|
a |
|
b/WCEBleedGen.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"colab": { |
|
|
6 |
"provenance": [], |
|
|
7 |
"authorship_tag": "ABX9TyOK/tfXqNBMTnLqQ6UmtznZ", |
|
|
8 |
"include_colab_link": true |
|
|
9 |
}, |
|
|
10 |
"kernelspec": { |
|
|
11 |
"name": "python3", |
|
|
12 |
"display_name": "Python 3" |
|
|
13 |
}, |
|
|
14 |
"language_info": { |
|
|
15 |
"name": "python" |
|
|
16 |
} |
|
|
17 |
}, |
|
|
18 |
"cells": [ |
|
|
19 |
{ |
|
|
20 |
"cell_type": "markdown", |
|
|
21 |
"metadata": { |
|
|
22 |
"id": "view-in-github", |
|
|
23 |
"colab_type": "text" |
|
|
24 |
}, |
|
|
25 |
"source": [ |
|
|
26 |
"<a href=\"https://colab.research.google.com/github/2004ARYAN/WCEBleedGen-AI/blob/main/WCEBleedGen.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "code", |
|
|
31 |
"execution_count": 1, |
|
|
32 |
"metadata": { |
|
|
33 |
"id": "6-HEO5ZZjkJl" |
|
|
34 |
}, |
|
|
35 |
"outputs": [], |
|
|
36 |
"source": [ |
|
|
37 |
"import zipfile" |
|
|
38 |
] |
|
|
39 |
}, |
|
|
40 |
{ |
|
|
41 |
"cell_type": "code", |
|
|
42 |
"source": [ |
|
|
43 |
"# Path to the training dataset zip file\n", |
|
|
44 |
"train_dataset_path = '/content/sample_data/WCEBleedGen.zip'\n", |
|
|
45 |
"\n", |
|
|
46 |
"# Path to the testing dataset zip file\n", |
|
|
47 |
"test_dataset_path = '/content/sample_data/Auto-WCEBleedGen Challenge Test Dataset.zip'\n", |
|
|
48 |
"\n", |
|
|
49 |
"# Extract the training dataset\n", |
|
|
50 |
"with zipfile.ZipFile(train_dataset_path, 'r') as zip_ref:\n", |
|
|
51 |
" zip_ref.extractall('/content/sample_data')\n", |
|
|
52 |
"\n", |
|
|
53 |
"# Extract the testing dataset\n", |
|
|
54 |
"with zipfile.ZipFile(test_dataset_path, 'r') as zip_ref:\n", |
|
|
55 |
" zip_ref.extractall('/content/sample_data')" |
|
|
56 |
], |
|
|
57 |
"metadata": { |
|
|
58 |
"id": "m5dvbzIJjnFn" |
|
|
59 |
}, |
|
|
60 |
"execution_count": 2, |
|
|
61 |
"outputs": [] |
|
|
62 |
}, |
|
|
63 |
{ |
|
|
64 |
"cell_type": "code", |
|
|
65 |
"source": [ |
|
|
66 |
"# Organize the data directories\n", |
|
|
67 |
"train_data_dir = '/content/sample_data/train_dataset'\n", |
|
|
68 |
"test_data_dir = '/content/sample_data/test_dataset'\n" |
|
|
69 |
], |
|
|
70 |
"metadata": { |
|
|
71 |
"id": "zqm-6MH9jnH7" |
|
|
72 |
}, |
|
|
73 |
"execution_count": 3, |
|
|
74 |
"outputs": [] |
|
|
75 |
}, |
|
|
76 |
{ |
|
|
77 |
"cell_type": "code", |
|
|
78 |
"source": [ |
|
|
79 |
"import os\n", |
|
|
80 |
"\n", |
|
|
81 |
"# Set the path to the extracted training dataset directory\n", |
|
|
82 |
"extracted_data_dir = '/content/sample_data/WCEBleedGen'\n", |
|
|
83 |
"\n", |
|
|
84 |
"# Define the path to your training and testing data within the extracted directory\n", |
|
|
85 |
"train_data_dir = os.path.join(extracted_data_dir, '/content/sample_data/WCEBleedGen')\n", |
|
|
86 |
"test_data_dir = os.path.join(extracted_data_dir, '/content/sample_data/Auto-WCEBleedGen Challenge Test Dataset')\n" |
|
|
87 |
], |
|
|
88 |
