|
a |
|
b/eda/inference.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "code", |
|
|
12 |
"execution_count": null, |
|
|
13 |
"metadata": {}, |
|
|
14 |
"outputs": [], |
|
|
15 |
"source": [] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": null, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [] |
|
|
23 |
}, |
|
|
24 |
{ |
|
|
25 |
"cell_type": "code", |
|
|
26 |
"execution_count": null, |
|
|
27 |
"metadata": {}, |
|
|
28 |
"outputs": [], |
|
|
29 |
"source": [] |
|
|
30 |
}, |
|
|
31 |
{ |
|
|
32 |
"cell_type": "code", |
|
|
33 |
"execution_count": null, |
|
|
34 |
"metadata": {}, |
|
|
35 |
"outputs": [], |
|
|
36 |
"source": [] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"execution_count": null, |
|
|
41 |
"metadata": {}, |
|
|
42 |
"outputs": [], |
|
|
43 |
"source": [] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "code", |
|
|
47 |
"execution_count": null, |
|
|
48 |
"metadata": {}, |
|
|
49 |
"outputs": [], |
|
|
50 |
"source": [] |
|
|
51 |
}, |
|
|
52 |
{ |
|
|
53 |
"cell_type": "code", |
|
|
54 |
"execution_count": null, |
|
|
55 |
"metadata": {}, |
|
|
56 |
"outputs": [], |
|
|
57 |
"source": [] |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"execution_count": 1, |
|
|
62 |
"metadata": {}, |
|
|
63 |
"outputs": [], |
|
|
64 |
"source": [ |
|
|
65 |
"import os\n", |
|
|
66 |
"import sys\n", |
|
|
67 |
"import argparse\n", |
|
|
68 |
"import tensorflow as tf\n", |
|
|
69 |
"from tensorflow import keras\n", |
|
|
70 |
"import pandas as pd\n", |
|
|
71 |
"from data_loader import read_trainset, DataGenerator\n", |
|
|
72 |
"import parse_config" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "code", |
|
|
77 |
"execution_count": 6, |
|
|
78 |
"metadata": {}, |
|
|
79 |
"outputs": [], |
|
|
80 |
"source": [ |
|
|
81 |
"# comment out if using tensorflow 2.x\n", |
|
|
82 |
"if parse_config.USING_RTX_20XX:\n", |
|
|
83 |
" config = tf.compat.v1.ConfigProto()\n", |
|
|
84 |
" config.gpu_options.allow_growth = True\n", |
|
|
85 |
" tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))" |
|
|
86 |
] |
|
|
87 |
}, |
|
|
88 |
{ |
|
|
89 |
"cell_type": "code", |
|
|
90 |
"execution_count": 65, |
|
|
91 |
"metadata": {}, |
|
|
92 |
"outputs": [], |
|
|
93 |
"source": [ |
|
|
94 |
"MODEL_NAME = '../models/epoch3.hdf5'\n", |
|
|
95 |
"img_size = (256,256,3)\n", |
|
|
96 |
"batch_size=16\n", |
|
|
97 |
"\n", |
|
|
98 |
"test_images_dir = '/media/keil/baltar/intracranial-hemorrhage-detection-data/stage_2_test_images/'\n", |
|
|
99 |
"testset_filename = \"../submissions/stage_2_sample_submission.csv\"" |
|
|
100 |
] |
|
|
101 |
}, |
