|
a |
|
b/Notebooks/Feature Extraction.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"kernelspec": { |
|
|
6 |
"display_name": "Python [conda env:work] *", |
|
|
7 |
"language": "python", |
|
|
8 |
"name": "conda-env-work-py" |
|
|
9 |
}, |
|
|
10 |
"language_info": { |
|
|
11 |
"codemirror_mode": { |
|
|
12 |
"name": "ipython", |
|
|
13 |
"version": 3 |
|
|
14 |
}, |
|
|
15 |
"file_extension": ".py", |
|
|
16 |
"mimetype": "text/x-python", |
|
|
17 |
"name": "python", |
|
|
18 |
"nbconvert_exporter": "python", |
|
|
19 |
"pygments_lexer": "ipython3", |
|
|
20 |
"version": "3.7.3" |
|
|
21 |
}, |
|
|
22 |
"colab": { |
|
|
23 |
"name": "Feature Extraction.ipynb", |
|
|
24 |
"provenance": [], |
|
|
25 |
"collapsed_sections": [] |
|
|
26 |
} |
|
|
27 |
}, |
|
|
28 |
"cells": [ |
|
|
29 |
{ |
|
|
30 |
"cell_type": "markdown", |
|
|
31 |
"metadata": { |
|
|
32 |
"id": "ns9Vglq6FAA2", |
|
|
33 |
"colab_type": "text" |
|
|
34 |
}, |
|
|
35 |
"source": [ |
|
|
36 |
"# **Importing Dependencies**" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "code", |
|
|
41 |
"metadata": { |
|
|
42 |
"id": "HuDMOXP3E9_v", |
|
|
43 |
"colab_type": "code", |
|
|
44 |
"colab": {} |
|
|
45 |
}, |
|
|
46 |
"source": [ |
|
|
47 |
"import pickle\n", |
|
|
48 |
"import os\n", |
|
|
49 |
"\n", |
|
|
50 |
"import imageio\n", |
|
|
51 |
"import tqdm\n", |
|
|
52 |
"\n", |
|
|
53 |
"import numpy as np\n", |
|
|
54 |
"import pandas as pd\n", |
|
|
55 |
"import matplotlib.pyplot as plt\n", |
|
|
56 |
"\n", |
|
|
57 |
"import tensorflow as tf\n", |
|
|
58 |
"from tensorflow.compat.v1 import ConfigProto\n", |
|
|
59 |
"from tensorflow.compat.v1 import InteractiveSession\n", |
|
|
60 |
"\n", |
|
|
61 |
"tf.compat.v1.disable_eager_execution() \n", |
|
|
62 |
"tfK = tf.keras" |
|
|
63 |
], |
|
|
64 |
"execution_count": 0, |
|
|
65 |
"outputs": [] |
|
|
66 |
}, |
|
|
67 |
{ |
|
|
68 |
"cell_type": "markdown", |
|
|
69 |
"metadata": { |
|
|
70 |
"id": "xmtQnMCNF62P", |
|
|
71 |
"colab_type": "text" |
|
|
72 |
}, |
|
|
73 |
"source": [ |
|
|
74 |
"# **Allowing for Parallelized Model Training**" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "markdown", |
|
|
79 |
"metadata": { |
|
|
80 |
"id": "fY_Fkhq_F_rP", |
|
|
81 |
"colab_type": "text" |
|
|
82 |
}, |
|
|
83 |
"source": [ |
|
|
84 |
"By default, TensorFlow allocates all available GPU memory to the current training process. By enabling memory growth, however, we can train multiple models in parallel." |
|
|
85 |
] |
|
|
86 |
}, |
|
|
87 |
{ |
|
|
88 |
"cell_type": "code", |
|
|
89 |
"metadata": { |
|
|
90 |
"id": "M4o5zDQ4E9_-", |
|
|
91 |
"colab_type": "code", |
