import torch
import settings
import copy
import time
import torch.optim as optim
from model.resnet import ResnetModel
from torch.optim import lr_scheduler
from dataloader.dataloader import get_data_loaders
from torchvision import transforms
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(model, dataloaders, num_epochs=50):
dataset_sizes = {phase: len(dataloaders[phase].dataset) for phase in ['train', 'val']}
if torch.cuda.device_count() > 1:
print("Usando", torch.cuda.device_count(), "GPUs")
model = nn.DataParallel(model)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=settings.lr, momentum=settings.momentum)
scheduler = lr_scheduler.StepLR(optimizer, step_size=settings.step_size, gamma=settings.gamma)
best_acc = 0.0
best_model_wts = copy.deepcopy(model.state_dict())
tic = time.time()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 20)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item()*inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - tic
print("Training complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
print("Best val acc: {:.4f}".format(best_acc))
model.load_state_dict(best_model_wts)
torch.save(best_model_wts, 'checkpoints/best_model.pth')
return model
if __name__ == '__main__':
train_transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataloaders = get_data_loaders(train_transform, val_transform)
model = ResnetModel(2)
train(model, dataloaders, num_epochs=settings.epochs)