|
|
102 |
{ |
|
|
103 |
"cell_type": "code", |
|
|
104 |
"execution_count": 9, |
|
|
105 |
"metadata": {}, |
|
|
106 |
"outputs": [], |
|
|
107 |
"source": [ |
|
|
108 |
"def read_testset(filename):\n", |
|
|
109 |
" \"\"\" Read the submission sample csv\n", |
|
|
110 |
" Args:\n", |
|
|
111 |
" filename (str): Filename of the sample submission \n", |
|
|
112 |
" Returns:\n", |
|
|
113 |
" df (panda dataframe): Return a dataframe for inference. \n", |
|
|
114 |
"\n", |
|
|
115 |
" \"\"\"\n", |
|
|
116 |
" df = pd.read_csv(filename)\n", |
|
|
117 |
" df[\"Image\"] = df[\"ID\"].str.slice(stop=12)\n", |
|
|
118 |
" df[\"Diagnosis\"] = df[\"ID\"].str.slice(start=13)\n", |
|
|
119 |
"\n", |
|
|
120 |
" df = df.loc[:, [\"Label\", \"Diagnosis\", \"Image\"]]\n", |
|
|
121 |
" df = df.set_index(['Image', 'Diagnosis']).unstack(level=-1)\n", |
|
|
122 |
"\n", |
|
|
123 |
" return df\n", |
|
|
124 |
"\n", |
|
|
125 |
"def create_submission(model, data, test_df):\n", |
|
|
126 |
"\n", |
|
|
127 |
" print('+'*50)\n", |
|
|
128 |
" print(\"Creating predictions on test dataset\")\n", |
|
|
129 |
" pred = model.predict_generator(data, verbose=1)\n", |
|
|
130 |
" out_df = pd.DataFrame(pred, index=test_df.index, columns=test_df.columns)\n", |
|
|
131 |
" test_df = out_df.stack().reset_index()\n", |
|
|
132 |
" test_df.insert(loc=0, column='ID', value=test_df['Image'].astype(str) + \"_\" + test_df['Diagnosis'])\n", |
|
|
133 |
" test_df = test_df.drop([\"Image\", \"Diagnosis\"], axis=1)\n", |
|
|
134 |
" print(\"Saving submissions to submission.csv\")\n", |
|
|
135 |
" test_df.to_csv('../submissions/stage2-final-submission-v2.csv', index=False)\n", |
|
|
136 |
"\n", |
|
|
137 |
" return test_df" |
|
|
138 |
] |
|
|
139 |
}, |
|
|
140 |
{ |
|
|
141 |
"cell_type": "code", |
|
|
142 |
"execution_count": 66, |
|
|
143 |
"metadata": {}, |
|
|
144 |
"outputs": [], |
|
|
145 |
"source": [ |
|
|
146 |
"test_df = read_testset(testset_filename)\n", |
|
|
147 |
"test_generator = DataGenerator(list_IDs = test_df.index, \n", |
|
|
148 |
" batch_size = batch_size,\n", |
|
|
149 |
" img_size = img_size,\n", |
|
|
150 |
" img_dir = test_images_dir)\n", |
|
|
151 |
"best_model = keras.models.load_model(MODEL_NAME, compile=False)" |
|
|
152 |
] |
|
|
153 |
}, |
|
|
154 |
{ |
|
|
155 |
"cell_type": "code", |
|
|
156 |
"execution_count": 67, |
|
|
157 |
"metadata": {}, |
|
|
158 |
"outputs": [ |
|
|
159 |
{ |
|
|
160 |
"data": { |
|
|
161 |
"text/html": [ |
|
|
162 |
"<div>\n", |
|
|
163 |
"<style scoped>\n", |
|
|
164 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
165 |
" vertical-align: middle;\n", |