"metadata": { |
|
|
89 |
"id": "LQ7GMenHjnM4" |
|
|
90 |
}, |
|
|
91 |
"execution_count": 6, |
|
|
92 |
"outputs": [] |
|
|
93 |
}, |
|
|
94 |
{ |
|
|
95 |
"cell_type": "code", |
|
|
96 |
"source": [ |
|
|
97 |
"import tensorflow as tf\n", |
|
|
98 |
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", |
|
|
99 |
"\n", |
|
|
100 |
"\n", |
|
|
101 |
"\n", |
|
|
102 |
"# Create data generators for training and testing\n", |
|
|
103 |
"train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)\n", |
|
|
104 |
"train_generator = train_datagen.flow_from_directory(\n", |
|
|
105 |
" train_data_dir,\n", |
|
|
106 |
" target_size=(150, 150),\n", |
|
|
107 |
" batch_size=32,\n", |
|
|
108 |
" class_mode='binary',\n", |
|
|
109 |
" subset='training' # For training data\n", |
|
|
110 |
")\n", |
|
|
111 |
"\n", |
|
|
112 |
"validation_generator = train_datagen.flow_from_directory(\n", |
|
|
113 |
" train_data_dir,\n", |
|
|
114 |
" target_size=(150, 150),\n", |
|
|
115 |
" batch_size=32,\n", |
|
|
116 |
" class_mode='binary',\n", |
|
|
117 |
" subset='validation' # For validation data\n", |
|
|
118 |
")\n", |
|
|
119 |
"\n", |
|
|
120 |
"\n" |
|
|
121 |
], |
|
|
122 |
"metadata": { |
|
|
123 |
"colab": { |
|
|
124 |
"base_uri": "https://localhost:8080/" |
|
|
125 |
}, |
|
|
126 |
"id": "l6dPYUqAjnPO", |
|
|
127 |
"outputId": "8465f9e5-ce7f-4ed2-a637-9052bf110b2e" |
|
|
128 |
}, |
|
|
129 |
"execution_count": 8, |
|
|
130 |
"outputs": [ |
|
|
131 |
{ |
|
|
132 |
"output_type": "stream", |
|
|
133 |
"name": "stdout", |
|
|
134 |
"text": [ |
|
|
135 |
"Found 4190 images belonging to 2 classes.\n", |
|
|
136 |
"Found 1046 images belonging to 2 classes.\n" |
|
|
137 |
] |
|
|
138 |
} |
|
|
139 |
] |
|
|
140 |
}, |
|
|
141 |
{ |
|
|
142 |
"cell_type": "code", |
|
|
143 |
"source": [ |
|
|
144 |
"import tensorflow as tf\n", |
|
|
145 |
"from tensorflow.keras.models import Sequential\n", |
|
|
146 |
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense\n", |
|
|
147 |
"from tensorflow.keras.optimizers import Adam\n", |
|
|
148 |
"\n", |
|
|
149 |
"# Define and compile your model\n", |
|
|
150 |
"model = Sequential([\n", |
|
|
151 |
" Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),\n", |
|
|
152 |
" MaxPooling2D(2, 2),\n", |
|
|
153 |
" Conv2D(64, (3, 3), activation='relu'),\n", |
|
|
154 |
" MaxPooling2D(2, 2),\n", |
|
|
155 |
" Flatten(),\n", |
|
|
156 |
" Dense(128, activation='relu'),\n", |
|
|
157 |
" Dense(1, activation='sigmoid')\n", |
|
|
158 |
"])\n", |
|
|
159 |
"\n", |
|
|
160 |
"model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy'])\n", |
|
|
161 |
"\n", |
|
|
162 |
"# Train your model\n", |
|
|
163 |
"history = model.fit(\n", |
|
|
164 |
" train_generator,\n", |
|
|
165 |
" steps_per_epoch=len(train_generator),\n", |
|
|
166 |
" epochs=10,\n", |
|
|
167 |
" validation_data=validation_generator,\n", |
|
|
168 |
" validation_steps=len(validation_generator)\n", |
|
|
169 |
")\n" |
|
|
170 |
], |
|
|
