|
a |
|
b/CaraNet/pretrain/ResNet.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Mon Jun 21 21:52:37 2021 |
|
|
4 |
|
|
|
5 |
@author: angelou |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import torch.nn as nn |
|
|
9 |
import math |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def conv3x3(in_planes, out_planes, stride=1): |
|
|
13 |
"""3x3 convolution with padding""" |
|
|
14 |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
|
15 |
padding=1, bias=False) |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
class BasicBlock(nn.Module): |
|
|
19 |
expansion = 1 |
|
|
20 |
|
|
|
21 |
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
22 |
super(BasicBlock, self).__init__() |
|
|
23 |
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
24 |
self.bn1 = nn.BatchNorm2d(planes) |
|
|
25 |
self.relu = nn.ReLU(inplace=True) |
|
|
26 |
self.conv2 = conv3x3(planes, planes) |
|
|
27 |
self.bn2 = nn.BatchNorm2d(planes) |
|
|
28 |
self.downsample = downsample |
|
|
29 |
self.stride = stride |
|
|
30 |
|
|
|
31 |
def forward(self, x): |
|
|
32 |
residual = x |
|
|
33 |
|
|
|
34 |
out = self.conv1(x) |
|
|
35 |
out = self.bn1(out) |
|
|
36 |
out = self.relu(out) |
|
|
37 |
|
|
|
38 |
out = self.conv2(out) |
|
|
39 |
out = self.bn2(out) |
|
|
40 |
|
|
|
41 |
if self.downsample is not None: |
|
|
42 |
residual = self.downsample(x) |
|
|
43 |
|
|
|
44 |
out += residual |
|
|
45 |
out = self.relu(out) |
|
|
46 |
|
|
|
47 |
return out |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
class Bottleneck(nn.Module): |
|
|
51 |
expansion = 4 |
|
|
52 |
|
|
|
53 |
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
54 |
super(Bottleneck, self).__init__() |
|
|
55 |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
|
56 |
self.bn1 = nn.BatchNorm2d(planes) |
|
|
57 |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
|
58 |
padding=1, bias=False) |
|
|
59 |
self.bn2 = nn.BatchNorm2d(planes) |
|
|
60 |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
|
61 |
self.bn3 = nn.BatchNorm2d(planes * 4) |
|
|
62 |
self.relu = nn.ReLU(inplace=True) |
|
|
63 |
self.downsample = downsample |
|
|
64 |
self.stride = stride |
|
|
65 |
|
|
|
66 |
def forward(self, x): |
|
|
67 |
residual = x |
|
|
68 |
|
|
|
69 |
out = self.conv1(x) |
|
|
70 |
out = self.bn1(out) |
|
|
71 |
out = self.relu(out) |
|
|
72 |
|
|
|
73 |
out = self.conv2(out) |
|
|
74 |
out = self.bn2(out) |
|
|
75 |
out = self.relu(out) |
|
|
76 |
|
|
|
77 |
out = self.conv3(out) |
|
|
78 |
out = self.bn3(out) |
|
|
79 |
|
|
|
80 |
if self.downsample is not None: |
|
|
81 |
residual = self.downsample(x) |
|
|
82 |
|
|
|
83 |
out += residual |
|
|
84 |
out = self.relu(out) |
|
|
85 |
|
|
|
86 |
return out |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
class ResNet(nn.Module): |
|
|
90 |
# ResNet50 with two branches |
|
|
91 |
def __init__(self): |
|
|
92 |
# self.inplanes = 128 |
|
|
93 |
self.inplanes = 64 |
|
|
94 |
super(ResNet, self).__init__() |
|
|
95 |
|
|
|
96 |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
|
97 |
bias=False) |
|
|
98 |
self.bn1 = nn.BatchNorm2d(64) |
|
|
99 |
self.relu = nn.ReLU(inplace=True) |
|
|
100 |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
101 |
self.layer1 = self._make_layer(Bottleneck, 64, 3) |
|
|
102 |
self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2) |
|
|
103 |
self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2) |
|
|
104 |
self.layer4 = self._make_layer(Bottleneck, 512, 3, stride=2) |
|
|
105 |
|
|
|
106 |
for m in self.modules(): |
|
|
107 |
if isinstance(m, nn.Conv2d): |
|
|
108 |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
109 |
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
|
110 |
elif isinstance(m, nn.BatchNorm2d): |
|
|
111 |
m.weight.data.fill_(1) |
|
|
112 |
m.bias.data.zero_() |
|
|
113 |
|
|
|
114 |
def _make_layer(self, block, planes, blocks, stride=1): |
|
|
115 |
downsample = None |
|
|
116 |
if stride != 1 or self.inplanes != planes * block.expansion: |
|
|
117 |
downsample = nn.Sequential( |
|
|
118 |
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
|
119 |
kernel_size=1, stride=stride, bias=False), |
|
|
120 |
nn.BatchNorm2d(planes * block.expansion), |
|
|
121 |
) |
|
|
122 |
|
|
|
123 |
layers = [] |
|
|
124 |
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
|
125 |
self.inplanes = planes * block.expansion |
|
|
126 |
for i in range(1, blocks): |
|
|
127 |
layers.append(block(self.inplanes, planes)) |
|
|
128 |
|
|
|
129 |
return nn.Sequential(*layers) |
|
|
130 |
|
|
|
131 |
def forward(self, x): |
|
|
132 |
x = self.conv1(x) |
|
|
133 |
x = self.bn1(x) |
|
|
134 |
x = self.relu(x) |
|
|
135 |
x = self.maxpool(x) |
|
|
136 |
|
|
|
137 |
x = self.layer1(x) |
|
|
138 |
x = self.layer2(x) |
|
|
139 |
x1 = self.layer3_1(x) |
|
|
140 |
x1 = self.layer4_1(x1) |
|
|
141 |
|
|
|
142 |
x2 = self.layer3_2(x) |
|
|
143 |
x2 = self.layer4_2(x2) |
|
|
144 |
|
|
|
145 |
return x1, x2 |