|
|
166 |
" }\n", |
|
|
167 |
"\n", |
|
|
168 |
" .dataframe tbody tr th {\n", |
|
|
169 |
" vertical-align: top;\n", |
|
|
170 |
" }\n", |
|
|
171 |
"\n", |
|
|
172 |
" .dataframe thead tr th {\n", |
|
|
173 |
" text-align: left;\n", |
|
|
174 |
" }\n", |
|
|
175 |
"\n", |
|
|
176 |
" .dataframe thead tr:last-of-type th {\n", |
|
|
177 |
" text-align: right;\n", |
|
|
178 |
" }\n", |
|
|
179 |
"</style>\n", |
|
|
180 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
181 |
" <thead>\n", |
|
|
182 |
" <tr>\n", |
|
|
183 |
" <th></th>\n", |
|
|
184 |
" <th colspan=\"6\" halign=\"left\">Label</th>\n", |
|
|
185 |
" </tr>\n", |
|
|
186 |
" <tr>\n", |
|
|
187 |
" <th>Diagnosis</th>\n", |
|
|
188 |
" <th>any</th>\n", |
|
|
189 |
" <th>epidural</th>\n", |
|
|
190 |
" <th>intraparenchymal</th>\n", |
|
|
191 |
" <th>intraventricular</th>\n", |
|
|
192 |
" <th>subarachnoid</th>\n", |
|
|
193 |
" <th>subdural</th>\n", |
|
|
194 |
" </tr>\n", |
|
|
195 |
" <tr>\n", |
|
|
196 |
" <th>Image</th>\n", |
|
|
197 |
" <th></th>\n", |
|
|
198 |
" <th></th>\n", |
|
|
199 |
" <th></th>\n", |
|
|
200 |
" <th></th>\n", |
|
|
201 |
" <th></th>\n", |
|
|
202 |
" <th></th>\n", |
|
|
203 |
" </tr>\n", |
|
|
204 |
" </thead>\n", |
|
|
205 |
" <tbody>\n", |
|
|
206 |
" <tr>\n", |
|
|
207 |
" <th>ID_000000e27</th>\n", |
|
|
208 |
" <td>0.5</td>\n", |
|
|
209 |
" <td>0.5</td>\n", |
|
|
210 |
" <td>0.5</td>\n", |
|
|
211 |
" <td>0.5</td>\n", |
|
|
212 |
" <td>0.5</td>\n", |
|
|
213 |
" <td>0.5</td>\n", |
|
|
214 |
" </tr>\n", |
|
|
215 |
" <tr>\n", |
|
|
216 |
" <th>ID_000009146</th>\n", |
|
|
217 |
" <td>0.5</td>\n", |
|
|
218 |
" <td>0.5</td>\n", |
|
|
219 |
" <td>0.5</td>\n", |
|
|
220 |
" <td>0.5</td>\n", |
|
|
221 |
" <td>0.5</td>\n", |
|
|
222 |
" <td>0.5</td>\n", |
|
|
223 |
" </tr>\n", |
|
|
224 |
" <tr>\n", |
|
|
225 |
" <th>ID_00007b8cb</th>\n", |
|
|
226 |
" <td>0.5</td>\n", |
|
|
227 |
" <td>0.5</td>\n", |
|
|
228 |
" <td>0.5</td>\n", |
|
|
229 |
" <td>0.5</td>\n", |
|
|
230 |
" <td>0.5</td>\n", |
|
|
231 |
" <td>0.5</td>\n", |
|
|
232 |
" </tr>\n", |
|
|
233 |
" <tr>\n", |
|
|
234 |
" <th>ID_000134952</th>\n", |
|
|
235 |
" <td>0.5</td>\n", |
|
|
236 |
" <td>0.5</td>\n", |
|
|
237 |
" <td>0.5</td>\n", |
|
|
238 |
" <td>0.5</td>\n", |
|
|
239 |
" <td>0.5</td>\n", |
|
|
240 |
" <td>0.5</td>\n", |
|
|
241 |
" </tr>\n", |
|
|
242 |
" <tr>\n", |
|
|
243 |
" <th>ID_000176f2a</th>\n", |
|
|
244 |
" <td>0.5</td>\n", |
|
|
245 |
" <td>0.5</td>\n", |
|
|
246 |
" <td>0.5</td>\n", |
|
|
247 |
" <td>0.5</td>\n", |
|
|
248 |
" <td>0.5</td>\n", |
|
|
249 |
" <td>0.5</td>\n", |
|
|
250 |
" </tr>\n", |
