|
a |
|
b/networks.py |
|
|
1 |
import numpy as np |
|
|
2 |
import torch |
|
|
3 |
from torchvision import models |
|
|
4 |
from efficientnet_pytorch import EfficientNet |
|
|
5 |
import torch.nn.functional as F |
|
|
6 |
import timm |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def model_builder(architecture_name, output=6): |
|
|
10 |
if architecture_name.startswith("resnet"): |
|
|
11 |
net = eval("models." + architecture_name)(pretrained=True) |
|
|
12 |
net.fc = torch.nn.Linear(net.fc.in_features, output) |
|
|
13 |
return net |
|
|
14 |
elif architecture_name.startswith("efficientnet"): |
|
|
15 |
n = int(architecture_name[-1]) |
|
|
16 |
net = EfficientNet.from_pretrained(f'efficientnet-b{n}') |
|
|
17 |
net._fc = torch.nn.Linear(net._fc.in_features, output) |
|
|
18 |
return net |
|
|
19 |
elif architecture_name.startswith("densenet"): |
|
|
20 |
net = eval("models." + architecture_name)(pretrained=True) |
|
|
21 |
net.classifier = torch.nn.Linear(net.classifier.in_features, output) |
|
|
22 |
return net |
|
|
23 |
elif architecture_name == "vgg19": |
|
|
24 |
net = models.vgg19_bn(pretrained=True) |
|
|
25 |
net.classifier[6] = torch.nn.Linear(net.classifier[6].in_features, output) |
|
|
26 |
return net |
|
|
27 |
elif architecture_name == "seresnext": |
|
|
28 |
net = timm.create_model('gluon_seresnext101_32x4d', pretrained=True) |
|
|
29 |
net.fc = torch.nn.Linear(net.fc.in_features, 6) |
|
|
30 |
return net |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
# https://github.com/pudae/kaggle-hpa/blob/master/losses/loss_factory.py |
|
|
34 |
def binary_focal_loss(gamma=2, **_): |
|
|
35 |
|
|
|
36 |
def func(input, target): |
|
|
37 |
assert target.size() == input.size() |
|
|
38 |
|
|
|
39 |
max_val = (-input).clamp(min=0) |
|
|
40 |
|
|
|
41 |
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log() |
|
|
42 |
invprobs = F.logsigmoid(-input * (target * 2 - 1)) |
|
|
43 |
loss = (invprobs * gamma).exp() * loss |
|
|
44 |
return loss.mean() |
|
|
45 |
|
|
|
46 |
return func |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
class Windowing(torch.nn.Module): |
|
|
50 |
def __init__(self, u=1, epsilon=1e-3, window_length=50, window_width=130, transform="sigmoid"): |
|
|
51 |
""" |
|
|
52 |
Practical Window Setting Optimization for Medical Image Deep Learning https://arxiv.org/pdf/1812.00572.pdf |
|
|
53 |
:param u: Upper bound for image values, e.g. 255 |
|
|
54 |
:param epsilon: |
|
|
55 |
:param window_length: |
|
|
56 |
:param window_width: |
|
|
57 |
""" |
|
|
58 |
super(Windowing, self).__init__() |
|
|
59 |
self.conv = torch.nn.Conv2d(in_channels=3, out_channels=3, kernel_size=1) |
|
|
60 |
self.u = u |
|
|
61 |
|
|
|
62 |
if transform == "sigmoid": |
|
|
63 |
weight = (2 / window_width) * np.log((u/epsilon) - 1) |
|
|
64 |
bias = (-2 * window_length / window_width) * np.log((u / epsilon) - 1) |
|
|
65 |
self.transform = self.sigmoid_transform |
|
|
66 |
else: # Linear window |
|
|
67 |
weight = u / window_width |