|
|
92 |
"colab": {} |
|
|
93 |
}, |
|
|
94 |
"source": [ |
|
|
95 |
"gpus = tf.config.experimental.list_physical_devices('GPU')\n", |
|
|
96 |
"if gpus:\n", |
|
|
97 |
" try:\n", |
|
|
98 |
" for gpu in gpus:\n", |
|
|
99 |
" tf.config.experimental.set_memory_growth(gpu, True)\n", |
|
|
100 |
" except RuntimeError as e:\n", |
|
|
101 |
" print(e)\n", |
|
|
102 |
"\n", |
|
|
103 |
"config = ConfigProto()\n", |
|
|
104 |
"config.gpu_options.allow_growth = True\n", |
|
|
105 |
"session = InteractiveSession(config=config)" |
|
|
106 |
], |
|
|
107 |
"execution_count": 0, |
|
|
108 |
"outputs": [] |
|
|
109 |
}, |
|
|
110 |
{ |
|
|
111 |
"cell_type": "markdown", |
|
|
112 |
"metadata": { |
|
|
113 |
"id": "nCMPWnwmG3Aj", |
|
|
114 |
"colab_type": "text" |
|
|
115 |
}, |
|
|
116 |
"source": [ |
|
|
117 |
"# **Loading the Feature Extractor**" |
|
|
118 |
] |
|
|
119 |
}, |
|
|
120 |
{ |
|
|
121 |
"cell_type": "code", |
|
|
122 |
"metadata": { |
|
|
123 |
"id": "9H39UGuqE-AL", |
|
|
124 |
"colab_type": "code", |
|
|
125 |
"colab": {} |
|
|
126 |
}, |
|
|
127 |
"source": [ |
|
|
128 |
"model_path = \"./models/trained_cnn_2.h5\"\n", |
|
|
129 |
"model = tfK.models.load_model(model_path)" |
|
|
130 |
], |
|
|
131 |
"execution_count": 0, |
|
|
132 |
"outputs": [] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"cell_type": "markdown", |
|
|
136 |
"metadata": { |
|
|
137 |
"id": "ezSYj5mDHrQ_", |
|
|
138 |
"colab_type": "text" |
|
|
139 |
}, |
|
|
140 |
"source": [ |
|
|
141 |
"We use the trained CNN as a **feature extractor**. To do this, we simply \"chop off\" the dense and dropout layers following the CNN's last convolutional block, resulting in 8192 features being extracted per image fed to the CNN:" |
|
|
142 |
] |
|
|
143 |
}, |
|
|
144 |
{ |
|
|
145 |
"cell_type": "code", |
|
|
146 |
"metadata": { |
|
|
147 |
"id": "xZ6k6PXAE-Ax", |
|
|
148 |
"colab_type": "code", |
|
|
149 |
"colab": {} |
|
|
150 |
}, |
|
|
151 |
"source": [ |
|
|
152 |
"intermediate_layer_model = tfK.models.Model(inputs=model.input,\n", |
|
|
153 |
" outputs=model.get_layer(\"flatten_4\").output)" |
|
|
154 |
], |
|
|
155 |
"execution_count": 0, |
|
|
156 |
"outputs": [] |
|
|
157 |
}, |
|
|
158 |
{ |
|
|
159 |
"cell_type": "markdown", |
|
|
160 |
"metadata": { |
|
|
161 |
"id": "w3_4qyKbHzn3", |
|
|
162 |
"colab_type": "text" |
|
|
163 |
}, |
|
|
164 |
"source": [ |
|
|
165 |
"# **Loading Data**" |
|
|
166 |
] |
|
|
167 |
}, |
|
|
168 |
{ |
|
|
169 |
"cell_type": "code", |
|
|
170 |
"metadata": { |
|
|
171 |
"id": "4oQ-ZiV1E-BB", |
|
|
172 |
"colab_type": "code", |
|
|
173 |
"colab": {} |
|
|
174 |
}, |
|
|
