\tremaining: 234ms\n",
5378
      "475:\tlearn: 0.0710442\ttotal: 4.46s\tremaining: 225ms\n",
5379
      "476:\tlearn: 0.0710264\ttotal: 4.47s\tremaining: 215ms\n",
5380
      "477:\tlearn: 0.0710169\ttotal: 4.48s\tremaining: 206ms\n",
5381
      "478:\tlearn: 0.0710066\ttotal: 4.49s\tremaining: 197ms\n",
5382
      "479:\tlearn: 0.0709930\ttotal: 4.5s\tremaining: 187ms\n",
5383
      "480:\tlearn: 0.0709806\ttotal: 4.5s\tremaining: 178ms\n",
5384
      "481:\tlearn: 0.0709720\ttotal: 4.51s\tremaining: 169ms\n",
5385
      "482:\tlearn: 0.0709628\ttotal: 4.52s\tremaining: 159ms\n",
5386
      "483:\tlearn: 0.0709569\ttotal: 4.53s\tremaining: 150ms\n",
5387
      "484:\tlearn: 0.0709400\ttotal: 4.54s\tremaining: 140ms\n",
5388
      "485:\tlearn: 0.0709190\ttotal: 4.55s\tremaining: 131ms\n",
5389
      "486:\tlearn: 0.0709130\ttotal: 4.56s\tremaining: 122ms\n",
5390
      "487:\tlearn: 0.0708958\ttotal: 4.57s\tremaining: 112ms\n",
5391
      "488:\tlearn: 0.0708877\ttotal: 4.58s\tremaining: 103ms\n",
5392
      "489:\tlearn: 0.0708704\ttotal: 4.59s\tremaining: 93.6ms\n",
5393
      "490:\tlearn: 0.0708477\ttotal: 4.6s\tremaining: 84.3ms\n",
5394
      "491:\tlearn: 0.0708380\ttotal: 4.61s\tremaining: 74.9ms\n",
5395
      "492:\tlearn: 0.0708320\ttotal: 4.62s\tremaining: 65.6ms\n",
5396
      "493:\tlearn: 0.0708244\ttotal: 4.63s\tremaining: 56.2ms\n",
5397
      "494:\tlearn: 0.0708139\ttotal: 4.64s\tremaining: 46.9ms\n",
5398
      "495:\tlearn: 0.0708022\ttotal: 4.65s\tremaining: 37.5ms\n",
5399
      "496:\tlearn: 0.0707959\ttotal: 4.66s\tremaining: 28.1ms\n",
5400
      "497:\tlearn: 0.0707823\ttotal: 4.67s\tremaining: 18.8ms\n",
5401
      "498:\tlearn: 0.0707698\ttotal: 4.68s\tremaining: 9.38ms\n",
5402
      "499:\tlearn: 0.0707596\ttotal: 4.69s\tremaining: 0us\n"
5403
     ]
5404
    },
5405
    {
5406
     "data": {
5407
      "text/plain": [
5408
       "MultiOutputRegressor(estimator=<catboost.core.CatBoostClassifier object at 0x7f8db10a8c18>,\n",
5409
       "                     n_jobs=None)"
5410
      ]
5411
     },
5412
     "execution_count": 27,
5413
     "metadata": {},
5414
     "output_type": "execute_result"
5415
    }
5416
   ],
5417
   "source": [
5418
    "cb_clf = MultiOutputRegressor(CatBoostClassifier(task_type='GPU',depth=5,l2_leaf_reg=30,iterations=500))\n",
5419
    "cb_clf.fit(x_train,y_train)"
5420
   ]
5421
  },
5422
  {
5423
   "cell_type": "markdown",
5424
   "metadata": {},
5425
   "source": [
5426
    "# Run predictions on trained XGB model"
5427
   ]
5428
  },
5429
  {
5430
   "cell_type": "code",
5431
   "execution_count": 28,
5432
   "metadata": {},
5433
   "outputs": [
5434
    {
5435
     "name": "stdout",
5436
     "output_type": "stream",
5437
     "text": [
5438
      "0 any 0.09340231172025013\n",
5439
      "1 epidural 0.012141253590899853\n",
5440
      "2 intraparenchymal 0.039596951835288635\n",
5441
      "3 intraventricular 0.02329420861999448\n",
5442
      "4 subarachnoid 0.062225838595083294\n",
5443
      "5 subdural 0.07753075725012087\n",
5444
      "0.05737051904741248\n"
5445
     ]
5446
    }
5447
   ],
5448
   "source": [
5449
    "#predictions from model and evaluation\n",
5450
    "x_test = val_df[model_vars]\n",
5451
    "y_pred = xgb_clf.predict(x_test)\n",
5452
    "y_true = val_df[base_classes]\n",
5453
    "\n",
5454
    "l = 0\n",
5455
    "for i,c in enumerate(y_true.columns):\n",
5456
    "    loss = log_loss( y_true[c], y_pred[:,i] )\n",
5457
    "    l += loss if i != 0 else loss*2\n",
5458
    "    print(i,c,loss)\n",
5459
    "print(l/7.)"
