|
a |
|
b/CaraNet/utils/dataloader.py |
|
|
1 |
import os |
|
|
2 |
from PIL import Image |
|
|
3 |
import torch.utils.data as data |
|
|
4 |
import torchvision.transforms as transforms |
|
|
5 |
import numpy as np |
|
|
6 |
import random |
|
|
7 |
import torch |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
class PolypDataset(data.Dataset): |
|
|
11 |
""" |
|
|
12 |
dataloader for polyp segmentation tasks |
|
|
13 |
""" |
|
|
14 |
def __init__(self, image_root, gt_root, trainsize, augmentations): |
|
|
15 |
self.trainsize = trainsize |
|
|
16 |
self.augmentations = augmentations |
|
|
17 |
print(self.augmentations) |
|
|
18 |
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')] |
|
|
19 |
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.png')] |
|
|
20 |
self.images = sorted(self.images) |
|
|
21 |
self.gts = sorted(self.gts) |
|
|
22 |
self.filter_files() |
|
|
23 |
self.size = len(self.images) |
|
|
24 |
if self.augmentations == True: |
|
|
25 |
print('Using RandomRotation, RandomFlip') |
|
|
26 |
self.img_transform = transforms.Compose([ |
|
|
27 |
transforms.RandomRotation(90, resample=False, expand=False, center=None), |
|
|
28 |
transforms.RandomVerticalFlip(p=0.5), |
|
|
29 |
transforms.RandomHorizontalFlip(p=0.5), |
|
|
30 |
transforms.Resize((self.trainsize, self.trainsize)), |
|
|
31 |
transforms.ToTensor(), |
|
|
32 |
transforms.Normalize([0.485, 0.456, 0.406], |
|
|
33 |
[0.229, 0.224, 0.225])]) |
|
|
34 |
self.gt_transform = transforms.Compose([ |
|
|
35 |
transforms.RandomRotation(90, resample=False, expand=False, center=None), |
|
|
36 |
transforms.RandomVerticalFlip(p=0.5), |
|
|
37 |
transforms.RandomHorizontalFlip(p=0.5), |
|
|
38 |
transforms.Resize((self.trainsize, self.trainsize)), |
|
|
39 |
transforms.ToTensor()]) |
|
|
40 |
|
|
|
41 |
else: |
|
|
42 |
print('no augmentation') |
|
|
43 |
self.img_transform = transforms.Compose([ |
|
|
44 |
transforms.Resize((self.trainsize, self.trainsize)), |
|
|
45 |
transforms.ToTensor(), |
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], |
|
|
47 |
[0.229, 0.224, 0.225])]) |
|
|
48 |
|
|
|
49 |
self.gt_transform = transforms.Compose([ |
|
|
50 |
transforms.Resize((self.trainsize, self.trainsize)), |
|
|
51 |
transforms.ToTensor()]) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
def __getitem__(self, index): |
|
|
55 |
|
|
|
56 |
image = self.rgb_loader(self.images[index]) |
|
|
57 |
gt = self.binary_loader(self.gts[index]) |
|
|
58 |
|
|
|
59 |
seed = np.random.randint(2147483647) # make a seed with numpy generator |
|
|
60 |
random.seed(seed) # apply this seed to img tranfsorms |
|
|
61 |
torch.manual_seed(seed) # needed for torchvision 0.7 |
|
|
62 |
if self.img_transform is not None: |
|
|
63 |
image = self.img_transform(image) |
|
|
64 |
|
|
|
65 |
random.seed(seed) # apply this seed to img tranfsorms |
|
|
66 |
torch.manual_seed(seed) # needed for torchvision 0.7 |
|
|
67 |
if self.gt_transform is not None: |
|
|
68 |
gt = self.gt_transform(gt) |
|
|
69 |
return image, gt |
|
|
70 |
|
|
|
71 |
def filter_files(self): |
|
|
72 |
assert len(self.images) == len(self.gts) |
|
|
73 |
images = [] |
|
|
