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Abstract

Brain hemorrhages are extremely hard for trained medical professionals
to detect from brain scan images, which are slices of a patient’s brain
imaged through an fMRI. We adapt the long-term recurrent convolutional
network (LRCN), a model architecture conventionally used for action
recognition in video data, to brain CT scans used by radiologists to screen
for intracranial hemorrhage. Specifically, we represent 3D CT scans as
series of 2D images and train a convolutional neural network, VGG19, on
these 2D images. Then, we take the sequential convolutional output of this
network train a bi-directional LSTM to create a binary prediction for every
2D image, for each sequence. This allows us to better utilize the sequential
properties between brain scans that is lost in traditional 2D CNN models.
We also show how this convolutional-sequential model is more powerful
than a CNN alone for this task, obtaining a recall of 73% for the LRCN,
versus a recall of 94% for the CNN alone. This work demonstrates how
combining image recognition and sequential models can help better solve
complicated real-life problems with non-uniform information, and shows
how a model like this can have applications in many other healthcare
problems.

1 Introduction
Intracranial hemorrhages cause about 10% of strokes in the U.S., and strokes
are the fifth-leading overall cause of death. Determining whether or not a hem-
orrhage is present is the first step towards treating the condition and can be a
very challenging task for radiologists who have to sort through many dozens, or
even hundreds, of images under time constraint.

To detect intracranial hemorrhages, radiologists typically examine 3D brain
CT scans, looking for asymmetries caused by swelling [4]. They interact with
these CT scans as sequences of 2D images, relying on context from many subsets
of images to make diagnoses. Traditional machine learning models for this task
often disregard this human approach, typically modeling CT scans as simple
2D images, without the context of adjacent slices. This is typically because 3D
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CT scans are often variable in length, and therefore difficult to model using
conventional approaches.

We integrate 3D CT scan context into the problem of detecting acute intracranial
hemorrhage by adapting a model architecture which can account for regional
and long-term dependencies within a given CT scan, and that is more robust to
in-practice conditions as it can account for variable length 3D CT scan inputs.

We note that the goal of this work is not to replace radiologists, but rather to
complement their work and reduce the strain of filtering through vast quantities
of CT images, the majority of which are not particularly relevant. Because of this
and the nature of medical trauma, we find it much more important to detect the
presence of hemorrhage rather than predicting the type of hemorrhage present.
As such, we focus only on predicting whether an hemorrhage is present or not
(accuracy), and focus on ensuring there are few false negatives (high recall), a
critical case to avoid with medical trauma.

2 Background

2.1 Recent Work in Medical Image Recognition
Predicting conditions based on medical images is a complex problem that even
state-of-the-art machine learning techniques struggle to solve. These images
are generally very noisy and difficult to interpret, datasets are generally very
imbalanced or incomplete, and the implications of a model’s predictions very
scrutinized, making it no simple image recognition task. As such, many different
feature engineering and other pre-processing techniques have been developed
and used over the years to further augment standard image recognition models
for those tasks.

2.1.1 Windowing

One such technique is "windowing", which consists in re-scaling pixels in a
specific area to emphasize a intensity-region of an image. All pixels outside of
a given range of intensities are set to 0. Various biological structures appear
under CT scan in different intensity ranges. By windowing to a limited range of
intensities, radiologists and medical professionals can better understand what is
going on in cranial structures associated with that region and better recognize
whether or not there is acute trauma [8].

2.1.2 Data Imbalance

Medical image datasets are often fairly unbalanced, as medical conditions arise
infrequently, which makes it hard to train machine learning models on those
datasets. Supervised learning historically performs very poorly in severely
unbalanced datasets, and so techniques have been developed to re-balance
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datasets or weigh more heavily classes with a lower representation. One such
example that has been used heavily in medical imaging is, SMOTE an algorithm
that creates new, fake, examples of the minority class while also under-sampling
the majority class, which has been shown to drastically help learning models
generalize in many context, including medical imagery [2].

2.2 Convolutional Neural Networks
Unsurprisingly, convolutional neural networks, or CNNs, have been applied
frequently to medical image recognition tasks in the past [10]. They are well
suited for this type of task due to their ability to somewhat mimic the human
visual system and they generalize well on complex image recognition tasks
[1][9]. They are especially suited to this type of problem as the kernel filtering
and downsampling pooling processes help identify small but highly relevant
components in an image, often how medical conditions appear under imaging.
Since medical machine learning models are mainly intended to support doctors,
it is especially important that they pick up on the smallest, hardest-to-see edge
cases which a doctor would have difficulty identifying or could easily overlook,
making CNNs an ideal base model.

2.2.1 Augmented Convolutional Neural Networks

Many different reworkings of CNNs exist to help them tackle better certain
image recognition tasks. One example is the mask R-CNN, or regional CNN,
used for object detection [6]. Another example is the Long-Term Recurrent
Convolutional Network (LRCN) [5], where the convolutional output of a CNN is
adapted as input for an RNN or LSTM. This approach was originally developed
to handle action recognition in video data, but in this paper, we adapt this
approach to brain CT scans and hemorrhage prediction, as the recurrent nature
of the model allows information relevant for prediction to be shared across image
slices within a given CT scan.