175 |
"source": [ |
|
|
176 |
"with open(\"ordered_slices_by_patient_randsubset.pkl\", \"rb\") as f:\n", |
|
|
177 |
" patients_pkl = pickle.load(f)\n", |
|
|
178 |
"\n", |
|
|
179 |
"label_df = pd.read_csv(\"labels_cleaned.csv\")\n", |
|
|
180 |
"label_df[\"ID_nopng\"] = label_df[\"ID\"].str.replace(\".png\", \"\")\n", |
|
|
181 |
"ID_list = label_df[\"ID_nopng\"].tolist()" |
|
|
182 |
], |
|
|
183 |
"execution_count": 0, |
|
|
184 |
"outputs": [] |
|
|
185 |
}, |
|
|
186 |
{ |
|
|
187 |
"cell_type": "markdown", |
|
|
188 |
"metadata": { |
|
|
189 |
"id": "Gw1kcXpyPeuS", |
|
|
190 |
"colab_type": "text" |
|
|
191 |
}, |
|
|
192 |
"source": [ |
|
|
193 |
"# **Preparing the Data for Feature Extraction**" |
|
|
194 |
] |
|
|
195 |
}, |
|
|
196 |
{ |
|
|
197 |
"cell_type": "markdown", |
|
|
198 |
"metadata": { |
|
|
199 |
"id": "sd27DM7kFG5z", |
|
|
200 |
"colab_type": "text" |
|
|
201 |
}, |
|
|
202 |
"source": [ |
|
|
203 |
"For some files present in the data, the *actual image data* (the PNG) is missing. Here, we remove these files:" |
|
|
204 |
] |
|
|
205 |
}, |
|
|
206 |
{ |
|
|
207 |
"cell_type": "code", |
|
|
208 |
"metadata": { |
|
|
209 |
"id": "DgfyNkyWE-C7", |
|
|
210 |
"colab_type": "code", |
|
|
211 |
"colab": {} |
|
|
212 |
}, |
|
|
213 |
"source": [ |
|
|
214 |
"patients_pkl_clean = dict()\n", |
|
|
215 |
"\n", |
|
|
216 |
"for key, item in patients_pkl.items():\n", |
|
|
217 |
" tmp = []\n", |
|
|
218 |
" for slice_id in item:\n", |
|
|
219 |
" if os.path.isfile(\"./Windowed-PNGs-FINAL-comb/\" + slice_id + \".png\"):\n", |
|
|
220 |
" tmp.append(slice_id)\n", |
|
|
221 |
"\n", |
|
|
222 |
" patients_pkl_clean[key] = tmp" |
|
|
223 |
], |
|
|
224 |
"execution_count": 0, |
|
|
225 |
"outputs": [] |
|
|
226 |
}, |
|
|
227 |
{ |
|
|
228 |
"cell_type": "markdown", |
|
|
229 |
"metadata": { |
|
|
230 |
"id": "Pp48Z8r3FVEG", |
|
|
231 |
"colab_type": "text" |
|
|
232 |
}, |
|
|
233 |
"source": [ |
|
|
234 |
"Next, we determine how many brain slices each patient's CT scan contains (and what the smallest number of slices in any CT scan is):" |
|
|
235 |
] |
|
|
236 |
}, |
|
|
237 |
{ |
|
|
238 |
"cell_type": "code", |
|
|
239 |
"metadata": { |
|
|
240 |
"id": "ganaa_a6E-C3", |
|
|
241 |
"colab_type": "code", |
|
|
242 |
"colab": {} |
|
|
243 |
}, |
|
|
244 |
"source": [ |
|
|
245 |
"min = float(\"inf\")\n", |
|
|
246 |
"lens = []\n", |
|
|
247 |
"\n", |
|
|
248 |
"for key, item in patients_pkl.items():\n", |
|
|
249 |
" if len(item) < min:\n", |
|
|
250 |
" min = len(item)\n", |
|
|
251 |
" lens.append(len(item))" |
|
|
252 |
], |
|
|
253 |
"execution_count": 0, |
|
|
254 |