74 |
gts = [] |
|
|
75 |
for img_path, gt_path in zip(self.images, self.gts): |
|
|
76 |
img = Image.open(img_path) |
|
|
77 |
gt = Image.open(gt_path) |
|
|
78 |
if img.size == gt.size: |
|
|
79 |
images.append(img_path) |
|
|
80 |
gts.append(gt_path) |
|
|
81 |
self.images = images |
|
|
82 |
self.gts = gts |
|
|
83 |
|
|
|
84 |
def rgb_loader(self, path): |
|
|
85 |
with open(path, 'rb') as f: |
|
|
86 |
img = Image.open(f) |
|
|
87 |
return img.convert('RGB') |
|
|
88 |
|
|
|
89 |
def binary_loader(self, path): |
|
|
90 |
with open(path, 'rb') as f: |
|
|
91 |
img = Image.open(f) |
|
|
92 |
# return img.convert('1') |
|
|
93 |
return img.convert('L') |
|
|
94 |
|
|
|
95 |
def resize(self, img, gt): |
|
|
96 |
assert img.size == gt.size |
|
|
97 |
w, h = img.size |
|
|
98 |
if h < self.trainsize or w < self.trainsize: |
|
|
99 |
h = max(h, self.trainsize) |
|
|
100 |
w = max(w, self.trainsize) |
|
|
101 |
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), Image.NEAREST) |
|
|
102 |
else: |
|
|
103 |
return img, gt |
|
|
104 |
|
|
|
105 |
def __len__(self): |
|
|
106 |
return self.size |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
def get_loader(image_root, gt_root, batchsize, trainsize, shuffle=True, num_workers=4, pin_memory=True, augmentation=False): |
|
|
110 |
|
|
|
111 |
dataset = PolypDataset(image_root, gt_root, trainsize, augmentation) |
|
|
112 |
data_loader = data.DataLoader(dataset=dataset, |
|
|
113 |
batch_size=batchsize, |
|
|
114 |
shuffle=shuffle, |
|
|
115 |
num_workers=num_workers, |
|
|
116 |
pin_memory=pin_memory) |
|
|
117 |
return data_loader |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
class test_dataset: |
|
|
121 |
def __init__(self, image_root, gt_root, testsize): |
|
|
122 |
self.testsize = testsize |
|
|
123 |
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')] |
|
|
124 |
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.tif') or f.endswith('.png')] |
|
|
125 |
self.images = sorted(self.images) |
|
|
126 |
self.gts = sorted(self.gts) |
|
|
127 |
self.transform = transforms.Compose([ |
|
|
128 |
transforms.Resize((self.testsize, self.testsize)), |
|
|
129 |
transforms.ToTensor(), |
|
|
130 |
transforms.Normalize([0.485, 0.456, 0.406], |
|
|
131 |
[0.229, 0.224, 0.225])]) |
|
|
132 |
self.gt_transform = transforms.ToTensor() |
|
|
133 |
self.size = len(self.images) |
|
|
134 |
self.index = 0 |
|
|
135 |
|
|
|
136 |
def load_data(self): |
|
|
137 |
image = self.rgb_loader(self.images[self.index]) |
|
|
138 |
image = self.transform(image).unsqueeze(0) |
|
|
139 |
gt = self.binary_loader(self.gts[self.index]) |
|
|
140 |
name = self.images[self.index].split('/')[-1] |
|
|
141 |
if name.endswith('.jpg'): |
|
|
142 |
name = name.split('.jpg')[0] + '.png' |
|
|
143 |
self.index += 1 |
|
|
144 |
return image, gt, name |
|
|
145 |
|
|
|
146 |
def rgb_loader(self, path): |
|
|
147 |
with open(path, 'rb') as f: |
|
|
148 |
img = Image.open(f) |
|
|
149 |
return img.convert('RGB') |
|
|
150 |
|
|
|
151 |
def binary_loader(self, path): |
|
|
152 |
with open(path, 'rb') as f: |
|
|
153 |
img = Image.open(f) |
|
|
154 |
return img.convert('L') |