[ab8373]: / README.md

Download this file

81 lines (54 with data), 7.0 kB

Bleeding Detection and Classification

### Classification Metrics
| Metric (in probability)| Value |
|------------------------|----------|
| Accuracy | 0.7864 |
| Recall (Bleeding) | 0.9602 |
| Recall (Non Bleeding) | 0.6126|
| Recall (Weighted) | 0.7864|
| F1-Score (Bleeding) | 0.8180 |
| F1-Score (Non Bleeding) | 0.7415 |
| F1-Score (Weighted) | 0.7798 |

Detection Metrics

Metric (in probability) Value
mAP50 0.652
mAP50-95 0.336

Training Metrics

Confusion Metrics Confusion Metrics Normalized
confusion_matrix confusion_matrix_normalized
F1 Curve P Curve PR Curve R Curve
F1_curve P_curve PR_curve R_curve

Detection and Classification

Validation Dataset

Imagename img- (43).png img- (44).png img- (68).png img- (164).png img- (200).png
Images img- (43) img- (44) img- (68) img- (164) img- (200)
Imagename img- (448).png img- (514).png img- (628).png img- (687).png img- (677).png
Images img- (448) img- (514) img- (628) img- (687) img- (677)

Interpretability Plots (Cam Plots of 2nd last layer)

Test Dataset 1

Imagename A0010.png A0021.png A0031.png A0040.png A0045.png
Cam Images image image image image image

Test Dataset 2

Imagename A0164.png A0256.png A0300.png A0384.png A0473.png
CAM Images image image image image image

Detection and Classification

Testing Dataset 1

Imagename A0047.png A0043.png A0048.png A0040.png A0035.png
Images image image image image image

Testing Dataset 2

Imagename A0258.png A0260.png A0500.png A0261.png A0498.png
Images image image image image image

Instructions

  • Clone the repo
  • Install requirements.txt via pip install -r requirements.txt
  • Download and extract the model weights from here
  • Do necessary changes in test.py file.
  • Running the test.py generates the predictions.csv file