3 Our Approach: A Convolutional-Sequential Model

3.1 Data
The data consists of DICOM image slices of patient brain CT scans, each with
physician-created labels for the presence of hemorrhage, and if hemorrhage is
present, which specific type(s) of hemorrhage are present. Notably, each image
also contains metadata which allows us to reconstruct a specific brain image
stack (i.e. the 3D CT scan corresponding to a specific patient and exam),
which inspires our convolutional-recurrent approach.This dataset is the largest
collection of its kind to-date, consisting of over 25,000 CT exams. It is provided
by the Radiological Society of North America (RSNA) in collaboration with
members of the American Society of Neuroradiology (ASNR) and MD.ai as part
of the ”RSNA Intracranial Hemorrhage Detection” Kaggle challenge.
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Figure 1: Convolutional-Recurrent Neural Network model we developed to tackle
the RSNA brain hemorrhage dataset. The brain scan images are taken from the
RSNA Kaggle blog post.

3.2 Data Processing & Features Engineering
We pre-processed the DICOM images by down-sampling them to 128x128 PNGs
images due to memory limitations. We then randomly sampled 2,500 patients
from the datasets to use, which gave us a dataset of about 87,000 images. For
each patient brain image, we windowed the gray-scale image with three different
standard windowing regions (bone, subdural, and brain; see Figure 1), which
gave us three different important intensity-regions for detecting hemorrhages.
We then combined these images into a single three-channel image as input to
a 3-channel CNN. We then performed standard data augmentation by shifting
images around, rotating and mirroring them. We also explored SMOTE as a
way to balance the dataset, which had about 85% no-hemorrhage labels and 15%
hemorrhage labels, but decided against it as it would prevent us from keeping
the patient ID association to the data, which is necessary for the sequence part
of our model later on [3].

3.3 The Convolutional-Sequential Architecture
We introduce a Convolutional-Sequential model (LRCN) for the brain hemor-
rhage prediction problem, with the goal of further improving upon conventional
CNN models by integrating sequential context over over a given patient’s CT
brain slices (see Figure 1). We design our model as a combination of a CNN
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and a bi-directional LSTM. The CNN learns on 2D CT images and predicts
a label, hemorrhage or no hemorrhage, without sequential context. We then
scrape the classification layers off of the CNN and freeze the convolutional layers,
attaching them to a standard bi-directional LSTM, with each image representing
a time-step, going through the convolutional portion of the architecture before
entering the LSTM. Finally, we feed the output of each LSTM time-step into two
fully connected layers (with shared weights across time steps) to generate a final
binary prediction. This new convolutional-sequential model is then trained on
sequential data formed by grouping the data on individual patients, ordered by
slice depth. Essentially, we train the convolutional-sequential model on the full
3D images, applying the convolutional portion of the network to each individual
2D slice. This allows us to capture local (if slice s has hemorrhage, it’s likely
slices s + 1 and s − 1 have hemorrhage too) as well as potential long-range
dependencies across a given CT scan [7].

We trained our models on a Windows Server 2016 virtual machine with 48
vCPUs, 192 GB of RAM and a Tesla T4 GPU with CUDA 10.0 and cuDNN
7.6.4.

3.4 Baselines
We established rapid baselines by performing PCA analysis on the dataset and
keeping the 200 highest explained-variance PCs, which were fed to a logistic
regression and a random forest model. We obtained 85.4% accuracy and a
recall of 1.7% for the logistic regression and 87.2% accuracy and 11.7% recall
for the random forest, which is what we were expecting for such simple models,
ill-suited to the unique features of the dataset. This nonetheless help us guide
our direction in regards to class-imbalance and sets recall as a very important
metric to ensure the model is not always predicting the most frequent class, no
hemorrhage, with 85% importance.

3.5 CNN Model
We used VGG19 as the CNN model on which we trained the windowed brain
images. We froze the first 3 convolutional layers to mimic transfer learning, as
VGG19 is a strong model trained on a wide array of images and the first few
layers pick up very abstract shapes, which were good enough for our task. We
kept the last two layers unfrozen for learning and added two 1,000 unit dense
layers at the end with a 0.5 dropout layer between them to prevent overfitting.
We used Adam optimizer with a 0.0001 learning rate and a binary cross-entropy
loss function, which has been proven to work well on binary classification. We
trained the model for 50 epochs using a 80/20 train-test split on our 87,000
images, resulting in 2,150 mini-batches of 32 brain images per epoch.
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3.6 Convolutional-Sequential Model
We construct the convolutional-sequential model as described above. We train
on using the same dataset and split, only grouping images into sequences based
on CT scan, and using the same optimization parameters. We start training
by mimic the structure of the dense layers of the VGG19 architecture, using
1,000 unit dense layers with 0.5 dropout layers in between. Then, to offset the
added complexity of the LSTM layer, we reduced the complexity of the dense
layers and introduced batch normalization between each dense layer such that
the relative complexity between the LRCN and CNN architectures was more
comparable.