5460
   ]
5461
  },
5462
  {
5463
   "cell_type": "code",
5464
   "execution_count": 29,
5465
   "metadata": {},
5466
   "outputs": [
5467
    {
5468
     "name": "stdout",
5469
     "output_type": "stream",
5470
     "text": [
5471
      "0 any 0.0936741594705755\n",
5472
      "1 epidural 0.012621494943967658\n",
5473
      "2 intraparenchymal 0.039732457939622046\n",
5474
      "3 intraventricular 0.023184423126184128\n",
5475
      "4 subarachnoid 0.06195888386520253\n",
5476
      "5 subdural 0.0781302903061038\n",
5477
      "0.057567981303175884\n"
5478
     ]
5479
    }
5480
   ],
5481
   "source": [
5482
    "#predictions from model and evaluation\n",
5483
    "x_test = val_df[model_vars]\n",
5484
    "_y_pred = [c.predict_proba(x_test)[:,1:] for c in cb_clf.estimators_]\n",
5485
    "y_pred = np.concatenate(_y_pred,axis=-1)\n",
5486
    "y_true = val_df[base_classes]\n",
5487
    "\n",
5488
    "l = 0\n",
5489
    "for i,c in enumerate(y_true.columns):\n",
5490
    "    loss = log_loss( y_true[c], y_pred[:,i] )\n",
5491
    "    l += loss if i != 0 else loss*2\n",
5492
    "    print(i,c,loss)\n",
5493
    "print(l/7.)"
5494
   ]
5495
  },
5496
  {
5497
   "cell_type": "markdown",
5498
   "metadata": {},
5499
   "source": [
5500
    "# Prepare submission with trained model"
5501
   ]
5502
  },
5503
  {
5504
   "cell_type": "code",
5505
   "execution_count": 30,
5506
   "metadata": {},
5507
   "outputs": [
5508
    {
5509
     "name": "stdout",
5510
     "output_type": "stream",
5511
     "text": [
5512
      "finish\n"
5513
     ]
5514
    }
5515
   ],
5516
   "source": [
5517
    "sub_path = 'data/submission_L2.csv'\n",
5518
    "\n",
5519
    "data = {}\n",
5520
    "for test_df in test_dfs:\n",
5521
    "    x_test = test_df[model_vars]\n",
5522
    "    xgb_probas = xgb_clf.predict(x_test)\n",
5523
    "    cb_probas  = np.concatenate([c.predict_proba(x_test)[:,1:] for c in cb_clf.estimators_],axis=-1)\n",
5524
    "    \n",
5525
    "    probas = (xgb_probas + cb_probas) / 2.\n",
5526
    "    \n",
5527
    "    for idx, row in test_df.iterrows():\n",
5528
    "        file_id = row.fn\n",
5529
    "        for klass_index, klass in enumerate(base_classes):\n",
5530
    "            key =  file_id + '_' + klass\n",
5531
    "            if key not in data:\n",
5532
    "                data[key] = probas[idx, klass_index]\n",
5533
    "            else:\n",
5534
    "                data[key] += probas[idx, klass_index]\n",
5535
    "\n",
5536
    "print('finish')                \n",
5537
    "                \n",
5538
    "final_prediction = []\n",
5539
    "for key in data:\n",
5540
    "    final_prediction.append([key, data[key] / 5])\n",
5541
    "\n",
5542
    "df = pd.DataFrame(final_prediction, columns=['ID','Label'])\n",
5543
    "df.to_csv(sub_path, index=False)\n"
5544
   ]
5545
  },
5546
  {
5547
   "cell_type": "code",
5548
   "execution_count": 31,
5549
   "metadata": {},
5550
   "outputs": [
5551
    {
5552
     "data": {
5553
      "text/plain": [
5554
       "'\"L2 Stacking of densenet121 densenet121-53_train_cpu_window_uint8 resnet101 resnet101-53_train_cpu_window_uint8 resnet18 resnet18-53_train_cpu_window_uint8 resnet34 resnet34-53_train_cpu_window_uint8 resnet50 resnext50_32x4d-53_train_cpu_window_uint8 ensembled with xgboost + catboost\"'"
5555
      ]
5556
     },
5557
     "execution_count": 31,
5558
     "metadata": {},
5559
     "output_type": "execute_result"
5560
    }
5561
   ],
5562
   "source": [
5563
    "msg = '\"L2 Stacking of ' + \" \".join(arch_names) + ' ensembled with xgboost + catboost\"'\n",
5564
    "msg"
5565
   ]
5566
  },
5567
  {
5568
   "cell_type": "code",
5569
   "execution_count": null,
5570
   "metadata": {},
5571
   "outputs": [],
5572
   "source": [
5573
    "!kaggle competitions submit -c rsna-intracranial-hemorrhage-detection -f {sub_path} -m {msg}"
5574
   ]
5575
  }
5576
 ],
5577
 "metadata": {
5578
  "kernelspec": {
5579
   "display_name": "Python 3",
5580
   "language": "python",
5581
   "name": "python3"
5582
  },
5583
  "language_info": {
5584
   "codemirror_mode": {
5585
    "name": "ipython",
5586
    "version": 3
5587
   },
5588
   "file_extension": ".py",
5589
   "mimetype": "text/x-python",
5590
   "name": "python",
5591
   "nbconvert_exporter": "python",
5592
   "pygments_lexer": "ipython3",
5593
   "version": "3.7.3"
5594
  }
5595
 },
5596
 "nbformat": 4,
5597
 "nbformat_minor": 2
5598
}