Diff of /CaraNet/test_blood.py [000000] .. [6f3ba0]

Switch to unified view

a b/CaraNet/test_blood.py
1
import torch
2
import torch.nn.functional as F
3
import numpy as np
4
import os, argparse
5
from scipy import misc
6
#from lib.HarDMSEG import HarDMSEG
7
from utils.dataloader import test_dataset
8
#from CFP_Res2Net import cfpnet_res2net
9
from collections import OrderedDict
10
#from pranet import PraNet
11
from CaraNet import caranet
12
13
import cv2
14
15
parser = argparse.ArgumentParser()
16
parser.add_argument('--testsize', type=int, default=352, help='testing size')
17
parser.add_argument('--pth_path', type=str, default='/home/data/spleen_blood/CaraNet/snapshots/CaraNet-best.pth')
18
19
for _data_name in ['test']:
20
    ##### put your data_path here #####
21
    data_path = '/home/data/spleen_blood/CaraNet/TestDataset/{}/'.format(_data_name)
22
    ###################################
23
   
24
    save_path = '/home/data/spleen_blood/CaraNet/results/CaraNet/{}/'.format(_data_name)
25
26
    if not os.path.exists( save_path ):
27
        os.makedirs( save_path ) 
28
29
    opt = parser.parse_args()
30
    model = caranet()
31
    weights = torch.load(opt.pth_path)
32
    new_state_dict = OrderedDict()
33
34
    for k, v in weights.items():
35
36
    
37
        if 'total_ops' not in k and 'total_params' not in k:
38
            name = k
39
            new_state_dict[name] = v
40
        # print(new_state_dict[k])
41
        
42
            # # print(k)
43
        # fp = open('./log3.txt','a')
44
        # fp.write(str(k)+'\n')
45
        # fp.close()
46
    # print(new_state_dict)
47
        
48
    model.load_state_dict(new_state_dict)
49
    model.cuda()
50
    model.eval()
51
52
53
    os.makedirs(save_path, exist_ok=True)
54
    image_root = '{}/images/'.format(data_path)
55
    gt_root = '{}/masks/'.format(data_path)
56
    test_loader = test_dataset(image_root, gt_root, opt.testsize)
57
58
    for i in range(test_loader.size):
59
        image, gt, name = test_loader.load_data()
60
        gt = np.asarray(gt, np.float32)
61
        gt /= (gt.max() + 1e-8)
62
        image = image.cuda()
63
64
        # res = model(image)
65
        res5,res4,res2,res1 = model(image)
66
        res = res5
67
        res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
68
        res = res.sigmoid().data.cpu().numpy().squeeze()
69
        res = (res - res.min()) / (res.max() - res.min() + 1e-8)
70
        
71
        #misc.imsave(save_path+name, res)
72
        cv2.imwrite(save_path+name, res)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93