[6f3ba0]: / CaraNet / lib / partial_decoder.py

Download this file

47 lines (38 with data), 1.7 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 10 17:20:30 2021
@author: angelou
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.conv_layer import Conv, BNPReLU
import math
class aggregation(nn.Module):
# dense aggregation, it can be replaced by other aggregation previous, such as DSS, amulet, and so on.
# used after MSF
def __init__(self, channel):
super(aggregation, self).__init__()
self.relu = nn.ReLU(True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_upsample1 = Conv(32, 32, 3,1, padding=1)
self.conv_upsample2 = Conv(32, 32, 3,1, padding=1)
self.conv_upsample3 = Conv(32, 32, 3,1, padding=1)
self.conv_upsample4 = Conv(32, 32, 3,1, padding=1)
self.conv_upsample5 = Conv(2*32, 2*32, 3,1, padding=1)
self.conv_concat2 = Conv(2*32, 2*32, 3,1, padding=1)
self.conv_concat3 = Conv(3*32, 3*32, 3,1, padding=1)
self.conv4 = Conv(3*32, 3*32, 3,1, padding=1)
self.conv5 = nn.Conv2d(3*32 , 1, 1)
def forward(self, x1, x2, x3):
x1_1 = x1
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
x3_1 = self.conv_upsample2(self.upsample(self.upsample(x1))) \
* self.conv_upsample3(self.upsample(x2)) * x3
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
x2_2 = self.conv_concat2(x2_2)
x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1)
x3_2 = self.conv_concat3(x3_2)
x = self.conv4(x3_2)
x = self.conv5(x)
return x