4 Results
Our main results compare the VGG19 CNN’s performance on the classification
that and that of the LRCN on the same task. Our simple baselines were meant
as mere guidance in our approach and are thus not reported in the table below.

Table 1: Test Metrics of CNN & LRCN
Model Accuracy Recall Precision AUC

VGG19 86.83 73.32 84.37 95.23
LRCN 87.71 93.78 81.97 90.50

As we can observe, we obtain higher accuracy and much higher recall for the
LCRN than for the VGG19 CNN. This can be explained by the fact that we
predict much more aggressively for hemorrhages with the LCRN, as compared
to the VGG19 CNN model which mostly predicts relatively fewer hemorrhages.
This is the behavior we are looking for in our model, as false positives are much
more tolerable than false negatives, making the LCRN a much better model in
this way. This difference could be explained by the improved learning efficiency
of the LCRN provided by the additional CT scan context the model has available.

The precision can also be explained the same way. The precision for the LCRN
is slightly lower, at 82%, than the VGG19 CNN model, at 84%, because we
predict more aggressively and get more false positives. However, so long as we
get very few false negatives, we are willing to tolerate a this moderate increase
in the number of false positives.

Likewise, the difference in AUC results are also a byproduct of the different
prediction approach of the CNN vs LRCN. The VGG19 CNN obtains a higher
AUC, with 95%, because it predicts very frequently no hemorrhage. Since 85%
of the dataset is labelled as no hemorrhage, and the AUC is a metric which
shows how good a classification model is at classifying 0s as 0s and 1s as 1s,
it gets almost all the no hemorrhage as no hemorrhage and gets a very high
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Figure 2: Evolution of the recall for the bi-directional LSTM model we trained on
the CNN last convolutional layer weights as part of our convolutional-recurrent
model.

AUC. This is, however, at the expense of often classifying hemorrhages as no
hemorrhage.

The LCRN, on the contrary, obtains a lower AUC of 90%. We propose that
this is because the LCRN better learns the data and is therefore less influenced
by the data imbalance, leading it to more accurately predict case of hemorrhage,
at the cost of AUC, given the data imbalance. This explains intuitively why the
LCRN is much better suited for this task. It predicts many fewer false negatives,
at the cost of slightly more false positives as compared to VGG19, because it is
more robust to the inherent class imbalance of the dataset. Again, we propose
that this is because of the additional sequential context the LRCN has available
to it.

Alternatively we propose that this more aggressive prediction behavior is due to
the locality of the LRCN (in that if a given brain slice is predicted to have hem-
orrhage, adjacent slices will become more biased towards predicting hemorrhage
as well). Thus, because of the additional context, the LRCN model can better
predict positive cases in images at the edge of the actual region of hemorrhage.

5 Conclusion
In this work we have shown how a convolutional-sequential model combining a
CNN and an LSTM can be used to produce state-of-the-art result on the complex
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medical imaging task of predicting brain hemorrhage based on the RSNA Brain
Hemorrhage dataset. We have successfully applied windowing to the dataset of
DICOM images and used this resulting dataset to train a CNN of which the
last dense layer for a specific patient was fed to a bi-directional LSTM to train
over brain image sequences for a specific patient, further increasing accuracy
and recall as compared to a CNN alone and performing significantly better than
any off-the-shelf supervised learning model.

This work demonstrates how combining image recognition and sequence modeling
can perform better than standard, state-of-the-art image recognition models like
VGG19 alone could by harnessing sequences over complex image datasets like is
often the case in medical data. It also demonstrates that strong results can be
achieved on imbalanced datasets with the right model and serves as yet another
illustration of the importance of data pre-processing. Many other applications
of convolutional-sequential models exist, both in and out of the medical field,
and we hope this can serve as a model to build upon in tackling those problems.

6 Future Work
We see many avenues for future work on this problem. First, we trained our
model on predicting whether an hemorrhage was present or not, but did not
train on predicting which type of hemorrhage was present. This decision was
made on the prior that predicting an hemorrhage is much more important
than predicting its type, as radiologists can then spend more time diagnosing
the specific hemorrhage type once the scan has been flagged. Expanding the
model to predict the specific hemorrhage type is a natural next step to the project.

In this work, we utilized a downsampled version of about 10% of the avail-
able CT data. Training on the full dataset of over 700,000 images in full-size
posed barriers with respect to our available resources, but would likely help
reach better performances, especially on predicting the hemorrhage type. More
experimentation with respect to the model architecture is also needed. In partic-
ular, different base convolutional networks and recurrent architectures should be
tested and benchmarked. Further exploring the differences in training between
the two models explored in this work is important, and may help improve the
architecture of the LRCN model. Other avenues we see for improving perfor-
mance including ensembling the CNN and the LSTM components of the model
to better improve performance, and considering attention mechanisms as an
alternative to a bi-directional LSTM as we used. We hope the medical machine
learning community will take up on those avenues and build upon our work.
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7 Appendix

Figure 3: Evolution of the loss for the LRCN model we trained to further improve
upon the CNN.

Figure 4: Evolution of the AUC for the LRCN model we trained to further
improve upon the CNN.

Code: https://github.com/philippemnoel/cs281-rsna-hemorrhage-project
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