"outputs": [] |
|
|
255 |
}, |
|
|
256 |
{ |
|
|
257 |
"cell_type": "markdown", |
|
|
258 |
"metadata": { |
|
|
259 |
"id": "u2W-60ZpOUBx", |
|
|
260 |
"colab_type": "text" |
|
|
261 |
}, |
|
|
262 |
"source": [ |
|
|
263 |
"We find that some CT scans do not contain enough slices to lend themselves well to our **sequential approach**. We ensure that only patients with a sufficient number of slices are considered:" |
|
|
264 |
] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"metadata": { |
|
|
269 |
"id": "h1IcGOoTE-DC", |
|
|
270 |
"colab_type": "code", |
|
|
271 |
"colab": {} |
|
|
272 |
}, |
|
|
273 |
"source": [ |
|
|
274 |
"n_slices = 24\n", |
|
|
275 |
"\n", |
|
|
276 |
"patients_long_enough = dict()\n", |
|
|
277 |
"for key, item in patients_pkl_clean.items():\n", |
|
|
278 |
" if len(item) >= n_slices:\n", |
|
|
279 |
" mid_slice = len(item)//2\n", |
|
|
280 |
" truncated_slice_IDs = item.copy()[mid_slice - n_slices//2:mid_slice + n_slices//2]\n", |
|
|
281 |
" patients_long_enough[key] = truncated_slice_IDs" |
|
|
282 |
], |
|
|
283 |
"execution_count": 0, |
|
|
284 |
"outputs": [] |
|
|
285 |
}, |
|
|
286 |
{ |
|
|
287 |
"cell_type": "markdown", |
|
|
288 |
"metadata": { |
|
|
289 |
"id": "8bVDQCyiFzQk", |
|
|
290 |
"colab_type": "text" |
|
|
291 |
}, |
|
|
292 |
"source": [ |
|
|
293 |
"Finally, we verify that we still have enough patients left to adequately train our sequential-convolutional model (indeed, 2418 patients remain):" |
|
|
294 |
] |
|
|
295 |
}, |
|
|
296 |
{ |
|
|
297 |
"cell_type": "code", |
|
|
298 |
"metadata": { |
|
|
299 |
"id": "oEFa8nbQE-DI", |
|
|
300 |
"colab_type": "code", |
|
|
301 |
"colab": {}, |
|
|
302 |
"outputId": "ef1190be-aeb0-4a3b-a2c7-a01cdf455e2a" |
|
|
303 |
}, |
|
|
304 |
"source": [ |
|
|
305 |
"n_patients = len(patients_long_enough)\n", |
|
|
306 |
"n_features = 8192\n", |
|
|
307 |
"\n", |
|
|
308 |
"len(patients_long_enough)" |
|
|
309 |
], |
|
|
310 |
"execution_count": 0, |
|
|
311 |
"outputs": [ |
|
|
312 |
{ |
|
|
313 |
"output_type": "execute_result", |
|
|
314 |
"data": { |
|
|
315 |
"text/plain": [ |
|
|
316 |
"2418" |
|
|
317 |
] |
|
|
318 |
}, |
|
|
319 |
"metadata": { |
|
|
320 |
"tags": [] |
|
|
321 |
}, |
|
|
322 |
"execution_count": 17 |
|
|
323 |
} |
|
|
324 |
] |
|
|
325 |
}, |
|
|
326 |
{ |
|
|
327 |
"cell_type": "markdown", |
|
|
328 |
"metadata": { |
|
|
329 |
"id": "r-7UghrGQBMc", |
|
|
330 |
"colab_type": "text" |
|
|
331 |
}, |
|
|
332 |
"source": [ |
|
|
333 |
"# **Performing the Feature Extraction**" |
|
|
334 |
] |
|
|
335 |
}, |
|
|
336 |
{ |
|
|
337 |
"cell_type": "markdown", |
|
|
338 |
"metadata": { |