|
|
251 |
" </tbody>\n", |
|
|
252 |
"</table>\n", |
|
|
253 |
"</div>" |
|
|
254 |
], |
|
|
255 |
"text/plain": [ |
|
|
256 |
" Label \\\n", |
|
|
257 |
"Diagnosis any epidural intraparenchymal intraventricular subarachnoid \n", |
|
|
258 |
"Image \n", |
|
|
259 |
"ID_000000e27 0.5 0.5 0.5 0.5 0.5 \n", |
|
|
260 |
"ID_000009146 0.5 0.5 0.5 0.5 0.5 \n", |
|
|
261 |
"ID_00007b8cb 0.5 0.5 0.5 0.5 0.5 \n", |
|
|
262 |
"ID_000134952 0.5 0.5 0.5 0.5 0.5 \n", |
|
|
263 |
"ID_000176f2a 0.5 0.5 0.5 0.5 0.5 \n", |
|
|
264 |
"\n", |
|
|
265 |
" \n", |
|
|
266 |
"Diagnosis subdural \n", |
|
|
267 |
"Image \n", |
|
|
268 |
"ID_000000e27 0.5 \n", |
|
|
269 |
"ID_000009146 0.5 \n", |
|
|
270 |
"ID_00007b8cb 0.5 \n", |
|
|
271 |
"ID_000134952 0.5 \n", |
|
|
272 |
"ID_000176f2a 0.5 " |
|
|
273 |
] |
|
|
274 |
}, |
|
|
275 |
"execution_count": 67, |
|
|
276 |
"metadata": {}, |
|
|
277 |
"output_type": "execute_result" |
|
|
278 |
} |
|
|
279 |
], |
|
|
280 |
"source": [ |
|
|
281 |
"#test_df shape: (121232, 6) -- 121232 files in stage_2_test via keil$ ls -1 stage_2_test_images/ | wc -l | less\n", |
|
|
282 |
"assert len(test_generator.indices) == len(test_df == len(test_generator.list_IDs)) #checks out\n", |
|
|
283 |
"\n", |
|
|
284 |
"\n", |
|
|
285 |
"test_df.head()" |
|
|
286 |
] |
|
|
287 |
}, |
|
|
288 |
{ |
|
|
289 |
"cell_type": "markdown", |
|
|
290 |
"metadata": {}, |
|
|
291 |
"source": [ |
|
|
292 |
"What is going on is the batch size is not evenly divisable by the img count in the test2_stage of 121232/batch of 20 = remainder of 8 images thus the size of 121240 which I was seeing. Confirming now by using a batchsize of 16 which is evenly divisible... will confirm again via batch size = 1" |
|
|
293 |
] |
|
|
294 |
}, |
|
|
295 |
{ |
|
|
296 |
"cell_type": "code", |
|
|
297 |
"execution_count": 68, |
|
|
298 |
"metadata": {}, |
|
|
299 |
"outputs": [ |
|
|
300 |
{ |
|
|
301 |
"name": "stdout", |
|
|
302 |
"output_type": "stream", |
|
|
303 |
"text": [ |
|
|
304 |
"7577/7577 [==============================] - 6483s 856ms/step\n" |
|
|
305 |
] |
|
|
306 |
} |
|
|
307 |
], |
|
|
308 |
"source": [ |
|
|
309 |
"# step through the functon line by line:\n", |
|
|
310 |
"\n", |
|
|
311 |
"# create_submission(best_model, test_generator, test_df)\n", |
|
|
312 |
"# def create_submission(model, data, test_df):\n", |
|
|
313 |
"\n", |
|
|
314 |
"pred_batch16 = best_model.predict_generator(test_generator, verbose=1)" |
|
|
315 |
] |
|
|
316 |
}, |
|
|
317 |
{ |
|
|
318 |
"cell_type": "code", |
|
|
319 |
"execution_count": 69, |
|
|
320 |
"metadata": {}, |
|
|
321 |
"outputs": [ |
|
|