|
|
68 |
bias = (-u / window_width) * (window_length - (window_width / 2)) |
|
|
69 |
self.transform = self.linear_transform |
|
|
70 |
|
|
|
71 |
self.conv.weight = torch.nn.Parameter(weight * torch.ones_like(self.conv.weight)) |
|
|
72 |
self.conv.bias = torch.nn.Parameter(bias * torch.ones_like(self.conv.bias)) |
|
|
73 |
|
|
|
74 |
def linear_transform(self, x): |
|
|
75 |
return torch.relu(torch.max(x, torch.tensor(self.u))) |
|
|
76 |
|
|
|
77 |
def sigmoid_transform(self, x): |
|
|
78 |
return self.u * torch.sigmoid(x) |
|
|
79 |
|
|
|
80 |
def forward(self, img): |
|
|
81 |
return self.transform(self.conv(img)) |
|
|
82 |
|
|
|
83 |
|
|
|
84 |
class ResNetModel(torch.nn.Module): |
|
|
85 |
def __init__(self, step_train=False, output=6): |
|
|
86 |
super(ResNetModel, self).__init__() |
|
|
87 |
self.net = models.resnet50(pretrained=True) |
|
|
88 |
self.net.fc = torch.nn.Linear(self.net.fc.in_features, output) |
|
|
89 |
self.blocks = ["layer1", "layer2", "layer3", "layer4"] |
|
|
90 |
self.frozen_blocks = 4 |
|
|
91 |
|
|
|
92 |
# Gradually unfreeze layers throughout training |
|
|
93 |
if step_train: |
|
|
94 |
for name, param in self.net.named_parameters(): |
|
|
95 |
param.requires_grad_(False) |
|
|
96 |
self.unfreeze_layers() |
|
|
97 |
|
|
|
98 |
def phase1_model(self): |
|
|
99 |
self.net.fc = torch.nn.Linear(self.net.fc.in_features, 1) |
|
|
100 |
|
|
|
101 |
def phase2_model(self): |
|
|
102 |
self.net.fc = torch.nn.Linear(self.net.fc.in_features, 5) |
|
|
103 |
|
|
|
104 |
def unfreeze_layers(self, lower_bound=0): |
|
|
105 |
for name, param in self.net.named_parameters(): |
|
|
106 |
if self.frozen_blocks < 0: |
|
|
107 |
param.requires_grad_(True) |
|
|
108 |
elif name.split(".")[0] in ["fc"]: |
|
|
109 |
param.requires_grad_(True) |
|
|
110 |
elif name.split(".")[0] in self.blocks[self.frozen_blocks:]: |
|
|
111 |
param.requires_grad_(True) |
|
|
112 |
|
|
|
113 |
if self.frozen_blocks >= lower_bound: |
|
|
114 |
self.frozen_blocks -= 1 |
|
|
115 |
|
|
|
116 |
def forward(self, x): |
|
|
117 |
return self.net(x) |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
class DenseNetModel(torch.nn.Module): |
|
|
121 |
def __init__(self, step_train=False, output=6): |
|
|
122 |
super(DenseNetModel, self).__init__() |
|
|
123 |
self.net = models.densenet169(pretrained=True) |
|
|
124 |
self.net.classifier = torch.nn.Linear(self.net.classifier.in_features, output) |
|
|
125 |
self.blocks = ["denseblock1", "denseblock2", "denseblock3", "denseblock4"] |
|
|
126 |
self.frozen_blocks = 4 |
|
|
127 |
|
|
|
128 |
# Gradually unfreeze layers throughout training |
|
|
129 |
if step_train: |
|
|
130 |
for name, param in self.net.named_parameters(): |
|
|
131 |
param.requires_grad_(False) |
|
|
132 |
self.unfreeze_layers() |
|
|
133 |
|
|
|
134 |
def phase1_model(self): |
|
|
135 |
self.net.fc = torch.nn.Linear(self.net.fc.in_features, 1) |
|
|
136 |
|
|
|
137 |
def phase2_model(self): |
|
|
138 |