|
|
339 |
"id": "6fHSRY7nGJ0g", |
|
|
340 |
"colab_type": "text" |
|
|
341 |
}, |
|
|
342 |
"source": [ |
|
|
343 |
"We extract features for the training of our **bidirectional LSTM** by feeding all training PNGs to our previously-trained CNN, letting it run its inference, and then---for each PNG---grabbing the 8192 values from the last convolutional block:" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"metadata": { |
|
|
349 |
"scrolled": true, |
|
|
350 |
"id": "QjOn8YqrE-Dg", |
|
|
351 |
"colab_type": "code", |
|
|
352 |
"colab": {} |
|
|
353 |
}, |
|
|
354 |
"source": [ |
|
|
355 |
"# This list will contain the extracted features for all training PNGs\n", |
|
|
356 |
"data_list = []\n", |
|
|
357 |
"# List of corresponding labels for the extracted features\n", |
|
|
358 |
"label_list = []\n", |
|
|
359 |
"\n", |
|
|
360 |
"for i, (patient_ID, slice_IDs) in enumerate(tqdm.tqdm(patients_long_enough.items())):\n", |
|
|
361 |
" data_patient_list = []\n", |
|
|
362 |
" label_patient_list = []\n", |
|
|
363 |
" for j, slice_ID in enumerate(slice_IDs):\n", |
|
|
364 |
" # Load respective PNG\n", |
|
|
365 |
" png_array = np.expand_dims(imageio.imread(\"./Windowed-PNGs-FINAL-comb/\" + slice_ID + \".png\"), 0)\n", |
|
|
366 |
" # Extract features\n", |
|
|
367 |
" layer_features = intermediate_layer_model.predict(png_array).flatten()\n", |
|
|
368 |
" \n", |
|
|
369 |
" data_patient_list.append(layer_features)\n", |
|
|
370 |
" \n", |
|
|
371 |
" label_patient_list.append(label_df[label_df[\"ID_nopng\"]==slice_ID][\"any\"].iloc[0])\n", |
|
|
372 |
"\n", |
|
|
373 |
" data_list.append(data_patient_list)\n", |
|
|
374 |
" label_list.append(label_patient_list)\n", |
|
|
375 |
" \n", |
|
|
376 |
"data_array = np.array(data_list)\n", |
|
|
377 |
"label_array = np.array(label_list)" |
|
|
378 |
], |
|
|
379 |
"execution_count": 0, |
|
|
380 |
"outputs": [] |
|
|
381 |
}, |
|
|
382 |
{ |
|
|
383 |
"cell_type": "markdown", |
|
|
384 |
"metadata": { |
|
|
385 |
"id": "-URtcQq0F-sG", |
|
|
386 |
"colab_type": "text" |
|
|
387 |
}, |
|
|
388 |
"source": [ |
|
|
389 |
"Writing the extracted features and corresponding labels to files:" |
|
|
390 |
] |
|
|
391 |
}, |
|
|
392 |
{ |
|
|
393 |
"cell_type": "code", |
|
|
394 |
"metadata": { |
|
|
395 |
"id": "zdXxmoS0E-Dr", |
|
|
396 |
"colab_type": "code", |
|
|
397 |
"colab": {} |
|
|
398 |
}, |
|
|
399 |
"source": [ |
|
|
400 |
"np.save(\"rcnn-data-array\", data_array)\n", |
|
|
401 |
"np.save(\"rcnn-label-array\", label_array)" |
|
|
402 |
], |
|
|
403 |
"execution_count": 0, |
|
|
404 |
"outputs": [] |
|
|
405 |
} |
|
|
406 |
] |
|
|
407 |
} |