171 |
"metadata": { |
|
|
172 |
"colab": { |
|
|
173 |
"base_uri": "https://localhost:8080/" |
|
|
174 |
}, |
|
|
175 |
"id": "b5DsWJjI1cao", |
|
|
176 |
"outputId": "955fc3b8-8216-4220-f95d-5c5da2fbed28" |
|
|
177 |
}, |
|
|
178 |
"execution_count": 9, |
|
|
179 |
"outputs": [ |
|
|
180 |
{ |
|
|
181 |
"output_type": "stream", |
|
|
182 |
"name": "stderr", |
|
|
183 |
"text": [ |
|
|
184 |
"WARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.Adam.\n" |
|
|
185 |
] |
|
|
186 |
}, |
|
|
187 |
{ |
|
|
188 |
"output_type": "stream", |
|
|
189 |
"name": "stdout", |
|
|
190 |
"text": [ |
|
|
191 |
"Epoch 1/10\n", |
|
|
192 |
"131/131 [==============================] - 181s 1s/step - loss: 0.3123 - accuracy: 0.8814 - val_loss: 0.0428 - val_accuracy: 0.9895\n", |
|
|
193 |
"Epoch 2/10\n", |
|
|
194 |
"131/131 [==============================] - 160s 1s/step - loss: 0.0743 - accuracy: 0.9737 - val_loss: 0.0466 - val_accuracy: 0.9847\n", |
|
|
195 |
"Epoch 3/10\n", |
|
|
196 |
"131/131 [==============================] - 171s 1s/step - loss: 0.0316 - accuracy: 0.9883 - val_loss: 0.1191 - val_accuracy: 0.9713\n", |
|
|
197 |
"Epoch 4/10\n", |
|
|
198 |
"131/131 [==============================] - 158s 1s/step - loss: 0.0283 - accuracy: 0.9928 - val_loss: 0.1047 - val_accuracy: 0.9818\n", |
|
|
199 |
"Epoch 5/10\n", |
|
|
200 |
"131/131 [==============================] - 159s 1s/step - loss: 0.0123 - accuracy: 0.9976 - val_loss: 0.0974 - val_accuracy: 0.9837\n", |
|
|
201 |
"Epoch 6/10\n", |
|
|
202 |
"131/131 [==============================] - 161s 1s/step - loss: 0.0023 - accuracy: 0.9995 - val_loss: 0.1689 - val_accuracy: 0.9771\n", |
|
|
203 |
"Epoch 7/10\n", |
|
|
204 |
"131/131 [==============================] - 161s 1s/step - loss: 0.0018 - accuracy: 0.9998 - val_loss: 0.0591 - val_accuracy: 0.9895\n", |
|
|
205 |
"Epoch 8/10\n", |
|
|
206 |
"131/131 [==============================] - 159s 1s/step - loss: 0.0171 - accuracy: 0.9947 - val_loss: 0.0362 - val_accuracy: 0.9914\n", |
|
|
207 |
"Epoch 9/10\n", |
|
|
208 |
"131/131 [==============================] - 158s 1s/step - loss: 0.0045 - accuracy: 0.9986 - val_loss: 0.0446 - val_accuracy: 0.9914\n", |
|
|
209 |
"Epoch 10/10\n", |
|
|
210 |
"131/131 [==============================] - 169s 1s/step - loss: 0.0492 - accuracy: 0.9862 - val_loss: 0.0800 - val_accuracy: 0.9895\n" |
|
|
211 |
] |
|
|
212 |
} |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"source": [ |
|
|
218 |
"test_data_dir = '/content/sample_data/Auto-WCEBleedGen Challenge Test Dataset' # Update with the path to your testing dataset\n", |
|
|
219 |
"test_datagen = ImageDataGenerator(rescale=1./255)\n", |
|
|
220 |
"test_generator = test_datagen.flow_from_directory(\n", |
|
|
221 |
" test_data_dir,\n", |
|
|
222 |
" target_size=(150, 150),\n", |
|
|
223 |
" batch_size=32,\n", |
|
|
224 |
" class_mode='binary'\n", |
|
|
225 |
")\n" |
|
|
226 |
], |
|
|
227 |
"metadata": { |
|
|
228 |
"colab": { |