self.net.fc = torch.nn.Linear(self.net.fc.in_features, 5) |
|
|
139 |
|
|
|
140 |
def unfreeze_layers(self, lower_bound=0): |
|
|
141 |
for name, param in self.net.named_parameters(): |
|
|
142 |
if self.frozen_blocks < 0: |
|
|
143 |
param.requires_grad_(True) |
|
|
144 |
elif name.split(".")[0] in ["fc"]: |
|
|
145 |
param.requires_grad_(True) |
|
|
146 |
elif name.split(".")[0] in self.blocks[self.frozen_blocks:]: |
|
|
147 |
param.requires_grad_(True) |
|
|
148 |
|
|
|
149 |
if self.frozen_blocks >= lower_bound: |
|
|
150 |
self.frozen_blocks -= 1 |
|
|
151 |
|
|
|
152 |
def forward(self, x): |
|
|
153 |
return self.net(x) |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
class EfficientNetModel(torch.nn.Module): |
|
|
157 |
""" |
|
|
158 |
# Coefficients: width,depth,res,dropout |
|
|
159 |
'efficientnet-b0': (1.0, 1.0, 224, 0.2), |
|
|
160 |
'efficientnet-b1': (1.0, 1.1, 240, 0.2), |
|
|
161 |
'efficientnet-b2': (1.1, 1.2, 260, 0.3), |
|
|
162 |
'efficientnet-b3': (1.2, 1.4, 300, 0.3), |
|
|
163 |
'efficientnet-b4': (1.4, 1.8, 380, 0.4), |
|
|
164 |
'efficientnet-b5': (1.6, 2.2, 456, 0.4), |
|
|
165 |
'efficientnet-b6': (1.8, 2.6, 528, 0.5), |
|
|
166 |
'efficientnet-b7': (2.0, 3.1, 600, 0.5), |
|
|
167 |
""" |
|
|
168 |
def __init__(self, n=0, step_train=False, output=6): |
|
|
169 |
super(EfficientNetModel, self).__init__() |
|
|
170 |
self.net = EfficientNet.from_pretrained(f'efficientnet-b{n}') |
|
|
171 |
self.net._fc = torch.nn.Linear(self.net._fc.in_features, output) |
|
|
172 |
|
|
|
173 |
filters = [block._block_args.output_filters for block in self.net._blocks] |
|
|
174 |
self.freeze_points = (np.where(np.diff(filters) > 0)[0]) # 6 main block groups which can be frozen/unfrozen |
|
|
175 |
self.frozen_blocks = 6 |
|
|
176 |
|
|
|
177 |
# Gradually unfreeze layers throughout training |
|
|
178 |
if step_train: |
|
|
179 |
for name, param in self.net.named_parameters(): |
|
|
180 |
param.requires_grad_(False) |
|
|
181 |
self.unfreeze_layers() |
|
|
182 |
|
|
|
183 |
def phase1_model(self): |
|
|
184 |
self.net._fc = torch.nn.Linear(self.net._fc.in_features, 1) |
|
|
185 |
|
|
|
186 |
def phase2_model(self): |
|
|
187 |
self.net._fc = torch.nn.Linear(self.net._fc.in_features, 5) |
|
|
188 |
|
|
|
189 |
def unfreeze_layers(self, lower_bound=3): |
|
|
190 |
try: |
|
|
191 |
fp = self.freeze_points[self.frozen_blocks] |
|
|
192 |
except IndexError: |
|
|
193 |
fp = np.Inf |
|
|
194 |
|
|
|
195 |
for name, param in self.net.named_parameters(): |
|
|
196 |
if name.split(".")[0] in ["_conv_head", "_bn1", "_fc"]: |
|
|
197 |
param.requires_grad_(True) |
|
|
198 |
elif name.split(".")[1].isnumeric(): |
|
|
199 |
block_number = int(name.split(".")[1]) |
|
|
200 |
if block_number > fp: |
|
|
201 |
param.requires_grad_(True) |
|
|
202 |
|
|
|
203 |
if self.frozen_blocks >= lower_bound: |
|
|
204 |
self.frozen_blocks -= 1 |
|
|
205 |
print("Trainable blocks:", 6 - self.frozen_blocks) |
|
|
206 |
|
|
|
207 |
def forward(self, x): |
|
|
208 |
return self.net(x) |