322 |
{ |
|
|
323 |
"data": { |
|
|
324 |
"text/plain": [ |
|
|
325 |
"(121232, 6)" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
"execution_count": 69, |
|
|
329 |
"metadata": {}, |
|
|
330 |
"output_type": "execute_result" |
|
|
331 |
} |
|
|
332 |
], |
|
|
333 |
"source": [ |
|
|
334 |
"pred_batch16.shape #good to go.... :D ffs" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": 71, |
|
|
340 |
"metadata": {}, |
|
|
341 |
"outputs": [], |
|
|
342 |
"source": [ |
|
|
343 |
"# After getting predictions here is some pandas gymnastics...\n", |
|
|
344 |
"out_df = pd.DataFrame(pred_batch16, index=test_df.index, columns=test_df.columns)\n", |
|
|
345 |
"\n", |
|
|
346 |
"\n", |
|
|
347 |
"test_df = out_df.stack().reset_index()\n", |
|
|
348 |
"\n", |
|
|
349 |
"\n", |
|
|
350 |
"test_df.insert(loc=0, column='ID', value=test_df['Image'].astype(str) + \"_\" + test_df['Diagnosis'])\n", |
|
|
351 |
"\n", |
|
|
352 |
"\n", |
|
|
353 |
"test_df = test_df.drop([\"Image\", \"Diagnosis\"], axis=1)\n", |
|
|
354 |
"\n", |
|
|
355 |
"\n", |
|
|
356 |
"test_df.to_csv('../submissions/stage2-final-submission-v2.csv', index=False)\n" |
|
|
357 |
] |
|
|
358 |
}, |
|
|
359 |
{ |
|
|
360 |
"cell_type": "code", |
|
|
361 |
"execution_count": null, |
|
|
362 |
"metadata": {}, |
|
|
363 |
"outputs": [], |
|
|
364 |
"source": [] |
|
|
365 |
}, |
|
|
366 |
{ |
|
|
367 |
"cell_type": "code", |
|
|
368 |
"execution_count": null, |
|
|
369 |
"metadata": {}, |
|
|
370 |
"outputs": [], |
|
|
371 |
"source": [] |
|
|
372 |
}, |
|
|
373 |
{ |
|
|
374 |
"cell_type": "code", |
|
|
375 |
"execution_count": 70, |
|
|
376 |
"metadata": {}, |
|
|
377 |
"outputs": [ |
|
|
378 |
{ |
|
|
379 |
"data": { |
|
|
380 |
"text/plain": [ |
|
|
381 |
"(121240, 6)" |
|
|
382 |
] |
|
|
383 |
}, |
|
|
384 |
"execution_count": 70, |
|
|
385 |
"metadata": {}, |
|
|
386 |
"output_type": "execute_result" |
|
|
387 |
} |
|
|
388 |
], |
|
|
389 |
"source": [ |
|
|
390 |
"pred.shape" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "code", |
|
|
395 |
"execution_count": 59, |
|
|
396 |
"metadata": {}, |
|
|
397 |
"outputs": [], |
|
|
398 |
"source": [ |
|
|
399 |
"temp_df = pd.DataFrame(pred)\n", |
|
|
400 |
"temp_df.to_csv('./temp_csv.csv')" |
|
|
401 |
] |
|
|
402 |
}, |
|
|
403 |
{ |
|
|
404 |
"cell_type": "code", |
|
|
405 |
"execution_count": 58, |
|
|
406 |
"metadata": {}, |
|
|
407 |
"outputs": [ |
|
|
408 |
{ |
|
|
409 |
"data": { |
|
|
410 |
"text/html": [ |
|
|
411 |
"<div>\n", |
|
|
412 |
"<style scoped>\n", |
|
|
413 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
414 |
" vertical-align: middle;\n", |