|
|
229 |
"base_uri": "https://localhost:8080/" |
|
|
230 |
}, |
|
|
231 |
"id": "-olZuu6R1cgV", |
|
|
232 |
"outputId": "2fc323c3-5dbc-4864-d751-ed28aab4c1ce" |
|
|
233 |
}, |
|
|
234 |
"execution_count": 11, |
|
|
235 |
"outputs": [ |
|
|
236 |
{ |
|
|
237 |
"output_type": "stream", |
|
|
238 |
"name": "stdout", |
|
|
239 |
"text": [ |
|
|
240 |
"Found 564 images belonging to 2 classes.\n" |
|
|
241 |
] |
|
|
242 |
} |
|
|
243 |
] |
|
|
244 |
}, |
|
|
245 |
{ |
|
|
246 |
"cell_type": "code", |
|
|
247 |
"source": [ |
|
|
248 |
"predictions = model.predict(test_generator)\n" |
|
|
249 |
], |
|
|
250 |
"metadata": { |
|
|
251 |
"colab": { |
|
|
252 |
"base_uri": "https://localhost:8080/" |
|
|
253 |
}, |
|
|
254 |
"id": "RkVc-2jA1ci8", |
|
|
255 |
"outputId": "071bbfdd-1ea3-4b5f-d590-f30b62b40f85" |
|
|
256 |
}, |
|
|
257 |
"execution_count": 12, |
|
|
258 |
"outputs": [ |
|
|
259 |
{ |
|
|
260 |
"output_type": "stream", |
|
|
261 |
"name": "stdout", |
|
|
262 |
"text": [ |
|
|
263 |
"18/18 [==============================] - 7s 385ms/step\n" |
|
|
264 |
] |
|
|
265 |
} |
|
|
266 |
] |
|
|
267 |
}, |
|
|
268 |
{ |
|
|
269 |
"cell_type": "code", |
|
|
270 |
"source": [ |
|
|
271 |
"import pandas as pd\n", |
|
|
272 |
"import smtplib\n", |
|
|
273 |
"\n", |
|
|
274 |
"\n", |
|
|
275 |
"# Step 1: Evaluation Metrics\n", |
|
|
276 |
"# Calculate and gather evaluation metrics here\n", |
|
|
277 |
"# Replace these with your actual evaluation metrics\n", |
|
|
278 |
"accuracy = 0.95\n", |
|
|
279 |
"recall = 0.90\n", |
|
|
280 |
"f1_score = 0.92\n", |
|
|
281 |
"iou = 0.80\n", |
|
|
282 |
"ap = 0.85\n", |
|
|
283 |
"map_score = 0.82\n", |
|
|
284 |
"\n", |
|
|
285 |
"# Step 2: Excel Sheet Preparation\n", |
|
|
286 |
"# Create a pandas DataFrame with your testing results\n", |
|
|
287 |
"# Replace these with your actual image IDs and predicted labels\n", |
|
|
288 |
"image_ids = ['Image1', 'Image2', 'Image3', 'Image4', 'Image5']\n", |
|
|
289 |
"predicted_labels = [1, 0, 1, 0, 1]\n", |
|
|
290 |
"\n", |
|
|
291 |
"results = {\n", |
|
|
292 |
" 'Image name': image_ids,\n", |
|
|
293 |
" 'Predicted class label': predicted_labels,\n", |
|
|
294 |
" 'Predicted coordinates of bounding box': ['x1, y1, x2, y2'] * len(image_ids),\n", |
|
|
295 |
" 'Confidence level': [0.95] * len(image_ids)\n", |
|
|
296 |
"}\n", |
|
|
297 |
"\n", |
|
|
298 |
"df = pd.DataFrame(results)\n", |
|
|
299 |
"\n", |
|
|
300 |
"# Save the DataFrame to an Excel file\n", |
|
|
301 |
"df.to_excel('auto_wce_bleedgen_results.xlsx', index=False)" |
|
|
302 |
], |
|
|
303 |
"metadata": { |
|
|
304 |
"id": "28eA4pqs1clB" |
|
|
305 |
}, |
|
|
306 |
"execution_count": 30, |
|
|
307 |
"outputs": [] |
|
|
308 |
}, |
|
|
309 |
{ |
|
|
310 |
"cell_type": "code", |
|
|
311 |
"source": [], |
|
|
312 |
"metadata": { |
|
|
313 |
"id": "z3Pgl-AX1cpK" |
|
|
314 |
}, |
|
|
315 |
"execution_count": null, |
|
|
316 |
"outputs": [] |
|
|
317 |
} |
|
|
318 |
] |
|
|
319 |
} |