Diff of /utils/load_plot.py [000000] .. [ccc736]

Switch to unified view

a b/utils/load_plot.py
1
import matplotlib.pyplot as plt
2
from PIL import Image
3
from subprocess import check_output
4
from random import sample
5
from os.path import join
6
from matplotlib.pyplot import imsave
7
from torchvision import transforms
8
9
# Imagenes de prueba y transformaciones
10
img_path = './data/img/'
11
all_transforms = image = transforms.Compose([   
12
    transforms.Resize((224, 224)), # las imagenes originales son de tamaño 512x512
13
    transforms.ToTensor(), # convertir a torch.Tensor
14
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # normalización
15
])
16
17
18
def load_random_samples(n):
19
    """
20
    Arguments
21
    ---------
22
    n:  numero de ejemplos
23
24
    Returns
25
    -------
26
    imgs:   lista de torch.Tensor con las imagenes
27
    """
28
29
    img_names = check_output(['ls', img_path]).decode('utf8').splitlines()
30
    # si n > nmax, devolver n_max
31
    selected_images = sample(img_names, min(n, len(img_names)))
32
    samples_path = [join(img_path, img) for img in selected_images]
33
    
34
    imgs = []
35
    for sample_path in samples_path:
36
        x = Image.open(sample_path).convert("RGB") # leerlas con 3 canales
37
        x = all_transforms(x) # aplicar las transformaciones
38
        imgs.append(x)
39
    
40
    return imgs
41
42
def plot_images(rows, cols, images):
43
    """
44
    Arguments:
45
    ----------
46
    rows:   número de filas
47
    cols:   número de columnas
48
    images: lista de imágenes ( de tipo torch.Tensor)
49
50
    Returns:
51
    --------
52
    """
53
54
    fig, axs = plt.subplots(rows, cols, sharex='col', sharey='row', 
55
                            gridspec_kw={'hspace': 0, 'wspace': 0})
56
    
57
    for i in range(rows):
58
        for j in range(cols):
59
            try:
60
                axs[i, j].imshow(images[i*cols + j][0, ...], cmap='gray')
61
            except IndexError:
62
                pass
63
    
64
    fig.show()