|
|
415 |
" }\n", |
|
|
416 |
"\n", |
|
|
417 |
" .dataframe tbody tr th {\n", |
|
|
418 |
" vertical-align: top;\n", |
|
|
419 |
" }\n", |
|
|
420 |
"\n", |
|
|
421 |
" .dataframe thead th {\n", |
|
|
422 |
" text-align: right;\n", |
|
|
423 |
" }\n", |
|
|
424 |
"</style>\n", |
|
|
425 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
426 |
" <thead>\n", |
|
|
427 |
" <tr style=\"text-align: right;\">\n", |
|
|
428 |
" <th></th>\n", |
|
|
429 |
" <th>0</th>\n", |
|
|
430 |
" <th>1</th>\n", |
|
|
431 |
" <th>2</th>\n", |
|
|
432 |
" <th>3</th>\n", |
|
|
433 |
" <th>4</th>\n", |
|
|
434 |
" <th>5</th>\n", |
|
|
435 |
" </tr>\n", |
|
|
436 |
" </thead>\n", |
|
|
437 |
" <tbody>\n", |
|
|
438 |
" <tr>\n", |
|
|
439 |
" <th>0</th>\n", |
|
|
440 |
" <td>0.117452</td>\n", |
|
|
441 |
" <td>0.000942</td>\n", |
|
|
442 |
" <td>0.067592</td>\n", |
|
|
443 |
" <td>0.000453</td>\n", |
|
|
444 |
" <td>0.052313</td>\n", |
|
|
445 |
" <td>0.011529</td>\n", |
|
|
446 |
" </tr>\n", |
|
|
447 |
" <tr>\n", |
|
|
448 |
" <th>1</th>\n", |
|
|
449 |
" <td>0.001256</td>\n", |
|
|
450 |
" <td>0.000010</td>\n", |
|
|
451 |
" <td>0.000121</td>\n", |
|
|
452 |
" <td>0.000128</td>\n", |
|
|
453 |
" <td>0.000440</td>\n", |
|
|
454 |
" <td>0.000986</td>\n", |
|
|
455 |
" </tr>\n", |
|
|
456 |
" <tr>\n", |
|
|
457 |
" <th>2</th>\n", |
|
|
458 |
" <td>0.002467</td>\n", |
|
|
459 |
" <td>0.000215</td>\n", |
|
|
460 |
" <td>0.003454</td>\n", |
|
|
461 |
" <td>0.000158</td>\n", |
|
|
462 |
" <td>0.000787</td>\n", |
|
|
463 |
" <td>0.001039</td>\n", |
|
|
464 |
" </tr>\n", |
|
|
465 |
" <tr>\n", |
|
|
466 |
" <th>3</th>\n", |
|
|
467 |
" <td>0.002803</td>\n", |
|
|
468 |
" <td>0.000091</td>\n", |
|
|
469 |
" <td>0.000339</td>\n", |
|
|
470 |
" <td>0.000042</td>\n", |
|
|
471 |
" <td>0.001047</td>\n", |
|
|
472 |
" <td>0.001354</td>\n", |
|
|
473 |
" </tr>\n", |
|
|
474 |
" <tr>\n", |
|
|
475 |
" <th>4</th>\n", |
|
|
476 |
" <td>0.002144</td>\n", |
|
|
477 |
" <td>0.000046</td>\n", |
|
|
478 |
" <td>0.000286</td>\n", |
|
|
479 |
" <td>0.000154</td>\n", |
|
|
480 |
" <td>0.000292</td>\n", |
|
|
481 |
" <td>0.002259</td>\n", |
|
|
482 |
" </tr>\n", |
|
|
483 |
" </tbody>\n", |
|
|
484 |
"</table>\n", |
|
|
485 |
"</div>" |
|
|
486 |
], |
|
|
487 |
"text/plain": [ |
|
|
488 |
" 0 1 2 3 4 5\n", |
|
|
489 |
"0 0.117452 0.000942 0.067592 0.000453 0.052313 0.011529\n", |
|
|
490 |
"1 0.001256 0.000010 0.000121 0.000128 0.000440 0.000986\n", |
|
|
491 |
"2 0.002467 0.000215 0.003454 0.000158 0.000787 0.001039\n", |
|
|
492 |
"3 0.002803 0.000091 0.000339 0.000042 0.001047 0.001354\n", |
|
|
493 |
"4 0.002144 0.000046 0.000286 0.000154 0.000292 0.002259" |
|
|
494 |
] |
|
|
495 |
}, |
|
|
496 |
"execution_count": 58, |
|
|
497 |
"metadata": {}, |
|
|
498 |
"output_type": "execute_result" |
|
|
499 |
} |
|
|
500 |
], |
|
|
501 |
"source": [ |
|
|
502 |
"temp_df.head()\n" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"cell_type": "code", |
|
|
507 |
"execution_count": null, |
|
|
508 |
"metadata": {}, |
|
|
509 |
"outputs": [], |
|
|
510 |
"source": [] |
|
|
511 |
}, |
|
|
512 |
{ |
|
|
513 |
"cell_type": "code", |
|
|
514 |
"execution_count": null, |
|
|
515 |
"metadata": {}, |
|
|
516 |
"outputs": [], |
|
|
517 |
"source": [ |
|
|
518 |
"\n" |
|
|
519 |
] |
|
|
520 |
}, |
|
|
521 |
{ |
|
|
522 |
"cell_type": "code", |
|
|
523 |
"execution_count": null, |
|
|
524 |
"metadata": {}, |
|
|
525 |
"outputs": [], |
|
|
526 |
"source": [] |
|
|
527 |
}, |
|
|
528 |
{ |
|
|
529 |
"cell_type": "code", |
|
|
530 |
"execution_count": null, |
|
|
531 |
"metadata": {}, |
|
|
532 |
"outputs": [], |
|
|
533 |
"source": [ |
|
|
534 |
"\n" |
|
|
535 |
] |
|
|
536 |
}, |
|
|
537 |
{ |
|
|
538 |
"cell_type": "code", |
|
|
539 |
"execution_count": null, |
|
|
540 |
"metadata": {}, |
|
|
541 |
"outputs": [], |
|
|
542 |
"source": [] |
|
|
543 |
}, |
|
|
544 |
{ |
|
|
545 |
"cell_type": "code", |
|
|
546 |
"execution_count": null, |
|
|
547 |
"metadata": {}, |
|
|
548 |
"outputs": [], |
|
|
549 |
"source": [] |
|
|
550 |
}, |
|
|
551 |
{ |
|
|
552 |
"cell_type": "code", |
|
|
553 |
"execution_count": null, |
|
|
554 |
"metadata": {}, |
|
|
555 |
"outputs": [], |
|
|
556 |
"source": [] |
|
|
557 |
}, |
|
|
558 |
{ |
|
|
559 |
"cell_type": "code", |
|
|
560 |
"execution_count": null, |
|
|
561 |
"metadata": {}, |
|
|
562 |
"outputs": [], |
|
|
563 |
"source": [] |
|
|
564 |
}, |
|
|
565 |
{ |
|
|
566 |
"cell_type": "code", |
|
|
567 |
"execution_count": null, |
|
|
568 |
"metadata": {}, |
|
|
569 |
"outputs": [], |
|
|
570 |
"source": [] |
|
|
571 |
} |
|
|
572 |
], |
|
|
573 |
"metadata": { |
|
|
574 |
"kernelspec": { |
|
|
575 |
"display_name": "Python 3", |
|
|
576 |
"language": "python", |
|
|
577 |
"name": "python3" |
|
|
578 |
}, |
|
|
579 |
"language_info": { |
|
|
580 |
"codemirror_mode": { |
|
|
581 |
"name": "ipython", |
|
|
582 |
"version": 3 |
|
|
583 |
}, |
|
|
584 |
"file_extension": ".py", |
|
|
585 |
"mimetype": "text/x-python", |
|
|
586 |
"name": "python", |
|
|
587 |
"nbconvert_exporter": "python", |
|
|
588 |
"pygments_lexer": "ipython3", |
|
|
589 |
"version": "3.6.5" |
|
|
590 |
} |
|
|
591 |
}, |
|
|
592 |
"nbformat": 4, |
|
|
593 |
"nbformat_minor": 2 |
|
|
594 |
} |